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Electron transport in a weakly disordered Weyl semimetal
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Weyl semimetal is a solid material with isolated touching points between conduction and valence bands in its
Brillouin zone—Weyl points. Low-energy excitations near these points exhibit a linear dispersion and act as rel-
ativistic massless particles. Weyl points are stable topological objects robust with respect to most perturbations.
We study effects of weak disorder on the spectral and transport properties of Weyl semimetals in the limit of low
energies. We use a model of Gaussian white-noise potential and apply dimensional regularization scheme near
three dimensions to treat divergent terms in the perturbation theory. In the framework of self-consistent Born
approximation, we find closed expressions for the average density of states and conductivity. Both quantities are
analytic functions in the limit of zero energy. We also include interference terms beyond the self-consistent Born
approximation up to the third order in the disorder strength. These interference corrections are stronger than the
mean-field result and nonanalytic as functions of energy. Our main result is the dependence of conductivity (in
units e2/h) on the electron concentration σ = σ0 − 0.891 n1/3 + 0.115 (n2/3/σ0) ln |n|.
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I. INTRODUCTION

In recent years, the model of massless Weyl fermions has
attracted a great attention in condensed matter physics since
the discovery of Weyl semimetals [1–4]. The Weyl semimetal
is a solid-state crystal having isolated touching points (Weyl
nodes or Weyl points) between conduction and valence bands
with low-energy excitations that act as relativistic massless
fermions. These fermions are described by the standard Weyl
Hamiltonian,

H = v σ · p, (1)

in the vicinity of a Weyl point. Here v is the fixed velocity of
massless excitations and σ = {σx, σy, σz} is a vector of three
standard Pauli matrices.

Each Weyl point has a definite chirality and can be repre-
sented as a magnetic monopole, which is a source or sink of
Berry flux in the momentum space. It is known that the net
chirality of all touching points in the Brillouin zone must van-
ish [5] hence there is always an even number of Weyl nodes
in the spectrum. As a consequence of the Nielsen-Ninomiya
theorem [5], the topological nature of such nodes protects
them from opening a gap. Weak perturbations can only shift
a Weyl point in momentum or energy while preserving its
topological nature. The only possible way to open a spectral
gap is by coupling two distant Weyl points. Hence, the Weyl
semimetal properties are robust with respect to small and
smooth perturbations [6].

An important topological feature of any Weyl semimetal is
the existence of low-energy surface states that form a Fermi
arc [2,7] connecting projections of Weyl points on the crystal
surface. These states exist on the background of the excitation-
less bulk spectrum since the low-energy excitations in the bulk
occur only near isolated Weyl points. Fermi arc surface states
are very well visible in the momentum-resolved spectroscopic

measurements and are used as a hallmark for detecting Weyl
semimetals. Recent experiments [8,9] have proposed several
candidate materials for Weyl semimetals: TaAs, TaP, NbAs,
NbP. So far, the best candidate TaAs, studied in Ref. [9], has
shown 12 pairs of Weyl nodes.

One of the hottest debated topics in the theory of Weyl
semimetals is the proposed quantum phase transition in the
low-energy behavior of the density of states. Early numeri-
cal simulations of disordered Weyl semimetals [10–15] have
suggested that the density of states at zero energy undergoes
a second-order transition from zero to a nonzero value when
the strength of potential disorder exceeds a certain threshold.
This conclusion is supported by some theoretical analysis. It
was shown that a standard perturbation theory in weak dis-
order [16–21] developed near the dimension d = 2 and then
continued to d = 3 indeed suggests vanishing density of states
at zero energy. Alternative consideration in the framework of
the nonlinear sigma model [22–24] provided a similar result.
At the same time, it is quite clear that even an extremely small
probability of a disorder realization that localizes an electron
at zero energy is enough to disprove the proposed phase
transition [25–29]. Another nonperturbative approach [30] has
suggested that for a broad class of “optimal” fluctuations of
disorder potential, the density of states is still exactly vanish-
ing. Let us point out that the behavior of the density of states
(DOS) depends on the type of impurities, e.g., in the case of
spherical impurities DOS at Weyl point should be nonzero
due to resonant scattering [26,31]. Finally, diagrammatic cal-
culations directly in 3D with Gaussian disorder and different
types of momentum cutoff regularization [32,33] have shown
the existence of the phase transition within the mean-field
approximation. It can thus be claimed that although a true
phase transition in the DOS is hardly possible, there is a very
sharp crossover from algebraic to exponentially small DOS as
a function of disorder strength [34].
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In the present paper, we will study disorder effects in a
Weyl semimetal in the limit of weak disorder only. Moreover,
we will adopt the most standard Gaussian white-noise
model of disorder similar to the one considered in Ref. [33].
Technically, this problem is identical to the well-studied
Gross-Neveu model [35] in the Euclidean (imaginary time)
representation with zero mass. Critical dimension of the
Gross-Neveu model is d = 2. Close to this dimension, it is
possible to develop a standard perturbative renormalization
group approach to take into account logarithmically divergent
diagrams. Such calculations were carried out up to the
four-loop order in Refs. [36,37]. However, disordered
Weyl semimetals correspond to the 3D version of the
Gross-Neveu model where strong ultraviolet divergences
make the renormalization group analysis problematic [38].

This paper is devoted to 3D Weyl semimetals with weak
Gaussian white-noise disorder. As was already pointed out,
this model suffers from strong ultraviolet divergences and
hence should be properly regularized. We will apply a stan-
dard technique of dimensional regularization [39] and allow
the dimensionality of the system to deviate from d = 3. But
contrary to the previous works [16–19], we will not per-
form any expansion near d = 2. Instead, we will consider
all disorder corrections in a completely arbitrary dimension
and do an exact analytic continuation of the results from
the region d < 2 where ultraviolet divergences are absent to
d = 3. Since the Gross-Neveu model is not renormalizable in
d = 3, we will not develop any effective field theory descrip-
tion but instead consider disorder corrections directly to the
observable quantities: DOS and conductivity. A calculation
of weak disorder effects on the optical conductivity has been
performed previously in Ref. [40]. In this paper, we focus
instead on the dc conductivity regime.

Our approach is quite similar to the standard problem of a
conventional 3D metal with parabolic spectrum and Gaussian
disorder. Detailed analysis of weak disorder effects in this
model was performed in Refs. [41,42]. It was shown that the
model exhibits three types of corrections to the conductiv-
ity. First, there are corrections of relative strength ∝ (Eτ )−1,
where E is the Fermi energy and τ is the mean-free time
of the electrons. Second, there are weaker logarithmic cor-
rections ∝ (Eτ )−2 ln(Eτ ). Such logarithms do not represent
truly divergent contributions but require an accurate analysis
of the diagrams on a ballistic scale. Finally, there is another
logarithmic contribution ∝ (Eτ )−2 ln(E/�), where � is some
ultraviolet energy cutoff scale related, e.g., to the bandwidth
or to the lattice spacing. This type of a logarithmic divergence
cannot be resolved in the low-energy model with parabolic
spectrum and requires an extra parameter �. Divergent terms
are present in the energy dependence of both the conductivity
σ and the total particle density n but cancel out in their ratio,
i.e., mobility of the metal μ = σ/(en).

The problem of a disordered Weyl semimetal considered
in this paper is technically more challenging. We will en-
counter stronger ultraviolet divergences that can be absorbed
into redefinition of model parameters (Fermi energy, disorder
strength, etc). Such finite renormalizations are automatically
taken into account by the dimensional regularization scheme
[39]. The remaining logarithmic divergences will be cut at the
scale �. They do not cancel out in any observable quantity

and will constitute an important part of our results. Let us em-
phasize that we develop a perturbative approach applicable in
a relatively broad range of parameters (such as Fermi energy
E , mean-free time τ , and UV cutoff �). At the same time,
possible nonperturbative effects, that are widely discussed in
the context of Weyl semimetals [10–14,16–21,24–27,30,32–
34], may occur only in an exponentially narrow parameter
range near the Weyl point and will be disregarded in this
paper. We provide detailed estimates of the applicability of
our approach in the Discussion section at the end of the paper.

The structure of the paper is the following. In Sec. II, we
formulate the problem and explain some details of the dimen-
sional regularization scheme. Section III contains a mean-field
calculation of the DOS and conductivity based on the self-
consistent Born approximation (SCBA). This approach is
similar to Ref. [33]. In Sec. IV, we calculate interference
contributions due to diagrams with two and three intersecting
impurity lines. We show that these diagrams provide nonana-
lytic corrections to the observable quantities. Main results are
summarized and discussed in Sec. V. Technically intricate de-
tails of the calculation of polarization operators in an arbitrary
dimension are outlined in the Appendix.

II. STATEMENT OF THE PROBLEM

We consider a standard model of a single-node Weyl
semimetal in the presence of potential disorder described by
the following Hamiltonian:

H = σ · p + V (r). (2)

For simplicity, we set the velocity of electrons to unity. In a
real Weyl semimetal, the number of Weyl nodes is at least
two. Our model implies that disorder scattering between these
nodes is negligible or, in other words, the disorder potential is
smooth on the scale of inverse distance between Weyl nodes
in momentum space. Linear momentum dependence of the
Hamiltonian is, of course, also an approximation; it is valid
only at low enough energies.

We assume that the random disorder potential obeys the
standard Gaussian white-noise statistics:

〈V (r)〉 = 0, 〈V (r)V (r′)〉 = 2π2α δ(r − r′). (3)

Disorder strength is characterized by a single parameter α

that has a dimension of inverse energy for a 3D problem. The
only dimensionless small parameter of our model is αE � 1,
where E is the Fermi energy measured from the Weyl point.
All observable quantities are even functions of E so, for defi-
niteness, we assume E > 0.

We will calculate average DOS and conductivity of a
Weyl semimetal perturbatively in αE using diagrammatic
expansion. The unperturbed Green’s function of the Weyl
Hamiltonian is

GR/A(E , p) = E + σ · p
(E ± i0)2 − p2

. (4)

In some parts of the calculation, it will be more convenient to
use Matsubara representation with imaginary energy E = iε.
Retarded/advanced functions are then retrieved by analytic
continuation from positive/negative ε. For diagrams that in-
volve both types of Green’s functions, we have to keep two
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different Matsubara energies. Hence it will be convenient to
change the sign of the Matsubara energy for advanced Green’s
functions such that analytic continuation is always performed
in the upper complex half plane of energy,

G(iεR, p) = − iεR + σ · p
ε2

R + p2
, G(−iεA, p) = iεA − σ · p

ε2
A + p2

,

(5)

where εR/A �→ ∓iE + 0. When only retarded Green’s func-
tions are used (e.g., in the calculation of the DOS) we will
omit the index and write simply ε instead of εR since it obeys
the usual convention for the Matsubara energy.

Calculating diagrams for a system with linear dispersion in
3D leads to strong ultraviolet divergences. In fact, the theory
is free of such problems only in the dimension d < 2. To over-
come this difficulty, we will use a dimensional regularization
scheme [39,43]. This means calculating every diagram in an
arbitrary dimension d and then performing analytic contin-
uation of the result in the parameter d from the domain of
convergence d < 2 to the point d = 3. Ultraviolet divergence,
that occurs in most diagrams at d = 2, manifests itself as
a pole in the corresponding expression as a function of d .
Analytic continuation allows us to bypass the pole and get
some finite result for d > 2. We will comment on the physical
meaning of this mathematical trick later. Let us stress once
again that, unlike numerous other works, we do not imply
any kind of expansion in the vicinity of the critical dimension
d = 2 but rather allow for arbitrary values of the parameter d .

The matrix-valued vector σ is generalized to d dimensions
by imposing anticommutation relations on its elements:

σaσb + σbσa = 2δab, δaa = d, tr 1 = 2. (6)

Strictly speaking, the convention tr 1 = 2 does not hold for
arbitrary d . For example, in d = 4, a minimal representation
of the Dirac γ matrices has the size 4. However, we will apply
a dimensional scheme at d = 3, where standard Pauli matri-
ces have dimension 2. Hence, for our purposes, the relation
tr 1 = 2 is valid.

For the sake of convenience, we also generalize the dis-
order correlation function Eqs. (3) to arbitrary dimension as
follows:

〈V (r)V (r′)〉 = (2π )d

Sd−1
α δ(r − r′). (7)

Here Sd−1 is the volume of a (d − 1)-dimensional unit sphere.
The parameter α itself has a dimension that depends on
d: [α] = E2−d .

Our main goal is to calculate the average DOS ρ and
conductivity σ in the limit of small energy or, equivalently,
weak disorder. We will use standard Kubo expressions for
these quantities. The DOS is given by a single average Green’s
function at coincident points:

ρ(E ) = − 1

π
Im

∫
(dd p) tr〈GR(E , p)〉. (8)

For a clean system, it is easy to calculate the DOS just by the
area of the Fermi surface. In 3D, this yields

ρ0(E ) = 4πE2

(2π )3
= E2

2π2
. (9)

The same result follows from Eq. (8) with the Green’s func-
tion from Eq. (4).

Kubo formula for conductivity (measured in units e2/h) is

σ (E ) = Tr〈σxGR(E )σxGA(E )〉. (10)

Here Tr implies the trace in the space of Pauli matrices
and also an integral in the momentum space. Matrices σx

here represent velocity operators of the Weyl Hamiltonian,
∂H/∂p = σ.

Let us stress that Eq. (10) is correct only in the framework
of the dimensional regularization scheme. A more general
Kubo formula for conductivity also includes the terms with
two retarded or two advanced Green’s functions. However,
these terms vanish due to gauge invariance as long as the
corresponding momentum integral is convergent.

III. SELF-CONSISTENT BORN APPROXIMATION

A standard approach in the theory of weakly disordered
metals is the SCBA. It takes into account only the diagrams
with nonintersecting impurity lines. Such diagrams are most
important because all the Green’s functions can be taken
close to the mass shell (Fermi surface) without violating
conservation of momentum. Other diagrams, with intersec-
tion of impurity lines acquire an extra small factor in the
limit Eτ 
 1.

To estimate the disorder scattering rate in our model, we
can apply Fermi’s golden rule 1/τ ∼ αρ(E ). With the DOS
Eq. (9), this yields

Eτ ∼ 1

αE

 1. (11)

Hence the criterion of weak disorder αE � 1 also implies
validity of SCBA. Let us stress quite a counterintuitive feature
of the Weyl semimetal model: disorder effects get weaker with
lowering the energy and shrinking of the Fermi surface. For
most other common Hamiltonians, the situation is opposite:
parameter Eτ grows with increasing energy. Weyl semimetals
are special in this respect because their DOS has a relatively
strong energy dependence with a soft gap at E = 0.

In the framework of SCBA, the electron Green’s func-
tion averaged over disorder realizations acquires a self-energy
which is independent of momentum:

G(iε, p) = [iε − σ · p − �(iε)]−1. (12)

The self-energy �(iε) is identified with the simplest first-
order Born diagram involving a single impurity line and a
single Green’s function Eq. (12) that involves the same self-
energy. This yields the SCBA self-consistency equation for
�(iε) that automatically takes into account all self-energy
diagrams with nonintersecting impurity lines. Explicitly, the
equation is

� = (2π )d

Sd−1
α

∫
(dd p) G(iε, p) = − iπα(ε + i�)d−1

2 sin(πd/2)
. (13)

While the momentum integral here converges only for
d < 2, we can perform analytic continuation of the result
directly to the point d = 3. This way, we arrive at a simple
quadratic equation for the self-energy that can be readily
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solved:

� = iπα

2
(ε + i�)2 = iε + i

πα
(1 − √

1 + 2παε). (14)

This equation and its solution can be directly compared to a
similar SCBA equation studied in Ref. [33]. In that paper, the
divergence of the integral Eq. (13) was regulated by limiting
the momenta 0 < p < �. As a result, the right-hand side of
the equation acquired an extra contribution ∝ �. However,
this extra term only slightly modifies the solution in the limit
of weak disorder. Moreover, it can be absorbed into a redefi-
nition of the parameters α and ε and does not show up in the
observable quantities.

After analytic continuation of Eq. (14) in the upper
complex half-plane iε �→ E + i0, we obtain the retarded self-
energy:

�R = E +
√

1 − 2iπαE − 1

iπα
≈ − iπαE2

2
+ π2α2E3

2
+ . . . .

(15)

The real part of the self-energy can be always hidden in the
renormalization of the Fermi energy. In turn, the imaginary
part is directly observable since it defines the electron scatter-
ing rate:

γ = 1

2τ
= − Im �R ≈ παE2

2
. (16)

We see that our SCBA approach within dimensional regu-
larization scheme correctly reproduces the leading Fermi’s
golden rule estimate of this rate, cf. Eq. (11).

A. Density of states

Average DOS in the presence of disorder is given by
Eq. (8). This equation contains exactly the same momentum
integral as the right-hand side of the SCBA Eq. (13). This
allows us to express the DOS via the self-energy directly
in 3D:

ρ(E ) = − 2

π
Im

∫
(d3 p)

E − �R

(E − �R)2 − p2
= − Im �R

π3α
.

(17)

Using the solution Eq. (14), we obtain a rather simple and
closed expression for the DOS:

ρ(E ) = Re
√

1 + 2iπαE − 1

π4α2

≈ E2

2π2

(
1 − 5

4
π2α2E2 + . . .

)
. (18)

In the limit of weak disorder, the DOS acquires a small neg-
ative correction ∝ α2E4. In Sec. IV, we will show that other
diagrams, not included in SCBA, provide a stronger correction
in this limit. Let us also point out that the SCBA result for the
DOS is an analytic function at small E . Corrections beyond
SCBA will violate this property as well.

B. Conductivity

Semiclassical conductivity is defined by the Kubo formula
Eq. (10) with the two Green’s functions averaged separately.

+ + + . . . =

FIG. 1. Diagrams for conductivity with the current vertex
correction.

In addition, the current vertex correction shown in Fig. 1
should be included to account for all the diagrams with nonin-
tersecting impurity lines. As we will see shortly, each rung of
the ladder diagram multiplies the current operator by the same
constant W :

W σx = α

∫
GR(iεR, p)σxGA(−iεA, p) pd−1 d p. (19)

Here we use Matsubara representation with both energies εR/A

positive, cf. Eqs. (5). These energies also include the corre-
sponding self-energy parts.

Averaging over directions of p and applying anticommuta-
tion rules Eqs. (6), we simplify the integrand in Eq. (19) and
observe that the right-hand side is indeed proportional to σx

and hence the current operator retains its matrix form. The
remaining integral over p defines the factor W :

W = α

∫
εRεA + p2(2 − d )/d(
ε2

R + p2
)(

ε2
A + p2

) pd−1 d p. (20)

Here the integrand can be split into two parts with either a re-
tarded or advanced denominator. This separation allows us to
express the integrals of the two terms through the self-energy
using the SCBA Eq. (13):

W = [(d − 2)εR + dεA]�R + [dεR + (d − 2)εA]�A

id
(
ε2

R − ε2
A

) . (21)

Finally, we perform analytic continuation to real energies
according to the rules

iεR �→ E − �R, −iεA �→ E − �A, (22)

and get the following result:

W = E + (d − 2) Re �

d (E − Re �)
. (23)

The diagrams in Fig. 1 represent a simple geometric series
with the denominator W . Summing up this series and setting
d = 3, we obtain the conductivity:

σ = 1

π2α

W

1 − W
= 1

2π2α

E + Re �

E − 2 Re �
. (24)

With the solution Eq. (15), we can get a closed expression for
the conductivity including all diagrams with nonintersecting
impurity lines:

σ = 1

2π2α

1 − 2 Re
√

1 + 2iπαE

Re
√

1 + 2iπαE − 2

≈ 1

2π2α

(
1 + 3

2
π2α2E2 + . . .

)
. (25)

Exactly at the Weyl point, E = 0, the conductivity re-
mains finite. Its value is ∝ 1/α. This result fully agrees
with the previous studies [32,33]. Equation (25) suggests a
correction ∝ αE2 to this constant. In the next section, we
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δρ(E) = − 1
π

Im = − 1
π

Im
∂

∂E

FIG. 2. Interference correction to the density of states in two
equivalent forms: as a Green function at coincident points and as
an energy derivative of a vacuum diagram.

will show that other diagrams, not included in SCBA, pro-
vide a stronger correction that is also nonanalytic at small
energies.

IV. INTERFERENCE CORRECTIONS

In the previous section, we have calculated the average
DOS and conductivity of a Weyl semimetal using the SCBA.
This approach automatically includes the complete set of
diagrams with nonintersecting impurity lines. In a sense, it
is a mean-field approach neglecting possible interference of
electrons scattering on different impurities. We will now take
into account such interference effects and consider diagrams
with crossed impurity lines.

The most prominent effect based on quantum interference
of electrons is Anderson localization [44]. It has numerous
forms depending on the symmetry of the disordered Hamilto-
nian, on certain topological features of the spectrum and on
the system dimensionality. For the case of 3D Weyl semimet-
als, as for any other 3D material, localization effects are weak
unless disorder strength exceeds a certain threshold value.
This weak localization correction in 3D is δσ ∼ 1/l , where
l is the electron’s mean-free path. Using Eq. (16), we can es-
timate the weak localization correction in our model as δσ ∼
αE2. Such a correction is the result of summation of an infinite
set of maximally crossed diagrams [45]. Quite curiously, weak
localization effect is of the same order as the correction to
conductivity due to nonintersecting diagrams Eq. (25). In this
section, we will calculate crossed diagrams with two and three
impurity lines. It will be shown that these diagrams provide
a stronger interference correction than the weak localization
effect.

Our calculation is technically similar to the treatment
of ballistic interference effects in a conventional disordered
metal with parabolic dispersion. Such a calculation was car-
ried out in Refs. [41,42]. However, in the case of Weyl
semimetals, additional complications arise due to the matrix
structure of the Hamiltonian Eq. (2).

A. Density of states

The first nontrivial diagram that provides an interference
correction to the DOS Eq. (18) involves two crossed impurity
lines. This diagram is shown in Fig. 2. Since all the Green’s
functions in this diagram are taken at the same energy, we
can considerably simplify the calculation by computing the
corresponding vacuum diagram first and then taking its

derivative in energy:

δρ(E ) = − 1

π
Im

∂F2(E + i0)

∂E
, (26)

F2(iε) = −α2

4

∫
(dd q) tr[(iε, q)(iε,−q)], (27)

(iε, q) =
∫

pd−1 d p
(iε + σ · p + σ · q)(iε + σ · p)

[ε2 + (p + q)2][ε2 + p2]
.

(28)

Strictly speaking, we should retain the self-energy con-
tribution in the Green’s functions and perform analytic
continuation from a Matsubara energy iε to the energy E +
iγ . However, for the calculation of the DOS, the extra imag-
inary part of the self-energy γ can be neglected since it
provides a correction of a higher order in αE .

Four Green’s functions in the vacuum diagram Fig. 2 are
split into two similar pairs and the result of momentum inte-
gration inside each pair is denoted by . Let us first analyze
this latter integral of the product of two Green’s functions. Let
us split the momentum p = p‖ + p⊥ into components along
and perpendicular to the vector q. The denominator of the
integrand in Eq. (28) does not depend on the direction of
p⊥, hence we can average the numerator with respect to this
direction. Effectively, it means dropping all the terms which
are odd in p⊥. Next, we can express the parallel component
through the scalar product pq and replace the latter with the
help of the identity 2pq = (p + q)2 − p2 − q2. Then we split
the integrand into separate fractions such that their numerators
do not contain p. This yields the following expression:

(iε, q) =
∫

pd−1 d p

[
−2ε2 − q2/2

[ε2 + (p + q)2][ε2 + p2]

+ 1

ε2 + p2

]
. (29)

Here we have also shifted the integration variable p �→ p − q
in one of the terms of the integrand. Note that after all the
transformations, integral  acquired a trivial matrix structure.

We have represented  as a combination of two basic
integrals:

I (iε) =
∫

pd−1 d p

ε2 + p2
= πεd−2

2 sin(πd/2)
, (30a)

I (iε, iε, q) =
∫

pd−1 d p

[ε2 + (p + q)2][ε2 + p2]
. (30b)

The first of these integrals we have already encountered earlier
in the calculation of the self-energy Eq. (13). The second
integral is more complicated since its denominator has a non-
trivial dependence on the angle between p and q. This latter
integral is, in fact, similar to the polarization operator for a
Hamiltonian with quadratic dispersion. Calculation of such
a polarization operator and its analytic continuation to real
energies is outlined in the Appendix. The final result for  is

(iε, q) = I (iε) −
(

2ε2 + q2

2

)
I (iε, iε, q). (31)
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Once the value of  is known, we can readily use Eq. (27)
and represent the vacuum diagram as a single integral in q.
At the same time, we perform analytic continuation to real
energies and obtain

F2(E + i0) = −α2

2

∫
(dd q)

[
IR +

(
2E2 − q2

2

)
IRR(q)

]2

.

(32)

Here IR is the retarded form of the integral Eq. (30a) and
IRR is the retarded-retarded form of the polarization operator
Eq. (A4).

Integral Eq. (32) diverges at large q in 3D. We can extract
this divergent part by using the simplified form of the polar-
ization operator Eq. (A6b) and expanding in q 
 E :

F2(E + i0) = const − α2
∫ ∞

E
dq

[ π2

256
q3d−9(q2 − 4E2)2

− iπ

60
Ed q2d−7(5q2 − 16E2)

]
. (33)

The lower bound of the integral is set to E since this is effec-
tively the only available parameter of the proper dimension.
The exact value of this lower bound is immaterial since we can
always change it at the cost of redefining the constant term.

Dimensional regularization implies that the divergent in-
tegral in Eq. (33) is calculated assuming d is low enough
(d < 4/3 in this case), and then the result is analytically con-
tinued to d = 3. Strongly divergent terms provide some finite
contributions after this procedure. This is fully analogous to
how the divergent real part of the self-energy is removed by
renormalization of the chemical potential. The only nontrivial
contribution comes from the very last term whose divergence
in 3D is logarithmic:

F2(E + i0) = const − 4iπα2

15
Ed+2

∫ ∞

E
dq q2d−7

= const + 2iπα2

15

E3d−4

d − 3
. (34)

Thus, the function F2 acquires a simple pole at d = 3. This
is a standard manifestation of a logarithmic divergence in the
dimensional scheme. We can convert this pole into explicit
logarithm by expanding the numerator near d = 3:

F2(E + i0) = 2iπ

15
α2E5

(
1

d − 3
+ 3 ln E + . . .

)

= 2iπ

5
α2E5 ln |E/�|. (35)

The divergent term 1/(d − 3) should be replaced by some
large number related to the ultraviolet cutoff scale �. We
simply incorporate this scale into the logarithmic factor as
shown in the last expression.

Interference correction to the average DOS can be found
from Eq. (26). Together with the SCBA expression Eq. (18),
this gives the final result:

ρ(E ) = E2

2π2
− 2α2E4 ln |E/�| + O(α2E4). (36)

Remarkably, interference correction to the DOS is stronger
than a similar correction from SCBA due to just an extra

2Re 2Re

(a) (b) (c)

FIG. 3. Interference corrections to conductivity with two crossed
impurity lines.

logarithm factor. At the same time, this logarithmic correction
is nonanalytic as a function of energy in the limit E → 0,
unlike the SCBA result.

B. Conductivity

Let us now consider similar interference corrections to
the quasiclassical conductivity Eq. (25). The calculation will
be carried out exactly with the same strategy as we did for
the DOS. First, we will reduce every diagram to a single
d-dimensional integral over momentum q in terms of polar-
ization operators. Then we will expand the integrand in the
small ratio γ /E and retain only relevant leading terms of this
expansion. Finally, we will analyze ultraviolet behavior of
each term and apply a dimensional scheme to treat divergent
contributions.

1. Diagrams with two crossed impurity lines

There are in total three different interference diagrams
for conductivity with two crossed impurity lines; see Fig. 3.
All these diagrams can be generated from the single vacuum
diagram Fig. 2 by inserting two current vertices in different
positions. However, unlike the case of the DOS, we cannot
calculate conductivity by taking derivatives of the vacuum
diagram in some parameter because the conductivity diagram
involves both retarded and advanced Green’s functions.

Consider the diagram Fig. 3(a):

δσ2a = α2

(1 − W )2

∫
(dd q) pd−1

1 d p1 pd−1
2 d p2

× tr[σxGR(p1 + q)GR(p2 + q)GR(−p1)

× σxGA(−p1)GA(−p2)GA(p1 + q)]. (37)

Our first goal is to reduce the integrand to a product of polar-
ization operators. Each polarization operator will incorporate
integration over p1 or p2 and the q integral will be analyzed
later. Our expression contains four Green’s functions which
involve the momentum p1. Therefore, we first split the in-
tegrand into fractions involving only two factors with p1 in
the denominator. This is fully analogous to the splitting of
denominators in Eq. (20). The next step is taking the trace
of σ matrices in the numerator and averaging over directions
of p1,2, as explained earlier in the calculation of the DOS.
Finally, we split the integrand in individual fractions whose
numerators are independent of p1,2. This way, we represent
δσ2a as a single q integral of a quadratic expression in terms
of polarization operators:

δσ2a =
∫ ∞

0
dq S2a(q). (38)
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FIG. 4. Momentum dependence of the integrand S2a(q) for the
representation Eq. (38) of the diagram Fig. 3(a) (thick black curve).
Parameters of the plot γ /E = 0.05. Three asymptotic expressions
Eqs. (39) and (40) are shown by the red, blue, and orange lines,
respectively.

An explicit form of the function S2a(q) for an arbitrary d is
very cumbersome, hence we only show the integrand graphi-
cally in Fig. 4 for the case d = 3. There are three qualitatively
different regions in this function:

S2a(q) =

⎧⎪⎨
⎪⎩

SI
2a(q), q � γ

SII
2a(q), γ � q < 2E

SIII
2a (q), q > 2E .

(39)

To analyze the integral, we can do further simplifications by
setting d = 3 in the first two regions and by expanding to
the leading orders in the small parameter γ /E . In the third
region, we have also expanded in q 
 E and retained only
the relevant leading terms. This way we obtain the following
expressions:

SI
2a(q) = − 3

8π2

[
2γ

q
−

(
1 + 4γ 2

q2

)
arctan

q

2γ

]

×
[

6γ

q
+

(
1 − 12γ 2

q2

)
arctan

q

2γ

]
, (40a)

SII
2a(q) = 9

32

(
1

3
− q2

E2
+ 7q4

16E4
− q6

96E6

)
, (40b)

SIII
2a (q) = 3α

32
q2d−5

[
2

3
+ 8E2

5q2
+ O

(
q−4

)]
. (40c)

These three asymptotic forms are also illustrated in Fig. 4. Let
us point out that parameters γ and α are related by Eq. (16) in
3D. For d ≈ 3, a slightly more general relation

γ = π

2
αEd−1 (41)

should be used.
The first asymptotic region q � γ provides a contribution

to the conductivity ∝ αE2. This part is normally taken into
account in the weak localization correction. We will neglect
it in favor of other, larger contributions. The integral over
the second region γ � q < 2E converges and provides a

2 2 Re

(a) (b) (c)

2Re 4Re 2 Re

(d) (e) (f)

2Re 4Re

(g) (h) (i)

2Re 2Re 4 Re

(j) (k) (l)

2Re

(m)

FIG. 5. Interference corrections to the conductivity with three
crossed impurity lines.

correction [45]: ∫ 2E

0
dq SII

2a(q) = 6|E |
35

. (42)

This correction is smaller than the leading Drude result
Eq. (25) but, at the same time, larger than both weak
localization and the subleading term in Eq. (25). Remarkably,
unlike the SCBA result, this term is of an odd power in E and
hence exhibits a cusp at E = 0. We stress this fact by writing
explicitly the absolute value |E | in Eq. (42), thus allowing for
E of any sign.

FIG. 6. Momentum dependence of the integrand S3a(q) for the
representation Eq. (46) of the diagram Fig. 5(a) (thick black curve).
Parameters of the plot γ /E = 0.02. Three asymptotic expressions
Eq. (47) are shown by the red, blue, and orange lines.
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The contribution of the third asymptotic region q > 2E
has an extra α factor compared to SII

2a, hence it should be
negligible at first sight. However, it contains an ultraviolet
divergence that can lead to an extra logarithmic factor as
we have already seen in the calculation of the DOS. In the
expression Eq. (40c), we have retained exactly the terms that
provide such an ultraviolet divergence for d = 3:∫ ∞

2E
dq SIII

2a (q) = const + α

∫ ∞

2E
dq

3E2q2d−7

20

= const − 3αE2d−4

40(d − 3)

= const − 3

20
αE2 ln |E/�|. (43)

We conclude that the contribution of this part, although having
an extra αE factor as compared to Eq. (42), is still dominant
compared to both the weak localization and the SCBA sub-
leading term Eq. (25) due to an extra logarithm. Collecting
all the terms together, we have the following result for the
diagram Fig. 3(a):

δσ2a = 6|E |
35

− 3

20
αE2 ln |E/�|. (44a)

Calculation of the other two diagrams in Fig. 3 is per-
formed in exactly the same way. The only slight technical
difference for the diagram Fig. 3(c) is the presence of two
identical Green’s functions. This means that in some terms we
will encounter a square of the Green’s function’s denominator.
These terms should be expressed via an energy derivative of
the polarization operator. The results for the two diagrams are

δσ2b = 3

10
αE2 ln |E/�|, (44b)

δσ2c = −2|E |
5

+ 1

4
αE2 ln |E/�|. (44c)

Overall interference correction to the conductivity from
diagrams Fig. 3 is the sum of Eqs. (44):

δσ2 = −8|E |
35

+ 2

5
αE2 ln |E/�|. (45)

This result contains both the leading (∝ α0) and subleading
(∝ α1) terms. Higher diagrams with three crossed lines have
an extra α factor and can provide additional contributions to
the subleading interference correction only. These diagrams
will be studied in the next section.

2. Diagrams with three crossed impurity lines

We will now consider interference diagrams for conduc-
tivity with three crossed impurity lines. They are shown in
Fig. 5. All these diagrams except the last one can be gener-
ated from just two distinct vacuum diagrams by inserting two
current vertices in all possible positions. Each of the two cor-
responding vacuum diagrams can be represented as integrals
over a single momentum q of a product of three polarization
operators. This property is preserved after insertion of current
vertices since they can only double certain denominators that
are later decoupled. Hence, we can calculate all but the last
three-impurity diagrams with the same method as described
in the previous section for diagrams with two impurities. As

a typical example, we will explain the calculation of the first
diagram Fig. 5(a) and then give the results for all the other
diagrams.

The diagram Fig. 5(a) can be written as a momen-
tum integral of up to three polarization operators Eq. (A6)
after taking the trace of all the Green’s functions, averaging
over directions of momenta p1,2,3, and algebraically splitting
into individual fractions whose numerators are independent
of p1,2,3. All these steps are completely analogous to the
calculation of the two-impurity diagrams in the previous
section. After extensive algebra, we arrive at the single q
integral:

δσ3a =
∫ ∞

0
dq S3a(q). (46)

The integrand of this expression is shown in Fig. 6. We can
again approximate it in three asymptotic regions of small,
intermediate, and large q:

S3a(q) =

⎧⎪⎨
⎪⎩

SI
3a(q), q � γ

SII
3a(q), γ � q < 2E

SIII
3a (q), q > 2E .

(47)

These asymptotic forms are calculated in the same way as
we did it earlier for the two-impurity diagram. They are also
shown in Fig. 6, however, explicit asymptotic expressions are
still too bulky to write them here explicitly.

The first region provides a finite correction of the order
αE2 completely similar to the previously studied case of two
impurities. We will disregard this contribution altogether. In
the second region, we now have one extra α factor in com-
parison to the diagram with two impurities. Hence, it seems
that we can neglect the contribution from this region as well.
However, as can be seen from Fig. 6, this intermediate region
develops a new type of divergence towards lower values of q.
Specifically, we can extract the following asymptotics:

S3a(γ � q � E ) = −3(16 − π2)

64

αE2

q
. (48)

Integral of this term is not truly divergent since it is limited by
γ from below. But it does provide a logarithmic correction:∫ 2E

0
dq S3a(q) = const + 3(16 − π2)

64
αE2 ln |αE |. (49)

The constant term here is of the order αE2 without any
logarithm.

Finally, we can evaluate the contribution of the region q >

2E . Full asymptotic expression SIII
3a is also not needed for this

calculation. It suffices to take only divergent terms in the limit
q → ∞ and apply the dimensional regularization recipe:∫ ∞

2E
dq S3a(q) = const + α

∫ ∞

2E
dq

23E2q2d−7

60

= const − 23αE2d−4

120(d − 3)

= const − 23

60
αE2 ln |E/�|. (50)
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The full contribution of the diagram Fig. 5(a) is thus

δσ3a = αE2

[
3(16 − π2)

64
ln |αE | − 23

60
ln |E/�|

]
. (51a)

All other diagrams of Fig. 5 except Fig. 5(m) are evaluated
in the same way and the results are

δσ3b = 3(16 − 3π2)

64
αE2 ln |αE |, (51b)

δσ3c = αE2

[
3(π2 − 16)

64
ln |αE | − 41

60
ln |E/�|

]
, (51c)

δσ3d = αE2

[
9π2 + 16

384
ln |αE | + 1

60
ln |E/�|

]
, (51d)

δσ3e = 13

30
αE2 ln |E/�|, (51e)

δσ3 f = − 7

12
αE2 ln |E/�|, (51f)

δσ3g = 0, (51g)

δσ3h = −1

6
αE2 ln |E/�|, (51h)

δσ3i = 0, (51i)

δσ3 j = −2

3
αE2 ln |E/�|, (51j)

δσ3k = 47

12
αE2 ln |E/�|, (51k)

δσ3l = −4

3
αE2 ln |E/�|. (51l)

It remains to calculate the last diagram Fig. 5(m). Not all
impurity lines intersect in this diagram hence it decouples into
two separate integrals. Consider first the part with two current
vertices and three adjacent Green’s functions. We observe that
after p integration, this part of the diagram has a trivial matrix
structure and can be taken out of the overall matrix trace.
Then, the rest of the diagram with two crossed impurity lines
is identical to the diagram Fig. 2 for the interference correction
to the DOS. Using Eq. (34), we obtain the following result for
the correction to conductivity:

δσ3m = 3E1−d

2πα
Im

∂F2

∂E
= 2αE2 ln |E/�|. (51m)

Summing up all three-impurity diagrams Eqs. (51), we
obtain

δσ3 =
(

5

12
− 3π2

64

)
αE2 ln |αE | + 51

20
αE2 ln |E/�|. (52)

Together with the SCBA expression Eq. (25) and with the
corrections from diagrams with two impurities Eq. (45), we
have the final result for conductivity:

σ = 1

2π2α
− 8|E |

35
+

(
5

12
− 3π2

64

)
αE2 ln |αE |

+ 59

20
αE2 ln |E/�| + O(αE2). (53)

We have thus established the leading and subleading terms in
the energy dependence of conductivity.

The result Eq. (53) is written in terms of the disorder
strength parameter α and the Fermi energy E . Both these

parameters also include some uncontrollable renormalization
constants that were implicitly included by the dimensional
regularization procedure [e.g., an ultraviolet divergent part of
the self-energy in Eq. (13)]. Neither the Fermi energy nor the
disorder strength are observable parameters of the material.
At the same time, conductivity can be measured directly as
a function of electron concentration. The latter can be also
controlled, at least in principle, by chemical doping or external
gating.

Electron concentration is related to the Fermi energy by
integrating the DOS. For our purpose, it is in fact sufficient to
retain just the leading term in Eq. (36), which is the DOS of a
clean Weyl semimetal Eq. (9):

n(E ) =
∫ E

0
dE ρ(E ) = E3

6π2
, E = (6π2n)1/3. (54)

We substitute this expression for energy into Eq. (53) and find

σ = σ0 + An1/3 + n2/3

σ0

(
B ln

∣∣n/
σ 3

0

∣∣ + C ln |n/�3|). (55)

We have also introduced here the parameter σ0 corresponding
to the conductivity at zero doping (in units e2/h). This pa-
rameter is also directly measurable and replaces α. Our result
Eq. (55) is thus a relation involving only observable quantities.
Three constants in this relation are

A = − 8

35
(6π2)1/3 ≈ −0.8909, (56)

B = (6π2)2/3

16π

(
5

3π2
− 3

16

)
≈ −0.0056, (57)

C = 59

40π (6π2)1/3
≈ 0.1205. (58)

While the electron concentration is at least partially con-
trollable in the experiment, it seems unfeasible that amount
of disorder can be changed at will. That is why the two
logarithmic terms in Eq. (55) can hardly be distinguished.
A simplified version of our result with the two logarithms
combined reads

σ = σ0 + An1/3 + (B + C)
n2/3

σ0
ln |n|. (59)

Here a normalization constant under the logarithm is unspec-
ified and the prefactor of the second term is B + C ≈ 0.1148.

V. SUMMARY AND DISCUSSION

To summarize, we have studied spectral and transport prop-
erties of a 3D Weyl semimetal in the presence of Gaussian
white-noise disorder. We have developed a perturbation the-
ory approach in the weak disorder limit controlled by the
parameter αE � 1 using a dimensional regularization scheme
near d = 3. Both semiclassical and interference contributions
were taken into account to calculate the average DOS and
conductivity.

In the framework of the SCBA, we have found a closed
analytic expression for the self-energy in three dimensions,
Eq, (14). This allowed us to derive full mean-field results
for the DOS Eq. (18) and conductivity Eq. (25) taking into
account the whole set of nonintersecting diagrams. Both
quantities are analytic functions in the limit E → 0 and have
a regular expansion in powers of the small parameter α2E2.
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We have also considered interference corrections due to
diagrams with two and three intersecting impurity lines. These
interference terms are dominant in comparison with the semi-
classical result and also nonanalytic in the limit E → 0. DOS
includes an extra ultraviolet logarithmic correction Eq. (36)
as compared to the mean-field result Eq. (18). Conductiv-
ity acquires a leading universal (independent of the disorder
strength) correction ∝ |E | and two subleading corrections
with the ultraviolet and infrared logarithms Eq. (53). The lead-
ing correction to the conductivity is due to the diagrams with
two crossed impurity lines while the subleading logarihmic
terms also include a contribution from the diagrams with three
crossed impurities. Our results produce a prediction for the
concentration dependence of conductivity Eq. (55) that can be
directly checked in an experiment.

It should be pointed out that our results are obtained at
relatively low energies E � � � 1/α. Possible nonperturba-
tive effects disregarded in this paper may become important in
yet a much smaller range of energies E � � exp[−(α�)−1].
While the very existence of these nonperturbative contri-
butions is still debated [10–14,16–21,24–27,30,32–34], we
would like to stress that our results do apply in a relatively
broad range of parameters, possibly except an exponentially
small region in the vicinity of zero concentration/energy.

It is worth mentioning some similarities between our re-
sults and interference corrections in a conventional metal with
parabolic spectrum studied in Refs. [41,42]. The leading cor-
rection in both models is of a relative strength αE ∼ (Eτ )−1

and comes from the same two diagrams, Figs. 3(a) and 3(c).
The subleading correction with the infrared logarithm has a
relative strength (αE )2 ln(αE ) ∼ (Eτ )−2 ln(Eτ ). In a con-
ventional metal, it comes from all three diagrams with two
crossed impurities Fig. 3 and, in addition, from four diagrams,
Figs. 5(a)–5(d). In a Weyl semimetal, only the latter four
diagrams provide this correction. Finally, the ultraviolet log-
arithmic correction ∼(αE )2 ln(E/�) comes from almost all
interference diagrams with two and three impurities consid-
ered in this paper, while in the case of conventional metal such
a correction appears only in two diagrams Figs. 3(c) and 5(m).
Ultraviolet logarithm cancels in the expression for electron
mobility μ = σ/(en) in a conventional metal model while for
the Weyl semimetal such a cancellation does not occur.

The model of the random potential disorder can be directly
generalized to include a possible random vector potential.
This will lead to the appearance of two distinct disorder pa-
rameters instead of a single quantity α. The whole calculation
scheme developed in this paper can be applied to this more
general model with minimal modifications. While the number
of relevant diagrams will increase dramatically (each impurity
line will be of either scalar or vector type), we expect that
qualitative results of our calculation will still hold. Only the
coefficients in the expansion Eq. (53) will be modified. This
more general model will be the subject of a separate study.
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APPENDIX: POLARIZATION OPERATOR

In this Appendix, we discuss the momentum integral which
involves denominators of two Green’s functions in an arbi-
trary dimension d . By analogy, we name such an integral a
polarization operator. In the Matsubara formalism, we have
the following expression for the polarization operator:

I (iε1, iε2, q) =
∫

pd−1 d p[
ε2

1 + (p + q)2
][

ε2
2 + p2

] . (A1)

Energy parameters ε1,2 are assumed real and positive. Cal-
culation of the polarization operator starts with the standard
Feynmann trick that allows us to combine the two de-
nominators into a single one at the cost of introducing an
auxiliary integral. After that, d-dimensional integration over
momentum is straightforward. Subsequent integration over
the Feynman parameter yields a linear combination of hyper-
geometric functions

I (iε1, iε2, q) = π [M(iε1, iε2, q) + M(iε2, iε1, q)]

2 sin(πd/2)
, (A2)

with

M(iε1, iε2, q)

= εd−2
1

q2 − ε2
1 + ε2

2

F

(
1,

1

2
,

d

2
,− 4ε2

1 q2(
q2 − ε2

1 + ε2
2

)2

)

− �2(d/2)

�(d − 1)

q2−d sgn
(
q2 − ε2

1 + ε2
2

)
[(

q2 + ε2
1 + ε2

2

)2 − 4ε2
1ε

2
2

](3−d )/2 . (A3)

Our next goal is to perform analytic continuation from
Matsubara energies ε1,2 to real energies. Let us begin with the
simpler case of a polarization operator involving two Green’s
functions of the same kind. Its calculation amounts to setting
ε1 = ε2 = ε and performing analytic continuation in the upper
complex half-plane iε �→ iγ ± E . (Here we include the real
part of the self-energy into E while keeping the imaginary
part γ explicit.) This yields the following result:

IRR/AA(q)

= π

sin(πd/2)

[
(γ ∓ iE )d−2

q2
F

(
1,

1

2
,

d

2
,

4(E ± iγ )2

q2

)

− �2(d/2)

q �(d − 1)
[q2 − 4(E ± iγ )2](d−3)/2

]
. (A4)

The case of the mixed retarded-advanced polarization oper-
ator is more subtle. Analytic continuation in two different
energy parameters can be performed as follows. We set iε1,2 =
iγ ± t and continuously change t from 0 to E . At the initial
value t = 0, both energies ε1,2 are positive and equal, hence
the sign function in Eq. (A3) equals 1. For relatively low en-
ergies E < q/2, we can analytically continue t directly along
the real axis and reach the point t = E without encountering
any singularities. Substituting the end point of this trajectory
into Eq. (A3) yields the result for M and hence for IRA.

For larger energies, E > q/2, the argument of the hy-
pergeometric function in Eq. (A3) hits the value 1 when t
reaches q/2. This is a branch point of the hypergeometric
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function. We can circumvent this point in the complex plane
of t either above or below the real axis. In both cases, one
of the two hypergeometric functions in Eq. (A2) stays on its
main branch while the argument of the other hypergeometric
function crosses the branch cut. We account for this crossing
by subtracting the corresponding jump of the hypergeomet-
ric function. Effectively, this reverses the sign function in
Eq. (A3) for one of the two terms in Eq. (A2) and both sign
functions cancel each other. The final result for the mixed
retarded-advanced polarization operator is

IRA(q) = π

2 sin(πd/2)

[(
(γ − iE )d−2

q2 + 4iEγ

× F

(
1,

1

2
,

d

2
,

4(E + iγ )2q2

(q2 + 4iEγ )2

)
+ {

E �→ −E
})

− 2�2(d/2)

�(d − 1)

q2−dθ (q − 2E )[
(q2 − 4E2)(q2 + 4γ 2)

](3−d )/2

]
.

(A5)

We have thus established exact expressions for the po-
larization operator for any values of the parameters E , γ ,
and q and for arbitrary d . For the computation of diagrams
in the main text, we are mostly interested in the 3D limit.
More specifically, deviations from d = 3 should be taken
into account only in the limit q 
 E where dimensional
regularization is applied. This means that we can substitute
d = 3 in Eqs. (A4) and (A5) everywhere except the last
terms, where we keep the qd−3 asymptotic behavior. This
yields the following simplified versions of the polarization
operators:

IRA(q) = π

2q

(
π

2
qd−3 − Ed−3 arctan

2γ

q

)
, (A6a)

IRR/AA(q) = π

2q

(
π

2
qd−3 − Ed−3

× arctan
2γ ∓ 2iE

q

)
. (A6b)
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