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Effect of topological length on bound state signatures in a topological nanowire
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Majorana bound states (MBSs) at the end of nanowires have been proposed as one of the most important
candidates for topological qubits. However, similar tunneling conductance features for both the MBSs and
Andreev bound states have turned out to be a major obstacle in the verification of the presence of MBSs in
semiconductor-superconductor heterostructures. In this article, we use a protocol to probe properties specific
to the MBSs and use it to distinguish the topological zero-bias peak (ZBP) from a trivial one. For a scenario
involving a quantized ZBP in the nanowire, we propose a scheme wherein the length of the topological region in
the wire is altered. The tunneling conductance signatures can then be utilized to gauge the impact on the energy
of the low-energy states. We show that the topological and trivial ZBPs behave differently under our protocol; in
particular, the topological ZBP remains robust at zero bias throughout the protocol, while the trivial ZBP splits
into two peaks at finite bias. This protocol probes the protection of near-zero-energy states due to their separable
nature, allowing us to distinguish between topological and trivial ZBP.
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I. INTRODUCTION

The Kitaev one-dimensional (1D) topological supercon-
ducting model [1] predicts Majorana modes at the ends of
the 1D chain. These well-separated states form robust non-
local fermionic states and in addition under braiding the
Majorana states obey non-Abelian statistics, thus potentially
providing an ideal base for fault-tolerant topological quantum
computation [2–4]. Since then a number of theoretical pro-
posals have been made for potentially realizing systems that
could host the Majorana modes. Some of the earliest propos-
als include fractional quantum Hall states at filling ν = 5/2
[5], and spinless topological px + ipy superconductors with
the cores hosting Majorana modes [6]. Others include the
cores of superconducting vortices present on the surface of
a three-dimensional (3D) topological insulator proximitized
to an s-wave superconductor [7], a semiconductor film with
spin-orbit interaction and proximity coupled to an s-wave
superconductor and magnetic field [8], and a quantum wire
with strong spin-orbit interaction proximity coupled to a su-
perconductor in the presence of magnetic field [9,10] which
drives the system from a trivial phase with a finite gap to a
topological phase containing a zero-energy Majorana bound
state (MBS) in the gap. Intensive experimental efforts have
been made in realizing the above setups; in particular, the last
setup involving InAs, InSb, and other quantum wires has been
quite promising [11–14].

Of all the signatures of MBSs, the overwhelming emphasis
has been on experimentally detecting the zero-bias tunnel-
ing conductance and its corresponding interpretation [15–45].
From the theoretical perspective, tunneling at the edge of the
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topological superconductor (where the MBSs are localized)
results in a resonant effect; consequently the zero-bias peak
(ZBP) conductance is expected to acquire the quantized value
of 2e2/h [15]. Previous studies have shown that the ZBP can
also appear due to the Andreev bound states (ABSs), with the
peak height close to the quantization values [18,25,26]. The
origin of ABSs is often due to inhomogeneous profiles and
quantum dots at the wire’s end and many times they mimic
MBS tunneling signatures. The typical ABS consists of over-
lapping Majorana components, making them very sensitive to
parameter changes. Therefore, the ZBP due to the ABS can
generally be attributed to the fine tuning of the parameters and
hence is not robust [46]. Recent theoretical works have shown
that the trivial in-gap states can actually be pinned close to
zero energy for an extended range of parameter space for cer-
tain inhomogeneous profiles, making the ZBP robust. These
ABSs have their Majorana components partially separated
(termed as the ps-ABS) from each other [47]. On the other
hand, for magnetic field strengths greater than the critical
value, the wire will be in the topological regime wherein the
Majorana components are completely separated and localized
at the two ends of the wire. It turns out that the ps-ABS appear
just before the critical Zeeman term [48]; thus it is challenging
to unambiguously pin the origin of the ZBP as arising from
either the topological or the trivial states.

To distinguish them, use of two leads each placed at the
opposite ends of the wire have been proposed as they can
measure the correlations between the conductance from the
two local leads. In addition, this setup can be used to probe
nonlocal conductances which arise due to the bulk states and
can produce the band gap closing signature at the topological
phase transition point beyond which the MBS appears [46,49].
However, as discussed in Ref. [50], the presence of inhomo-
geneities like quantum dots at both ends can yield correlated
trivial ZBPs in both the local conductances. It turns out that
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the nonlocal conductance signatures in the case of the het-
erostructures are not strong enough to unambiguously depict
the band gap closing. Besides the above, dephasing, leakage
dynamics of Majorana modes [51], recent studies focused on
the robustness of quantization of ZBPs with respect to tun-
neling barrier height and temperature [52], and phase-biased
Josephson currents [53–55] have been suggested as potential
schemes to distinguish the topological Majorana modes from
the Andreev states.

As mentioned in the preceding paragraph the presence of
quantized ZBPs is insufficient to conclude the existence of
MBSs because trivial ABSs can also produce quantized ZBPs.
To distinguish topological states from normal zero modes, one
needs to go beyond the presence of quantized ZBPs and probe
properties specific to MBSs only. Consider that the ends of
the wire are moved into a trivial parameter space which effec-
tively changes the topological length (i.e., the length of region
whose parameters are in the topological regime); in such a
case, one produces a trivial-topological-trivial structure with
the MBS still present at the edge of the topological region.
This property specific to the MBS has been proposed before
for Majorana braiding protocols [4,56–58] and probing [54].
Motivated by this, we define the “moving protocol” to system-
atically decrease the topological length by fixing the wire’s
ends in a parameter regime below the topological range by
either reducing the Zeeman term or the external potential. We
employ the “Zeeman moving protocol” (ZMP) by applying
a Zeeman term profile and the “potential moving protocol”
(PMP) with external potential in our numerical simulation.
Since local conductance measures the local property of the
wire close to the lead, the effect of change in the topological
region should be apparent in the local conductance. We ap-
ply both protocols to diverse scenarios and investigate their
impact on the trivial and the topological ZBPs. We show
that the topological ZBP from MBSs remains robust under
the moving protocol. At the same time, the trivial ZBP from
the ps-ABS has entirely different behavior, splitting into two
separate peaks at finite bias. This difference in behavior arises
due to the fundamental difference between the MBS and
ps-ABS in the overlap of their Majorana components. Our
“moving protocol” indirectly probes this separable nature of
the Majorana components. We also show that the PMP is more
effective compared to the ZMP as far as distinguishing trivial
and topological ZBPs is concerned.

The organization of the paper is as follows. In Sec. II,
we describe the model and profile of the semiconductor-
superconductor nanowire used to produce the different
heterostructures. In this section, we also define our moving
protocols, under which we will study tunneling conductance
signatures. In Sec. III, we present our results. First, we look
into a homogeneous nanowire and its tunneling conductance
signatures. We also look at the inhomogeneous system, which
can have both trivial and topological ZBPs. We show the
effect of the ZMP on the trivial and topological ZBPs to
demonstrate the different ways they behave. In Sec. III C, we
present the behavior of topological and trivial ZBPs under the
PMP. In Sec. III D, we consider another system, S′SS′ (where
S′ and S are superconducting regions of the wire with different
chemical potential), to showcase the shortcomings of the ZMP
and how we go around it by using the PMP to distinguish

topological ZBPs from trivial ZBPs. Finally, we present our
conclusions in Sec. IV.

II. MODEL

We study a 1D semiconductor nanowire with spin-orbit
coupling having a superconducting gap induced via the prox-
imity effect. In addition, we take into consideration a magnetic
field applied perpendicular to the wire and parallel to the
superconductor. The corresponding Hamiltonian which incor-
porates all of the above terms is given by

H = −
∑

n

{[ ∑
σ,σ ′

c†
n+1,σ

(
tnδσ,σ ′ − iαnσ

z
σ,σ ′

)
cn,σ ′

+c†
n,σ

( − μnδσ,σ ′ + �σ
y
σ,σ ′

)
2

cn,σ ′

]
+�nc†

n,↑c†
n,↓+H.c.

}
,

(1)

where c†
n,σ (cn,σ ) represents the creation (annihilation) oper-

ator of fermions with spin σ at site n. The parameters tn,
αn, μn, �, and � represent the tunneling, spin-orbit coupling,
chemical potential, Zeeman energy, and the superconducting
terms, respectively, at the site n. δ denotes Kronecker delta.
This will be our base model on top of which different profiles
of μn and �n are added to create different heterostructures.
We will focus our attention on the following two scenarios.
The first one is the homogeneous case in which all the param-
eters in the Hamiltonian are taken to be position independent.
We reproduce the result of this well-studied parameter regime
to validate our numerical scheme and to interpret the effect
of our protocol on this system. In the second scenario we
will consider the presence of smooth variation in the �n and
μn profiles. The latter differentiates the different chemical
potential in the normal (N) regions and the superconductor (S)
regions, while the former creates regions of N and S resulting
in NS- and NSN-type heterostructures. For certain parameter
regimes these heterostructures can host ABSs or quasi-MBSs,
which can stay close to zero energy over a large range of
magnetic fields. The smooth variation of the spatial profile is
modeled by the function [46,49,50]

�n0,s(n) = 1

2

[
1 + tanh

(
n − n0

s

)]
(2)

where n0 represents the point around which the profile
changes, while s is a measure of smoothness in the variation
(which has been fixed to s = 20 for all profiles).

For example, an NS profile with smoothly varying chem-
ical potential can be represented via the following set of
parameters:

�n = �0�N1,s(n),

μn = μN + (μS − μN )�N1,s(n), (3)

where N1 is the length of the normal region in the heterostruc-
ture; μS and μN are the chemical potential for the S and N
regions, respectively; and �0 is the effective superconducting
coupling strength in the S region. The NSN heterostructure
can be modeled by the following set of parameters with the
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FIG. 1. Plots of the inhomogeneous profile for (a) NS, (b) NSN,
and (c) S′SS′ systems.

profile given by

�n = �0[�N1,s(n) − �N1+NS+1,s(n)],

μn = μN1 + (μS − μN1 )�N1,s(n)

+ (μN2 − μS )�N1+NS+1,s(n), (4)

where μN1 and μN2 are the chemical potentials for the normal
regions. We note that N1, N2, and NS , denote the length of
left and right normal regions and the superconducting region,
respectively. Together with these systems we also consider
S′SS′ which has a homogeneous � but inhomogeneity in μ,
which distinguishes the two superconducting regions S′ and
S:

�n = �0,

μn = μS[�N1,s(n) − �N1+NS+1,s(n)]. (5)

Plots of the NS, NSN, and S′SS′ systems μ and � profile are
shown in Fig. 1.

As a simple diagnostic tool to distinguish the presence of
MBSs from the ABSs in the various parameter regimes we
calculate the boundary topological invariant (TI) using the
scattering matrix S. The scattering matrix relates the incoming
and outgoing wave amplitudes:

S =
(

R T ′
T R′

)
. (6)

Note that the reflection subblocks R, R′ and the transmis-
sion subblocks T, T ′ connect the two ends of the chains and
are obtained in terms of the Fermi level wave amplitudes.
TI = sgn Det(R) = sgn Det(R′) obtains a value of +1 when
the wire is in the trivial phase and −1 for the topological phase
[59] (further details are provided in Appendix A). Along with
the topological invariant we also plot the wave function of the
Majorana components to characterize the topological nature

FIG. 2. Tunneling conductance setup with two leads.

of the bound states. The Hamiltonian has particle-hole sym-
metry, giving rise to a symmetric spectrum with two fermionic
wave functions 	ε (x) and 	−ε (x) for every eigenvalue ε.
Thus one constructs the following symmetric and antisymmet-
ric wave functions from the low-energy eigenstates [60]:

γ1(x) = 1√
2

[	ε (x) + 	−ε (x)],

γ2(x) = i√
2

[	ε (x) − 	−ε (x)]. (7)

The wire can thus be characterized as topological (with MBS)
if γ1(x) and γ2(x) are spatially separated, while the overlap-
ping and partially overlapping states characterize ABS and
ps-ABS, respectively [46,52].

We perform tunneling conductance calculations for a setup
involving two normal leads attached to either side of the
wire to create a three-terminal device (see Fig. 2) [49]. The
conductance matrix has the following form:

G =
(

GLL GLR

GRL GRR

)
, (8)

where the elements of the matrix are given by

Gi j = dIi

dVj

∣∣∣∣
Vi=0

. (9)

The local and the nonlocal conductances are calculated using
the Green’s function method. Details related to the calcula-
tions are provided in Appendix B. We focus our attention on
the effect the topological length of the wire has on the tun-
neling conductance signatures. In our setup, by appropriately
choosing site-dependent Zeeman or chemical potential terms,
different regions of the 1D wire can be tuned to be in the
topological or the trivial phase [4,56]. Consider the following
spatially dependent Zeeman strength,

�n = �0F(n, n0, N, s′),

where

F(n, n0, N, s′) = nF

[
2

(
n0 − n

s′

)]
nF

[
2

(
n − N + n0

s′

)]
,

and nF (x) = 1/(1 + ex ), where N represents the total number
of sites of the nanowire and s′ is smoothness parameter (fixed
to s′ = 10). A sample plot of the profile is shown in Fig. 3(a)
for n0 = 50. For the protocol that we consider, �0 is kept un-
changed while n0 is increased from negative to positive values.
If �0 is above the critical field, the wire will be topological
for approximately n0 < n < N − n0 regions. Thus, increasing
n0 decreases the length of the topological region due to the
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FIG. 3. Moving protocol profile for N = 300 and n0 = 50
(a) with Zeeman profile (ZMP) for �0 = 1 and (b) with external
potential (PMP) profile for V0 = 2.

Zeeman strength being below the critical values in those re-
gions. For �0 > �c this profile creates a domain-wall structure
of trivial-topological-trivial superconductor; changing n0 thus
results in the change of the topological length. We denote this
protocol of changing the topological length as the Zeeman
moving protocol and we will be exploring the effect it has on
the ZBP due to the presence of either the ps-ABS or the MBS.
In addition to the Zeeman term, one could also use tunable
local gates to add an external potential which increases the
effective chemical potential in the ends of the wire to put
them in a trivial state, thus decreasing the topological length.
To consider this we will add external potential of the form of
Eq. (10) to our chemical potential, the plot of which is shown
in Fig. 3(b):

Vn = V0(1 − F (n, n0, N, s′)). (10)

We denote this protocol of changing the topological length as
the potential moving protocol.

III. RESULTS

In this section, we will be considering the effects of
the moving protocol on the ZBP for the homogeneous and
inhomogeneous systems. For either of them, we begin by
exploring the phase diagram by calculating the topological
boundary invariant. Furthermore, we calculate the Majorana
components to classify the in-gap states. We reproduce some
of the earlier results on the ZBP by calculating the tunneling
conductance. The main thrust of our work is to distinguish
the ZBP arising due to the presence of topological and trivial
bound states via the moving protocol.

A. Homogeneous system

We choose the parameter space of InSb-Al nanowire,
which is often used in theoretical and experimental studies
[46,49]. The effective mass considered is m∗ = 0.015me with
lattice constant a = 10 nm and Rashba spin-orbit coupling
αR = 0.4 eVÅ, which yields t = h̄2/2m∗a2 = 25.4 meV and
α = αR/2a = 2 meV. The effective superconducting coupling
term considered is � = 0.5 meV [49,52]. The ideal system
enters the topological nontrivial region when the Zeeman
strength is greater than the critical value given by �c ≈√

μ2 + �2. Using the scattering matrix approach, we have
calculated the TI for a range of μ and �, and as shown

FIG. 4. Homogeneous system with parameters t = 25.4 meV,
α = 2 meV, and � = 0.5 meV. (a) Phase portrait with boundary
topological invariant for range of μ and � values; the red line denotes
the critical Zeeman term for each μ value separating topological
(TI = −1) and trivial (TI = 1) phases. (b) Energy spectrum for μ =
1 meV showing MBS after �c (vertical grey dash line). (c) Energy
eigenvalues (index m) with moving profile for different n0 values.
(d) Majorana components of low-energy states at �0 = 1.5 meV for
different instances of moving protocol. It shows MBSs moving away
from the ends.

in Fig. 4(a) the numerically obtained boundary between the
topological and the nontopological region coincides with the
theoretical prediction of the critical field shown by the red
curve. For concreteness, we consider μ = 1 meV as the on-
site potential; the corresponding critical Zeeman strength for
which the band closing takes place is �c ≈ 1.12 meV. From
the plot of energy spectrum vs � shown in Fig. 4(b), we
observe the expected appearance of zero-energy modes after
the band closing which takes place at the critical Zeeman field.

The numerically calculated tunneling conductance for a
range of � is plotted in Fig. 5. It is clear from the figure that
a ZBP in the local conductance appears after �c. The ZBP is
quantized at 2e2/h which is also the predicted conductance
for the MBS. The left (GLL) and right (GRR) local conduc-
tances exhibit coherence, denoting the presence of MBSs on
either ends of the nanowire and at the same time the nonlocal
conductances GLR and GRL exhibit the signature of band-gap
closing. These tunneling conductance signatures arising from
an ideal nanowire with MBSs at the edges of the pristine
nanowire have been well studied in the past literature [49,52].

Before we discuss the effect of the ZMP on the ZBP, we
will first explore its effect on the system’s energy levels. The
results of the spectrum under the ZMP for two different values
of n0 are shown in Fig. 4(c). From the plot of the energy spec-
trum it is clear that the MBSs remain fixed at zero energy since
the protocol only changes the length of the topological region
by putting some part of the wire in a Zeeman term below the
critical term (�c). As long as the length of the topological
region remains much larger than the Majorana localization
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FIG. 5. [(a), (b)] Local and [(c), (d)] nonlocal tunneling conduc-
tance for the homogeneous system; the grey dashed line denotes the
critical Zeeman term. Local conductance shows the presence of ZBPs
and the nonlocal conductance captures the band closing signature.

length, the energies of the MBSs will be fixed at zero energy
due to the topological protection. Further insight into the
effect of the protocol on the state is obtained by plotting the
Majorana components of the low-energy states. For a uniform
Zeeman term (which is the case for n0 = −20) the MBSs are
localized at the edges of the nanowire with the two Majorana
components spatially separated [see Fig. 4(d)]. However, as
the Zeeman term profile is moved so that n0 = 50, the length
of the topological region as well as the bound state position
change but at the same time they remain localized at the edges
of the topological region as shown in Fig. 4(e). The Majorana
components are still separated so they stay at zero energy.

We next focus the effect of the ZMP on the ZBP. For the
ZMP, the calculated local conductance for a range of n0 can
be seen in Figs. 6(a) and 6(b). As n0 is increased (i.e., the
topological region is reduced while the position of the lead
remains unchanged), a subsequent decrease in the width of
the ZBP becomes apparent, while at the same time the height
of the peak remains quantized to the value 2e2/h̄. We also
plot the value of the conductance for two values of n0 in
Figs. 6(c) and 6(d), where the quantization of the peak is
clearly observed. This feature has a simple explanation due to
the property of the MBS. Application of the moving protocol
changes the topological length of the wire and therefore the
MBS moves farther away from the lead while always staying
at the edge of the topological region. Since the edge states
move farther away from the lead the coupling between the
lead and the MBS decreases, resulting in the reduced width
of the ZBP. For sufficiently large separation between the lead
and the edge mode, the ZBP disappears altogether. Through-
out this protocol the Majorana components remain spatially

FIG. 6. Tunneling conductance signature on the application of
the ZMP with �0 = 1.5 meV. [(a), (b)] Local tunneling conductance
for a range of n0 values and [(c), (d)] vertical line cut of conductance
for specific n0. Both local conductance values show robustness of the
topological ZBP under ZMP.

separated; as a result the MBS remains at zero energy, causing
the peak to be at zero bias through out this protocol.

B. Inhomogeneous wire

In quantum wires it is difficult to achieve a scenario
wherein the parameters are homogeneous throughout the
length of the wire. Instead, the inhomogeneous profile in the
heterostructure better captures the realistic scenario. Specifi-
cally, the presence of quantum dots creates a situation where
the chemical potential at the edges is lower compared to the
interior of the wire [46,49,50]. To account for this, we con-
sider an inhomogeneous NS heterostructure in our analysis.
The chemical potential and the superconducting profile that
model this heterostructure are represented by Eq. (3) and
illustrated in Fig. 1(a), respectively.

The numerically calculated topological boundary invari-
ance is shown in Fig. 7(a), which shows the presence of
the topological phase for Zeeman terms greater than �c for
a given value of the chemical potential (in the S region).
This figure is similar to the corresponding Fig. 4(a) for the
homogeneous case. However, the difference between the two
scenarios can be seen from the presence of low-lying energy
states close to zero energy even in the nontopological regime
[see Fig. 7(b)]. It turns out that the zero-energy modes in the
trivial region persist for large ranges of Zeeman coupling and
chemical potential. The energy spectrum for the system for
μ = 1 meV is shown in Fig. 7(c), which shows the appear-
ance of the ABS before the topological phase transition at
�c ≈ 1.12 meV. For � > �c the Majorana components ob-
tained from the low-lying states are completely separated and
localized at the edges and represent the MBSs [see Fig. 7(e)],
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FIG. 7. NS system with parameters t = 25.4 meV, α = 2 meV,
�0 = 0.5 meV, N1 = 40, μN = 0.2 meV, and N = 300. Phase por-
trait for a range of chemical potentials in the S region (μS) and
Zeeman term (�), (a) depicted as the topological invariant and
(b) low-energy eigenvalues to show the presence of zero-energy
states in the trivial region. (c) Energy spectrum of the NS system
with μS = 1 meV; the gray dashed line denotes the critical Zeeman
term (�c ) = √

μS + �0 = 1.118 meV. (d) The Majorana component
in the trivial region with ps-ABS and (e) MBS in the topological
region.

while for � < �c the components have significant overlap
with each other and are the partially separated ABSs, as shown
in Fig. 7(d).

Consider next Fig. 8, which depicts the tunneling con-
ductance calculated for the NS heterostructure. For � > �c

(denoted by the gray vertical line) both the local conduc-
tances, GLL and GRR, exhibit ZBPs with a peak height of
2e2/h which is consistent with the presence of MBSs. It turns
out that for the left lead this signature of MBSs persists even
for extended values of � < �c.

The trivial ZBP has a splitting at zero energy; however,
the splitting is negligible, making it difficult to resolve even
at low nonzero temperatures [19,30]. Another aspect which
is different from the signatures in the topological regime is
the absence of a ZBP on the right tunneling conductance
[see Fig. 8(b)]. The reason for this is the presence of bound
states only on the left side of the wire, which couples to the
corresponding left lead only. The absence of correlation in the
local conductance is associated with the signature of ABSs
[46]. As for the nonlocal conductance, the plots in Figs. 8(c)
and 8(d) exhibit too weak a signature to unambiguously dis-
tinguish the bulk gap closing at �c. Similar results for the
NS heterostructure have been demonstrated previously in the
literature [49,50].

In this scenario where the tunneling setup involves two
leads it is more likely that the inhomogeneity will be present

FIG. 8. NS system: [(a), (b)] Local and [(c), (d)] nonlocal con-
ductances. Both conductances show the presence of a ZBP after �c

(gray dashed line) but the left conductance also shows a ZBP for the
range � < �c.

on both sides of the nanowire. The profile used to reproduce
the NSN heterostructure is given in Eq. (4) and shown in
Fig. 1(b). We find that for a range of parameters the NSN
structure also hosts ABSs. The same is verified from the en-
ergy spectrum in Fig. 9(a), with ABSs appearing much before
the critical Zeeman term similar to that for the NS system.
Even if the energy spectra for both the systems are nearly
the same, the difference between the two can be seen from
the Majorana component plots for the zero-energy modes as
shown in Fig. 9(b). For the NSN heterostructure the bound
states for � < �c are also localized at both ends just like the
MBSs. These bound states are the ps-ABSs, with the partially
separated Majorana components at both ends of the wire.

The tunneling conductance of the NSN heterostructure is
shown in Fig. 10. Now both the left (GLL) and the right

FIG. 9. NSN system with parameters t = 25.4 meV, α = 2 meV,
�0 = 0.5 meV, N1 = N2 = 40, μN1 = μN2 = 0.2 meV, μS = 1 meV,
and N = 300. (a) Energy spectrum with grey dashed line denoting
the critical Zeeman term (�c), (b) the Majorana component in the
trivial region with ps-ABS, and (c) the MBS in the topological
region.
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FIG. 10. NSN system: [(a), (b)] Local and [(c), (d)] nonlocal
tunneling conductance. Both local conductances show a ZBP much
before �c (gray dashed line). Nonlocal conductance plots do not
capture the band closing signature.

(GRR) local conductances exhibit quantized ZBPs and are also
correlated. As before, these signatures are present even for
� < �c. However, even for this system the nonlocal conduc-
tance is unable to capture the band gap closing. This can again
be attributed to the bulk states being localized in the supercon-
ducting region. Thus the correlated quantized ZBP produced
by the ps-ABSs and the absence of band gap signature implies
no distinguishing feature between the ABS and the MBS.
These conclusions were reported previously by Hess et al.
[50].

We will now present the effect of ZMP on the trivial and
topological ZBPs for the inhomogeneous system. As we saw
before, the NS system has both the topological and trivial
quantized ZBPs. The quantized ZBP for � > �c is present
in both the left and the right local conductance, which on
the application of the ZMP persists for a range of n0 values
(Fig. 11). This result is similar to the case of homogeneous
wire with topological ZBP as discussed in Sec. III A. Interest-
ingly, the effect of the ZMP on the trivial ZBP present on the
left conductance for the NS system is significantly different
(see Fig. 12). The ZBP splits into two separate peaks as n0

increases. As discussed before, the topological and trivial
peaks for the NSN system are the most challenging to dis-
tinguish. So we apply the ZMP to the tunneling conductance
signature to the NSN system. The topological ZBP persists for
an extended range of n0, and the peak width decreases with an
increase in n0 (see Fig. 13) as is the case for the NS system.
In contrast, under the ZMP, the trivial ZBP present on both
local conductances splits into two separate peaks as shown in
Fig. 14.

To get an insight into the behavior of topological and trivial
peaks under the moving protocol, we focus our attention on

FIG. 11. NS system: Tunneling conductance signature on the ap-
plication of ZMP to topological ZBP at � > �c with �0 = 1.4 meV.
[(a), (b)] Local tunneling conductance for a range of n0 values and
[(c), (d)] vertical line cut of the conductance for specific n0, showing
robustness of topological ZBP.

the Majorana components of the state close to zero energy.
Figure 15 shows the effect of the ZMP on the Majorana
components of the trivial states close to zero energy for the NS
system. The trivial ZBP originates due to the ps-ABS which
involves partially separated Majorana components. Under the
application of the ZMP, the overlap between the Majorana
components increases, causing them to acquire a finite energy
split, resulting in splitting of the ZBP into two peaks away
from zero bias. For the case of the NSN heterostructure we
have two states close to zero energy, both of which are present
at either ends of the wire. These states are ps-ABSs with small
overlapping Majorana components. On the application of the
ZMP, the overlap increases for both the states (see Fig. 16),

FIG. 12. NS system: Tunneling conductance signature on the
application of the ZMP to trivial ZBPs at � < �c with �0 = 0.8 meV.
(a) Left local tunneling conductance for range of n0 values and
(b) vertical line cut of conductance for specific n0 which captures
the splitting of trivial ZBPs.
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FIG. 13. NSN system: Tunneling conductance signature on the
application of the ZMP to topological ZBPs at � > �c with �0 =
1.4 meV. [(a), (b)] Local tunneling conductance for range of n0

values and [(c), (d)] vertical line cut of conductance for specific n0,
capturing the robustness of topological ZBPs.

resulting in a finite energy split and the trivial ZBP on both lo-
cal conductances splits into two separate peaks at finite bias.

Performing similar analysis for the topological states, we
show the effect of the ZMP on the Majorana components
of MBSs in NS and NSN systems in Figs. 17 and 18, re-
spectively. Fully separated Majorana components represent
the MBS, and the components remain separate throughout
the protocol for both the NS and NSN systems. As a result,
the MBS stays at zero energy, resulting in the ZBP staying
at zero bias throughout the protocol. Under the protocol, the
components move away from the edge (see Fig. 18), resulting
in weak coupling with the leads, leading to decreased peak
width. For a large n0 value (≈70), the states will be far
from the edge, making the peak disappear. Another thing to
notice is that the decrease in peak height on both the local
conductances of NS is different under the protocol as shown
in Figs. 11(a) and 11(b). This is mainly due to the presence of
the N region on the left side and MBS leaking to this region
(see Fig. 18).

To showcase that the robustness of MBS energy to the ZMP
and the splitting is present for all parameter ranges of ABSs,
we plot the phase portrait corresponding to the lowest-energy
eigenvalues for the parameter range with the ZMP for differ-
ent n0 values. As shown in Fig. 19, with n0 = −20 we have
a normal NSN system with low-energy ABS present before
the topological region (separated by the red line); with the
application of the ZMP these low-energy states move away
from zero energy and for n0 = 40 there are no zero-energy
states outside the topological region. These plots show that
the splitting is not specific to certain parameter values and
the ABSs move away from zero energy for all the parameter

FIG. 14. NSN system: Tunneling conductance signature under
the application of the ZMP to trivial ZBPs at � < �c with �0 =
0.8 meV. [(a), (b)] Local tunneling conductance for range of n0 values
and [(c), (d)] vertical line cut of conductance for specific n0, showing
the splitting of trivial ZBPs in both local conductances.

ranges. We also like to add that the splitting we see for the
trivial zero-energy state is significant and comparable to the
gap present (about 70–80 % of the gap). On the other hand,
the eigenvalues of the MBSs in the topological region remains
unaffected.

FIG. 15. Majorana components of the NS system on the appli-
cation of the ZMP to the trivial state at � < �c with �0 = 0.8 meV
for different n0 values. The Majorana component overlap increases
with n0.
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FIG. 16. Majorana components of the NSN system under the
ZMP for the trivial state at � < �c with �0 = 0.8 meV for different
n0 values. For both ps-ABS the overlap increases with n0.

In Appendix C we have considered the effect of the ZMP
for the short nanowire scenario. We find that the energy split-
ting for the topological states is weakly modified while the
splitting for the trivial states is large and very apparent (see
Appendix C). This shows that, for the small-nanowire limit
where the Majorana localization length is comparatively large,
the moving protocol is able to distinguish the trivial states
from the topological ones. In addition, in Appendix D we
present a brief discussion on the effect of the smoothness

FIG. 17. Majorana components of the NS system on the appli-
cation of the ZMP to the topological state at � > �c with �0 =
1.4 meV for different n0 values. Majorana components remain
separated.

FIG. 18. Majorana components of the NSN system on the ap-
plication of the ZMP to the topological state at � > �c with �0 =
1.4 meV for different n0 values. The Majorana components remain
separated for a range of n0 values.

parameter s in our moving protocol. Increasing smoothness
causes the domain-wall width to increase in between the triv-
ial and topological regions. The main results stay independent
of domain-wall width unless the domain-wall width is large
enough to destroy the domain structure.

FIG. 19. Phase portrait with low-energy eigenvalues of the NSN
system for a range of chemical potential (μ) in the S region and
Zeeman term (�) with different instances of the ZMP. The ABS
moves from zero energy to finite energy as n0 is increased from
(a) n0 = −20 to (d) n0 = 40, while the MBS in the topological
regime (after red line) continues to be at zero energy.
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FIG. 20. Homogeneous wire tunneling conductance signature on
the application of the PMP to topological ZBP at � = 1.5 meV > �c

with V0 = 2 meV. [(a), (b)] Local tunneling conductance for a range
of n0 values and [(c), (d)] vertical line cut of conductance for specific
n0, showing the robustness of topological ZBPs.

C. Moving protocol with external potential

As discussed in Sec. II, external potential can also be used
to modify the topological length of a nanowire and produce a
trivial-topological-trivial structure. In earlier works, this strat-
egy has been suggested in the context of a braiding protocol
[4,56–58]. However, a moving protocol with tunneling mea-
surements at the edges has not been considered before for the
purpose of distinguishing topological states from trivial ones.
In this section we present the effect of the PMP on trivial and
topological ZBPs.

1. Homogeneous wire

In Sec. III A, we presented the result of the ZMP on the
homogeneous wire. In the case of the PMP, the behavior of
topological ZBPs remains unchanged. For a range of n0 values
the topological ZBP remains robust (see Fig. 20). The most
important difference between the ZMP and the one with the
PMP is the MBS’s confinement to the topological region.
While for the PMP, the Majorana modes leak into the trivial
region (see Fig. 21), it is comparatively suppressed for the
ZMP. The leakage into the ends allows coupling with the
lead, restoring the peak width. We find that the peak width
exhibits oscillatory dependence on n0. For example, plotted
are the ZBP widths for n0 = 20 and 30 in Fig. 20, and the
corresponding Majorana components in Figs. 21(b) and 21(c).
For n0 = 20, the Majorana components are away from the
lead, resulting in small peak width, while for n0 = 30, the
leakage of MBSs towards the ends of the wire results in an
increase in peak width. While there are certain differences in
the signatures corresponding to the two ways of applying the

FIG. 21. Majorana components of low-energy states in homoge-
neous wire under the application of the PMP to topological states at
� = 1.5 meV > �c with V0 = 2 meV. Majorana components remain
separated; they also leak towards the ends.

moving protocol, we would like to draw attention to the main
signature corresponding to the MBS which remains unaltered
for both the protocols, i.e., the peak does not move from zero
bias throughout the moving protocol.

2. Inhomogeneous wire

We next consider the NSN system and study the effect of
the PMP on the trivial and topological ZBPs appearing due
to the inhomogeneity. As shown in Figs. 22 and 23, the main
features regarding the robustness of the topological ZBP and

FIG. 22. NSN system: Tunneling conductance signature under
the PMP to the topological ZBP at � = 0.8 meV > �c with V0 =
2 meV. [(a), (b)] Local tunneling conductance for a range of n0 values
and [(c), (d)] vertical line cut of conductance for specific n0; the
trivial ZBP splits under the protocol.

205426-10



EFFECT OF TOPOLOGICAL LENGTH ON BOUND STATE … PHYSICAL REVIEW B 108, 205426 (2023)

FIG. 23. NSN system: Tunneling conductance signature on the
application of the PMP to the topological ZBP at � = 1.4 meV > �c

with V0 = 2 meV. [(a), (b)] Local tunneling conductance for a range
of n0 values and [(c), (d)] vertical line cut of conductance for specific
n0, showing the robustness of the topological ZBP.

the splitting of the trivial ZBP remains similar to the ZMP.
As for the homogeneous case considered above, oscillations
in the topological ZBP width with n0 can be seen. This is
again due to the leakage of MBSs in the ends of the wire for
certain n0 values. For topological zero-energy states Majorana
components remain separated (see Fig. 24). On the other hand,
for trivial zero-energy states the Majorana components exhibit
an increase in overlap, resulting in the splitting of the ZBP (see
Fig. 25). This result suggests the idea of a moving protocol is
independent of the method used to put certain parts of the wire
in a trivial regime. Both the ZMP and the PMP can be used

FIG. 24. Majorana components of low-energy states in the NSN
system under the PMP for � = 1.4 meV > �c with V0 = 2 meV. The
components remain separated.

FIG. 25. Majorana components of low-energy states in the NSN
system under the PMP for � = 0.8 meV < �c with V0 = 2 meV. The
Majorana component overlap increases; also they leak towards the
ends.

to carry out the moving protocol, especially to distinguish
topological from trivial ZBPs, based on the robustness of the
ZBP.

D. S′SS′ system

In this last section we study the tunneling conductance and
moving protocol results for the S′SS′ system. We utilize this
system to highlight some of the shortcomings of the “moving
protocol.” Nevertheless, it turns out that, compared to the
Zeeman moving protocol, the potential moving protocol is
partially immune to some of the shortcomings and can clearly
differentiate the topological ZBP signature from the trivial
ZBP signature.

On either ends of the wire, this system has zero-energy
states that appear even before the critical Zeeman term (�c ≈√

μ2
S + �2

0 ); however, as expected, the MBS emerges after
the critical Zeeman term (see Fig. 26). The zero-energy states
before the critical Zeeman field (�c) are topological in their
own right but have partially separable Majorana components;
these states prior to the band gap closing are referred to as

FIG. 26. S′SS′ system with parameters t = 25.4 meV, α =
2 meV, �0 = 0.5 meV, N1 = N2 = 60, μS = 1 meV, and N = 300.
(a) Energy spectrum (gray dashed line denotes �c). (b) Low-energy
Majorana components for � < �c and (c) separated MBSs for
� > �c.
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FIG. 27. S′SS′ system: [(a), (b)] Local conductance exhibits
quantized ZBP in trivial and topological regions and [(c), (d)] non-
local tunneling conductance unable to capture the band closing
signature. Gray dashed line denotes �c.

the quasi-MBSs [49,52]. The tunneling conductance of the
system is shown in Fig. 27, where the ZBPs corresponding
to both the local conductances and the nonlocal conduc-
tance fail to detect the band closing signature. We note that

FIG. 28. S′SS′ system: Tunneling conductance signature on the
application of the ZMP to the trivial ZBP at � < �c with �0 =
0.9 meV. [(a), (b)] Local tunneling conductance for a range of n0

values and [(c), (d)] vertical line cut of conductance for specific n0.
The peak split is moderately pronounced.

FIG. 29. S′SS′ system: Tunneling conductance signature on the
application of the ZMP to the topological ZBP at � > �c with �0 =
1.4 meV. [(a), (b)] Local tunneling conductance for a range of n0

values and [(c), (d)] vertical line cut of conductance for specific n0.
The peak remains robust before disappearing for higher n0.

this system’s tunneling conductance signatures are similar to
that of the NSN system. Consequently one cannot rely only
on the tunneling signature to distinguish the trivial and the
topological ZBPs. Figures 28 and 29 demonstrate how the
ZMP affects trivial and topological ZBPs, respectively. Here,
the trivial ZBP peak splitting is only moderately noticeable.
The peak splits, but before the split in the peak is pronounced,
the peak height drops and disappears. On the other hand, for
the topological ZBP, the conductance peak is fixed to zero bias
for a range of n0 before it too vanishes. We plot the Majo-
rana component for low-energy states belonging to the trivial
(Fig. 30) and topological (Fig. 31) regimes to determine why
this is the case for various n0 values. For trivial zero-energy
states, the overlap increases with the increase in n0, leading
to a rise in the energy split. Additionally, the states drift away
from the lead, weakening the coupling between the lead and
the states. As a result, the peak vanishes long before the peak
split can be seen clearly. Figure 31 for the topological regime
with the MBS demonstrates the presence of the exact shifting
of Majorana components away from the lead, which accounts
for the decreased peak width and the peak’s disappearance for
higher n0 values as depicted in Fig. 29.

This shortcoming of the ZMP is mainly due to the reliance
on the local probes to pick the energy split signature. The
protocol moves the states away from the lead, which causes
the signature to disappear. As we demonstrate in Sec. III C,
the PMP is immune to this effect because of the leakage of
states towards the ends of the wire, retaining the coupling to
the lead. For trivial and topological ZBPs, we show the results
corresponding to the PMP on the S′SS′ system in Figs. 32 and
33, respectively. Figure 32 clearly illustrates the trivial ZBP
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FIG. 30. Majorana components of the S′SS′ system on the appli-
cation of the ZMP to the trivial state at � < �c with �0 = 0.9 meV
for different n0 values, showing increase in the overlap and the
components moving away from the ends.

splitting during the moving protocol. As shown in Fig. 34,
the states leak towards the ends, thereby improving the split
visibility. From the tunneling conductance plot in Fig. 33 and
the analogous Majorana component plot in Fig. 35, it is clear
that the resilience of the topological ZBP is also present for
this scenario. We want to stress the fact that both moving
protocols can induce energy splitting in trivial zero-energy
states, but as we use a local tunneling conductance probe to

FIG. 31. Majorana components of the S′SS′ system on the ap-
plication of the ZMP to the topological state at � > �c with �0 =
1.4 meV for different n0 values, showing the components moving
away from the edge while being separated.

FIG. 32. S′SS′ system: Tunneling conductance signature on the
application of the PMP to the trivial ZBP at � = 0.9 meV < �c with
V0 = 2 meV. [(a), (b)] Local tunneling conductance for a range of n0

values and [(c), (d)] vertical line cut of conductance for specific n0,
capturing the splitting signatures.

detect this splitting the PMP is better at capturing the split as
well as the robustness in the ZBP.

IV. CONCLUSION

In this article, we have reproduced the tunneling conduc-
tance signatures from heterostructures and have verified the
inability of local and nonlocal conductance to distinguish
ABSs from MBSs. Since both the trivial and nontrivial zero-
energy states produce a quantized ZBP in local conductance,
we focus on the effects of the topological length of the
nanowire on the ZBP. We show that by applying the moving
protocol, the trivial and topological ZBPs behave differently.
As the Majorana components of trivial and topological states
are fundamentally different, the protocol affects them dif-
ferently. For MBSs, the Majorana components are entirely
separated and localized at the edges of the topological region.
The Majorana components move away from the wire’s edges
when the protocol is applied; however, they remain separated
and are therefore pinned at zero energy, causing the peak
in local conductance to remain at zero bias throughout the
protocol. For trivial zero-energy states when the protocol is
applied, the overlap between the partially separated Majorana
components increases, causing the trivial states to move away
from zero energy. As a result, the trivial ZBP splits into two
peaks. This effect of the moving protocol on topological and
trivial ZBPs remains the same irrespective of the method of
reducing the topological length by putting a certain portion of
the wire in a trivial regime. We compare the results of ZBPs
under the ZMP and the PMP in our numerical simulation. We
discuss the shortcoming of the moving protocol in the S′SS′
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FIG. 33. S′SS′ system: Tunneling conductance signature on the
application of the PMP to the topological ZBP at � = 1.4 meV > �c

with V0 = 2 meV. [(a), (b)] Local tunneling conductance for a range
of n0 values and [(c), (d)] vertical line cut of conductance for specific
n0, showing the robustness of the topological ZBP.

system, the origin of which is due to the reliance on the local
measurements to detect the split in energy. As the states are
moved farther away from the lead, the splitting information
is less pronounced in tunneling conductance. However, for
PMP, the leakage of the states towards the ends preserves the
coupling to the leads, making the protocol immune to this
vulnerability.

In the literature, many proposals have been suggested
to create and move domain walls specific to the experi-
mental setup and geometry. Some of these involve altering
the gate voltage [56] or magnetic field gradient [61], the

FIG. 34. Majorana components of low-energy states in the S′SS′

system under the PMP for � = 0.9 meV < �c with V0 = 2 meV,
denoting the overlap increasing as well as states leaking towards the
ends.

FIG. 35. Majorana components of low-energy states in the S′SS′

system under the PMP at � = 1.4 meV > �c with V0 = 2 meV,
showing separated components.

use of gate-tunable valves [62], the application of external
magnetic fields in the presence of spin-orbit coupling and
helimagnetic order [63], or the control of the magnetic tex-
ture within two-dimensional electron gases [64]. Nanowires
in proximity to amplitude-modulated magnetic textures can
in principle be used to create the domain wall and with
the help of spintronic technology the magnetic texture can
be controlled to move the domain wall [61,65]. The exper-
imental difficulties vary from model to model; for example,
in semiconductor-superconductor nanowires, the gate voltage
controls the chemical potential, and increasing the gate volt-
age causes the electron density to increase, which will in turn
affect the g factor, causing the Zeeman term to change. In this
case, one needs to find an effective gate voltage to put the ends
in a trivial region and control it locally using a keyboard layout
to move the domain wall. The local control of parameters is
needed to implement the moving protocol, and fabricating
such sophisticated heterostructures to achieve it remains a
daunting challenge. Regardless, moving and controlling the
Majorana modes localized between the topological and trivial
domains is a necessity for the realization of topological qubits.
With the improvement in fabrication technology and exper-
imental control, the implementation of the moving protocol
to differentiate topological states from the trivial ones and
controlling Majorana modes can be realized. Recent works in
nanoscale magnetic field [66], spintronics [67], and ferromag-
nets [68,69] hold promise for the realization of the moving
protocol in real experimental settings.

To summarize, we have demonstrated through our nu-
merical studies that the moving protocol combined with the
tunneling conductance allows one to probe the Majorana com-
ponent signatures and distinguish topological states from the
trivial ones. This different response of ZBPs under the mov-
ing protocol if realized can distinguish trivial ZBPs from the
topological ones.
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APPENDIX A: CALCULATION OF TOPOLOGICAL
QUANTUM NUMBER

1. Scattering matrix method

To calculate the topological quantum number, we briefly
discuss the scattering matrix method here [59]. A scattering
matrix characterizes a linear relation between the outgoing
wave amplitudes and the incoming wave amplitudes at each
energy: (

co
l

co
r

)
= S(E )

(
ci

l
ci

r

)
. (A1)

The superscript i (o) is for amplitudes of the waves moving
towards (from) the scatterer and the subscript l (r) is for
waves on the left (right) of the scatterer. We can express
the scattering matrix in terms of transmission and reflection
amplitudes in the following form:

S =
(

r t ′
t r′

)
. (A2)

Here, {t, t ′} ({r, r′}) represent the 4 × 4 transmission (reflec-
tion) matrices. The transfer matrix relates the wave amplitudes
on the right-hand side to the left-hand side of the sample:(

co
r

ci
r

)
= M

(
co

l
ci

l

)
. (A3)

From Eqs. (A1) and (A3), one can express the elements of
the transfer matrix in terms of the elements of the scattering
matrix as follows:

M =
(

M11 M12

M21 M22

)
=

(
t − r′t ′−1r r′t ′−1

−t ′−1r t ′−1

)
. (A4)

Analogous to Eq. (A4), we can also decompose the scattering
matrix in terms of the elements of the transfer matrix as
follows:

S =
(

r t ′
t r′

)
=

( −M−1
22 M21 M−1

22
M11 − M12M−1

22 M21 M12M−1
22

)
. (A5)

The conservation of the probability current also introduces a
relationship between the elements of the transfer matrix M
[70]:

M†�zM = �z, �z =
(
I 0
0 −I

)
. (A6)

From the definition of the transfer matrix it is clear that it
obeys the multiplicative composition law,

M = M2M1. (A7)

This composition law for transfer matrices results in a nonlin-
ear composition of scattering matrices. Using Eqs. (A4) and

(A7), we obtain

M =
(

t − r′t ′−1r r′t ′−1

−t ′−1r t ′−1

)

=
(

t2 − r′
2t ′−1

2 r2 r′
2t ′−1

2
−t ′−1

2 r2 t ′−1
2

)(
t1 − r′

1t ′−1
1 r1 r′

1t ′−1
1

−t ′−1
1 r1 t ′−1

1

)
.

(A8)

This gives the composite S matrix of the system [70]:

S =
(

r t ′
t r′

)

=
(

r1 + t ′
1(I − r2r′

1)−1r2t1 t ′
1(I − r2r′

1)−1t ′
2

t2(I − r′
1r2)−1t1 r′

2 + t2(I − r′
1r2)−1r′

1t ′
2

)
.

(A9)

The composition law, Eq. (A9), for scattering matrices is
denoted by

S = S2 ⊗ S1. (A10)

2. Topological quantum number

The Hamiltonian in Eq. (1) can be rewritten
in the Bogoliubov–de Gennes (BdG) basis 	n =
(cn↑, cn↓, c†

n↓,−c†
n↑)T :

HBdG = 1

2

∑
n

[	†
n ĥn	n + (	†

n t̂n	n+1 + H.c.)]. (A11)

Writing the zero-energy Schrödinger equation for the BdG
Hamiltonian in Eq. (A11) gives us a recursive relation be-
tween two sites in terms of the transfer matrix Mn [59,71]:

Mn =
(

0 t̂†
n

−t̂−1
n −t̂−1

n ĥn

)
. (A12)

Now, Mn gives the relation between the two nearest-neighbor
sites, but it is different from the definition used in Eq. (A3).
The probability current conservation is given by [71]

M†
n�yMn = �y, �y =

(
0 −iI
iI 0

)
. (A13)

Therefore, we transform to the new basis using a unitary
transformation:

Mn = U†MnU , U = 1√
2

(
I I
iI −iI

)
. (A14)

In this basis, the transfer matrix Mn now satisfies Eq. (A6). As
a result, all of the properties of the transfer matrix outlined in
Sec. A 1 apply to this transfer matrix. Thus, using Eq. (A5),
we construct the unitary scattering matrix at each site and
then, using the composition law [Eq. (A9)], we obtain the
composite scattering matrix of the N-dot chain:

S =
(

R T ′
T R′

)
= SN ⊗ SN−1 ⊗ · · · ⊗ S1. (A15)

The topological quantum number TI is given by [72,73]

TI = sgn[Det(R)], (A16)

where r is the subblock of the total scattering matrix S
[Eq. (A2)] of the chain at Fermi level. The Majorana bound
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states exist at the end points of the chain if TI = −1. This
phase is the topologically nontrivial phase. On the other hand,
a value of TI = +1 means that the system is in the trivial
phase.

APPENDIX B: TUNNELING CONDUCTANCE

The expression of tunneling conductance in terms of the
scattering matrix is well known in the literature [74,75] and is
given by

GLL = e2

h

∫ ∞
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d (eVL )

]{
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)† + tLR
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(
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)†]}
ω
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where nα (ω) = nF (ω + eVα ) is the Fermi function at the α

lead with α being L or R. The derivative of the Fermi function
becomes the Dirac delta function at 0 K temperature leading
to the simple equations

GLL = e2

h

{
Tr

[
2rLL

eh

(
rLL

eh

)† + tLR
ee

(
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ee
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(
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,
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GRR = e2
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Tr
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2rRR
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(
rRR

eh

)† + tRL
ee

(
tRL
ee

)† + tRL
eh

(
tRL
eh

)†]}
ω=eVR

.

(B8)

We use a Green’s function formalism to calculate the scat-
tering matrices needed for conductance. The retarded Green’s
function for the system connected to two leads is given by

Gr (ω) = 1

(ω + iη)I − HBdG − �r
L − �r

R

(B9)

where I is an identity matrix and �r
α denotes the self-energy

due to the α lead. Under the broadband approximation the
self-energy can be written in terms of a level broadening
matrix as �r

α = −i�α/2. The broadening matrix is diagonal,
taking the form �α = γαI . The broadening γα is treated as
a parameter in the numerics [75], to calculate the retarded
Green’s function which we fix to γα = 0.2t for all our calcu-
lations. It effectively describes the coupling of the nanowire
with the conductance lead; for small values of γα our result

FIG. 36. NSN system with parameters t = 25.4 meV, α =
2 meV, �0 = 0.5 meV, N1 = N2 = 20, μN1 = μN2 = 0.2 meV, μS =
1 meV, and N = 140. (a) Energy spectrum with grey dashed line
denoting the critical Zeeman term (�c), (b) the Majorana component
in the trivial region with ps-ABS, and (c) the MBS in the topological
region.

also holds. The BdG Hamiltonian is written in the Nambu
basis and the Green’s function has the form

Gr
i, j (ω) =

(
gr

i, j (ω) f r
i, j (ω)

f̄ r
i, j (ω) ḡr

i, j (ω)

)
. (B10)

With this particular form for the Green’s function we could
define the scattering matrix elements as

rLL
ee = γLgr

1,1, rRR
ee = γRgr

N,N , (B11)

rLL
eh = γL f r

1,1, rRR
ee = γR f r

N,N , (B12)

tLR
ee = √

γLγRgr
1,N , tLR

eh = √
γLγR f r

1,N , (B13)

tRL
ee = √

γLγRgr
N,1, tRL

eh = √
γLγR f r

N,1. (B14)

APPENDIX C: SMALL NANOWIRE SCENARIO

In this section, we consider the NSN system in the small-
nanowire limit where the Majorana localization length is
nearly half of the length of the nanowire. The energy spectrum
shown in Fig. 36 shows the presence of trivial and topological
in-gap states (in this limit, their energy split is also clearly
visible).

The tunneling conductance for this system is shown in
Fig. 37. The local conductance captures the Majorana oscil-
lations, and before �c it also exhibits conductance peaks from
the trivial in-gap state. We apply the ZMP on the conductance
peaks present in trivial and topological regimes, the results of
which are shown in Figs. 38 and 39, respectively. As expected,
due to the partial overlap of the trivial in-gap states they
acquire a large energy split under the protocol, causing the
peaks to move towards the high bias voltage (see Fig. 38).
While for topological in-gap states, the already present Majo-
rana oscillation stays in the same range, and the energy split
appears to decrease a little. For topological states, the Majo-
rana component plot is shown in Fig. 40, which clearly shows
the components remaining nearly separated under the moving
protocol. It is interesting to note that even in this small-length
limit of nanowires, the effect of the moving protocol provides
a distinguishing signature in our numerical analysis. However,
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FIG. 37. NSN system: [(a), (b)] Local and [(c), (d)] nonlocal
tunneling conductance. Both local conductances shows peaks close
to zero bias before and after �c (gray dashed line). Nonlocal conduc-
tance plots do not capture the band closing signature.

it is important to acknowledge that the moving protocol may
not be suitable for very small nanowires characterized by
significant Majorana component overlap.

FIG. 38. NSN system: Tunneling conductance signature under
the application of the ZMP to trivial conductance peaks at � < �c

with �0 = 0.8 meV. [(a), (b)] Local tunneling conductance for range
of n0 values and [(c), (d)] vertical line cut of the conductance for
specific n0, showing the energy splitting to increase for trivial states.

FIG. 39. NSN system: Tunneling conductance signature on the
application of the ZMP to topological conductance peaks at � > �c

with �0 = 1.4 meV. [(a), (b)] Local tunneling conductance for range
of n0 values and [(c), (d)] vertical line cut of the conductance for
specific n0, capturing the energy split to remain in the same range
but not increase.

APPENDIX D: EFFECT OF SMOOTHNESS PARAMETER

In this section, we study the effect of the smoothness
parameter (s), which controls the domain-wall width in our

FIG. 40. Majorana components of the NSN system on the ap-
plication of the ZMP to the topological state at � > �c with �0 =
1.4 meV for different n0 values. The Majorana components remain
separated for a range of n0 values.
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FIG. 41. Effect of smoothness on moving protocol: (a) trivial
ZBP, s = 10; (b) topological ZBP, s = 10; (c) trivial ZBP, s = 20;
and (d) topological ZBP, s = 20.

moving protocol. We present the results obtained from apply-
ing the moving protocol to an NSN heterostructure. Figure 41
illustrates both trivial and topological ZBPs in the NSN sys-
tem under the influence of the moving protocol where we have
utilized two different smoothness values.

FIG. 42. Effect of smoothness on Majorana components shown
here for a clean nanowire.

As anticipated, increasing the smoothness parameter leads
to a smoother transition from the topological regime to the
trivial regime. Upon comparing Figs. 41(a) and 41(b) with
Figs. 41(c) and 41(d), it is evident that the primary observation
of the moving protocol remains unaffected by the domain-wall
width. Specifically, throughout the protocol, the topological
ZBP remains at zero bias, while the trivial ZBP splits into
two peaks at finite bias. However, taking too high a value of
s will make the domain wall broad and destroy the trivial-
topological- trivial structure.

Furthermore, it is worth noting that the domain-wall width
also plays a role in determining the positions of the Majo-
rana bound states within the system, particularly in response
to the moving protocol. This relationship is evident from
the observations presented in Fig. 42, where variations in
the domain-wall width directly impact the positioning of the
Majorana bound states.
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