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Topological dissipative Kerr soliton combs in a valley photonic crystal resonator
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Topological phases have become an enabling role in exploiting new applications of nonlinear optics in
recent years. Here we theoretically propose a valley photonic crystal resonator emulating topologically pro-
tected dissipative Kerr soliton combs. It is shown that topological resonator modes can be observed in the
resonator. Moreover, we also simulate the dynamic evolution of the topological resonator with the injection
of a continuous-wave pump laser. We find that the topological optical frequency combs evolve from Turing
rolls to chaotic states, and eventually into single soliton states. More importantly, such dissipative Kerr soliton
combs generated in the resonator are inborn topologically protected, showing robustness against sharp bends
and structural disorders. Our design supporting topologically protected dissipative Kerr soliton combs could be
implemented experimentally in on-chip nanofabricated photonic devices.
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I. INTRODUCTION

Optical frequency combs have been undergoing revolu-
tionized development in integrated photonic resonators. For
coherent optical frequency combs in microresonators, there
exist stationary temporal solutions, so-called dissipative Kerr
solitons (DKSs). Such DKSs are attributed to the double
balance between the microresonator Kerr effect and disper-
sion management, as well as losses and parametric gain
[1]. This specific phenomenon of optical frequency combs
has exploited numerous concepts, such as the Stokes soliton
[2], breathing solitons [3], and soliton crystals [4]. Prim-
itively, bulk crystalline and microdisks [5–7] are proven
to be an appropriate breeding ground for DKS combs.
Furthermore, the soliton combs are expanded to on-chip pho-
tonic devices including Si3N4 [8–10], LiNbO3 [11,12], and
AlGaAs [13].

At the same time, topological phases of matter bring ro-
bustness to photonic devices. Advances in topological phases
also excite sparks in nonlinear photonic systems. It has been
experimentally proposed that the topological transport of
second or third-harmonic waves can be conducted in chip-
scale devices [14,15]. Furthermore, such systems exhibit the
topological protection of four-wave mixing processes [16],
topological optical frequency combs, and temporal DKSs
[17,18]. Topological nonlinear optics also gives inspiration
for implementing topological protection of complex nonlinear
processes, including topological exciton polaritons [19,20]
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and gap solitons [21,22]. The topological platforms are also
applied to build topological protection of quantum states,
such as topological quantum sources [23], entangled states
[24–26], and quantum interference [27]. Recent researches
have proposed a topological phase, namely the quantum val-
ley Hall (QVH) effect [28–32], to implement valley kink
states along the topological interface. Topological DKSs
in coupled resonator arrays emulating the Su-Schrieffer-
Heeger (SSH) model have been proposed [17,33]. However,
the underlying aspects of topological DKSs in the QVH
system with super-compact chip scaling have not been in-
vestigated yet. On the one hand, the complex resonator
arrays restrict the chip scaling and lead to inconvenience
for optical modulation. On the other hand, the nonlinear dy-
namic evolution of the Kerr solitons in such complex arrays
of coupled rings leads to the complexity of the simulated
model.

Here we theoretically investigate the generation and topo-
logical transport of DKS combs in a valley photonic crystal
(VPC) slab. We confirm the existence of topologically pro-
tected kink states at the resonator modes in a whisper-gallery
resonator. The nonlinear dynamic evolution of the topolog-
ical resonator with an excited continuous-wave (CW) pump
laser is numerically simulated. The result reveals that with
the detuning of the pump laser, the optical frequency combs
generated in the resonator can evolve into single soliton combs
eventually. More importantly, these DKSs generated in the
VPC resonator are topologically protected and show robust-
ness against sharp bends and structural imperfections. Our
design may give a new spark to the chip-scale operation of
topological optical frequency combs.
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FIG. 1. (a) A scheme of VPC topological resonators enforcing
the DKS combs. (b) 2D close-up image of VPCs with lattice constant
a = 300 nm. (c) Calculated band structures of different VPCs, where
the undeformed unit cells (d1 = d2 = 0.5a) and deformed unit cells
(d1 = 0.25a, d2 = 0.75a) are denoted by green and red dots, respec-
tively. The �, K, and M denote the high-symmetry points in the first
Brillouin zone.

II. TOPOLOGICAL RESONATORS

Topological resonator is a burgeoning platform integrating
topological phases and cavity dynamics. Here we demonstrate
a triangle topological resonator enforcing the DKS combs in
a Si3N4 VPC slab. As depicted in Fig. 1(a), a scheme of the
VPC topological resonator is designed to produce topological
frequency combs, where a bus wave guide is used to couple
the pump into the resonator. When a CW laser is pumped at
a resonator frequency, the third-order nonlinearity of Si3N4

material with appropriate dispersion leads to a frequency
comb with the spacing of free spectral range (FSR). When it
meets a balance between intrinsic dispersion and nonlinearity-
induced parametric gain, the comb shows a fully coherent
formation, so-called DKSs. Since the DKS comb is produced
in the triangle topological resonator, it is inborn topological.
Such topological protection brings the DKS combs robustness
against sharp corners.

The two-dimensional (2D) close-up image of VPCs is
shown in Fig. 1(b), which is composed of VPC1 and VPC2

[29,30]. The nanohole sizes are determined by d1 and d2,
where the lattice constant is a = 300 nm. As shown in
Fig. 1(c), the calculated band structures of different VPCs
reveal that there is a Dirac cone at the K and K′ valleys, as
illustrated by green dots. The equilateral triangular nanoholes
with C6 lattice symmetry preserve a graphenelike lattice
model [30]. This lattice symmetry leads to degenerate Dirac
points at the K and K′ valleys in the Brillouin zone. With
the distortion of the unit cell (d1 = 0.25a, and d2 = 0.75a),
it opens a photonic bandgap at the Dirac cone due to the
breaking of lattice symmetry, as displayed by red dots in

Fig. 1(c). Theoretically, the valley Chern numbers of VPC1

and VPC2 are described by CK/K ′ = ±1/2, respectively [34].
Therefore, the difference between the valley Chern number
of VPC1 and VPC2 is calculated as |�CK/K ′ | = 1. According
to bulk-boundary correspondence, there exists one edge state
in each valley. The two edge states are locked to K and K′
valleys, respectively, which refers to “valley-locked” chiral-
ity. This QVH model exhibits valley kink states propagating
along the interface between VPC1 and VPC2, which shows
robustness against certain disorders.

To study the underlying properties of topological VPCs, we
perform the band calculation of VPCs. As shown in Fig. 2(a),
the band opens a large gap from 361 THz to 380 THz.
There exists a pair of valley-polarized topological kink states
(corresponding to kx > 0 and kx < 0, respectively) in the
complete bandgap. Therefore, there is only a single mode for
a given wave vector kx, which avoids the mode competition
in FWM processes. The group velocity for the edge state
within the band gap is nearly constant. Note that this pair of
valley-polarized kink states exhibit opposite group velocity
and opposite polarizations, referred to as left-handed circu-
lar polarization (LCP) and right-handed circular polarization
(RCP), respectively. Also, valley kink states are robust against
defects and sharp corners [34]. In addition, the light confine-
ment of propagating modes along the interface results in the
high-efficiency generation of frequency combs. For the res-
onators producing the optical frequency combs, the developed
dispersion engineering, so-called integrated dispersion, plays
an important role in comb formation [1]. A mode number μ is
used to index the relative resonator mode counted concerning
the pump mode ω0, where the pump mode ω0 is selected
around the middle of all resonator modes to produce more
signal and idler sidebands via FWM processes. The indexed
resonance modes ωμ can be Taylor expanded around the
pumped mode ω0:

ωμ = ω0 + μD1 + D2

2
μ2 + D3

6
μ3 = ω0 +

∞∑
i

Di
μi

i!
, (1)

where the expansion term is described as Di = diωμ/dμi at
ω = ω0. The first-order term D1 is related to the FSR of the
resonator, which can be calculated as D1 = �ωFSR = (ω1 −
ω−1)/2. The second-order dispersion term D2 corresponds to
the group velocity dispersion (GVD): D2 = ω1 + ω−1 − 2ω0.
Furthermore, it is convenient to define the integrated disper-
sion Dint as

Dint (μ) = ωμ − (ω0 + μD1) = D2

2
μ2 + D3

6
μ3 + · · · . (2)

Integrated dispersion Dint contains high-order dispersion
terms of the resonator and can be calculated from the trans-
mission spectrum. Figure 2(b) shows dispersions of the
topological resonator extracted from the simulated transmis-
sion [Fig. 2(c)], which indicates an anomalous GVD case
with D2 > 0. Anomalous GVD is crucial for the generation
of parametric oscillations and Kerr solitons, which allows the
optical frequency combs to span a bandwidth far exceeding
the anomalous dispersion region [1,38].

Topological resonators based on VPCs have been pro-
posed to conduct the lasing [39,40], optical routing [41],
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FIG. 2. (a) Calculated dispersion relation of valley kink states composed of VPC1 and VPC2. (b) Dispersions of the topological resonator.
(c) Transmission spectrum of kink states for the topological resonator.

filters [42], and quantum emitter [43]. Here we proposed
a triangle topological resonator to produce DKS combs. A
straight topological bus wave guide is used to couple the
pump mode into the topological resonator, and then guide
the generated combs from the resonator to the bus wave
guide. The gap width between the bus wave guide and the
topological resonator is three cells. We numerically simulate
the transmission spectrum of kink states for the topological
resonator. As shown in Fig. 2(c), the resonator modes with
identical frequency separation (so-called FSR) can be ob-
served. Such identical frequency spacing indicates the modes
circulating inside the triangular cavity, which can be recog-
nized as whispering-gallery modes in topological resonators
[39]. It is clear evidence that the topological resonator leads
to an FSR of 450 GHz. A complete distinction is observed
between topological bandgap and bulk states. For the region
of bulk states, there is no resonator mode existing. Due to the
excitations of valley kink states, topological optical frequency
combs only appear at frequencies inside the topological
bandgap.

The Lorentzian fitting of the simulated resonant dip at
the pump frequency of 370.67 THz reveals a total Q fac-
tor of 8.86 × 104 [34]. The external loss κex and intrinsic
loss κin are calculated as κin = κex = 1.35 × 1010 rad/s. Cor-
respondingly, the intrinsic quality factor Qin and external
quality factor Qex are calculated as Qin = Qex = 1.772 × 105.
Therefore, the coupling efficiency of the topological resonator
satisfies η = κex/(κex + κin) = 1/2, leading to the critical
coupling [1]. The threshold for parametric oscillation in the
resonator is proportionable to V0/Q2, where V0 is the effective

volume of the pump. Hence, generating signal and idler side-
bands from FWM is easy to manipulate in such high-Q VPC
resonators.

Thanks to the intrinsic nonlinearity of the resonator, nu-
merous sidebands with equidistant gaps are produced in the
resonator with the injection of a CW pump laser at the angular
frequency of ω0 (indexed by the number μ = 0). To visualize
the stimulated FWM process of the topological resonator, we
simulate the electric field profiles of the FWM process with
the selected signal and idler frequencies (μ = 1,−1). Such
numerical model of the FWM process in VPCs is performed
in the software COMSOL Multiphysics [34]. As depicted
in Fig. 3, the kink states of the pump, signal, and idler are
excited in the coupled wave guide-resonator device. A circu-
larly polarized excitation is used to emulate kink states along
the bus wave guide. Since the pump frequency is consistent
with the resonator mode ω0, the injected pump is coupled
to the topological resonator and excites the FWM process
simultaneously. This chirality is also preserved for the cavity
due to the same topology between the bus wave guide and the
triangle cavity. There is no input for the kink state of the idler,
thus, the generation of field profiles at the idler frequency
gives clear evidence of the FWM processes [25]. The field
profiles of topological resonator modes are concentrated at
the interface, resulting in the high-efficiency generation of
the FWM process. Remarkably, the resonator modes show
robustness against sharp bends, confirming the topological
nature of the QVH effect. Note that the direction of rota-
tion in the topological ring is related to the injected pump
mode [34].
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FIG. 3. Field profiles of the stimulated FWM process in the topological resonator at frequencies of the (a) pump (vp = 370.67 THz),
(b) idler (vi = 370.21 THz), and (c) signal (vs = 371.13 THz) respectively.

III. TOPOLOGICAL KERR SOLITON COMBS

DKS combs can be readily implemented in topological
microresonators due to the intrinsic Kerr nonlinearity of
nonlinear materials [17]. DKSs are temporal solutions to
the balance between intrinsic dissipation and nonlinearity-
induced parametric gain [1]. When the parametric gain of the
cavity exceeds the decay rate, symmetrically spaced sidebands
appear around the incident pump. Optical frequency combs
can grow to DKSs with the tuning of the frequency of the
pump laser. Unlike the complex arrays of coupled rings emu-
lating the SSH model, in our triangular photonic crystal cavity,
we can only consider the coupling between a topological wave
guide and a cavity. Thanks to the topological protection of val-
ley kink states, light can transport smoothly along sharp bends
with negligible scattering and reflection. Our topological res-
onator is analogous to a traditional whispering-gallery cavity,
where light traveling inside the whispering-gallery cavity is
equivalently considered as traveling along a straight wave
guide with boundary conditions of the resonators. There-
fore, the nonlinear dynamics of light inside our topological
resonator can be briefly simulated by a single-ring Lugiato-
Lefever equation (LLE). In general, the dynamics of optical
frequency combs in the microresonator are described by LLE
[37,44]:

∂

∂τ
A = −

(
κ

2
+ iδω

)
A + iπ · FSR · D2

∂2

∂T 2
A

+ iL · FSR · γ |A|2A +
√

κηPin

h̄ω
, (3)

where A describes the evolution of the intracavity field, κ is
related to the linewidth of resonator modes, and δω is the
detuning of the resonance frequency. With proper approxima-
tions of the LLE, the dynamics of DKSs can be numerically
simulated [34]. To access the reproducible soliton state, the
pump is detuned from the blue (δω < 0) to the red region
(δω > 0). In general, the evolution of optical frequency combs
is recognized by several trajectories, including Turing rolls,
chaotic states, breathing solitons, and eventually into the soli-
ton states [1]. In the case of single soliton states, the comb

spectrum is almost smooth and phase locked [45]. Such single
soliton states have been experimentally observed in a great
deal of platforms [5,8–10], therefore, we can conclude several
tricks to excite single soliton states. First, solitons are always
generated at the red tuning of resonance frequency where the
intracavity field is bistable [1]. Second, the combs of sin-
gle soliton formation take parallel shapes of sech2 functions.
Third, in the time domain, multiple or single soliton states
behave with several spaced pulses or one ultrashort pulse upon
a period of the round-trip time.

To numerically simulate the dynamic evolution of the topo-
logical resonator, we consider a whisper-gallery topological
resonator. The input pump frequency ω0 corresponds to the
resonance frequency indexed by μ = 0, leading to the genera-
tion of the spaced sidebands in other resonator modes (μ �= 0)
via FWM processes. Since the pattern of the topological res-
onator is constructed by interfaces between VPC1 and VPC2,
the optical frequency combs are generated at the interfaces,
and they transport along a certain triangular path. However,
when the incident pump is coincident with bulk bands, the
output comb is barely visible. In the case of bulk modes, the
incident pump is dissipated into the photonic crystals. Due to
the topological protection of valley kink states, the backscat-
tering around the sharp corners is negligible [46]. Therefore,
the reflection of resonator modes at the sharp corners is not
included in our theoretical model.

In our simulation, the actual pump power is 2.2 W, and
the refractive index of Si3N4 is 2.0, with the nonlinear in-
dex 2.5 × 10−19 m2W−1. The FSR and dispersion D2 are
extracted from the simulated transmission [Fig. 2(c)], with
calculated values of FSR = 450 GHz and D2 = 9.53 GHz.
We note that the simulations of soliton existences are
related to dispersion D2, therefore, the certain lattice de-
fects that lead to the breaking of dispersion shape could
destroy the presence of solitons. The simulated total Q
factor indicates a value of 8.86 × 104. The external loss
and the total energy loss rate of the resonator are calcu-
lated as κex = 1.35 × 1010 rad/s and κ = 2.7×1010 rad/s.
In this case, the coupling efficiency of critical coupling
is given by η = 1/2. The length of the topological res-
onator is L = 3l , where l = 180a is the side length of
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FIG. 4. Numerical simulated evolution of soliton formation in a topological resonator. (a) Effective intracavity energy evolution with the
detuning from blue-detuned to red-detuned region. There appear three conspicuous processes including Turing rolls, chaotic states (breathing
solitons), and single soliton states, respectively. (b) Corresponding spatiotemporal evolution of soliton formation.

the triangular configuration. We assume the effective field
cross-section area Aeff = 2.1 × 10−14m2, and the nonlin-
ear coefficient of the topological resonator is given by
γ = ω0n2/cAeff . We believe our topological DKSs can
be experimentally accessed by present nanofabrication
technology [45,47].

The simulated dynamic evolution of topological DKSs as
a function of detuning is illustrated in Fig. 4(a). The cor-
responding spatiotemporal evolution of the DKS excitation
process is shown in Fig. 4(b). Three conspicuous forms are
identified during the evolution process, that is, Turing rolls,
chaotic states (breathing solitons), and single soliton states,
respectively. Figure 5 shows the spatial intensity distribution
of the generated pulses with different detuning of the pump in
the topological resonator, which can also be accessed from the
spatiotemporal evolution [34]. The pulses are circulated along
the edge of the triangle topological resonator in a clockwise
direction as time evolves.

In the early stages of evolution, the intensity build-up
process leads to the increasing of intracavity power with the
detuning from the blue side. The temporal pattern shows
three equally spaced pulses within the triangular resonator,
which is referred to as Turing rolls. Those stable pulses
are attributed to the self-stabilization of the nonlinear evo-
lution in the blue-detuned side of the resonance frequency.
Thus, such a stage of modulation instability is referred to
as stable modulation instability (SMI). We can observe that
the cavity energy varies smoothly in the case of Turing
rolls.

Those chaotic states are followed by the nonstationary
behavior-breathing soliton states. Figure 5(c) shows that there
is only one pulse inside the topological resonator with the
detuning δω = 6.13; the amplitude and duration of the in-
tracavity waveform are oscillated periodically, where the
oscillation period is regarded as the breathing period. Cor-
respondingly, the combs show periodical compression and
stretching. Such instability occurs at the furcation of chaos
and a stable DKS, which is referred to as Hopf bifurcation.

When the pump is further detuned to the red side (δω =
28.73), actual soliton formation can be accessed because the
intracavity field is bistable. The intracavity power shows the
formation of a “step” characteristic; this “step” is the identifi-
cation of solitons. The “length” of the soliton step corresponds
to the pump power. For the intracavity energy, the oscillation
quickly evolves to a relatively stable situation. This bistable
state is an elaborate consequence of the off-resonance pump
detuning δω and Kerr nonlinear shift of the resonator.

As shown in Fig. 4(b), the corresponding spatiotemporal
formation of single soliton states also exhibits intriguing re-
sults. A quick comparison with the spatiotemporal intensity
distribution of Turing rolls and chaotic states reveals that there
exists only one ultrashort pulse upon a period of the round-trip
time for a single soliton state. Once a single soliton state
is accessed, the thermal nonlinearity of solitons makes the
laser-cavity detuning self-stabilized. In this scenario, single
soliton states can be stable for several hours. Note that mul-
tiple solitons may exist in the cavity where the number of
emerging solitons is random [1]. Proceeding further, the comb
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FIG. 5. Spatial intensity distribution of the (a) Turing rolls, (b) chaotic states, (c) breathing, and (d) single soliton state, respectively.

degenerates to a continuous component due to the separation
of the pump and resonance frequency.

The formations of corresponding optical frequency combs
are shown in Fig. 6. It is noted that generated Kerr frequency
combs are composed of a CW pump component and rel-
atively weak bilateral combs [6]. When the nonlinear gain
overcomes the cavity losses, the developed primary comb
so-called Turing rolls is generated. As seen in Fig. 6(a), the
comb amplitudes of Turing rolls have distinct contrast.

When the pump is further detuned to the red side, the
increasing intracavity power initiates FWM processes, which
leads to secondary sidebands and subcombs. The output comb
of chaotic states is depicted in Fig. 6(b), Random variations
of combs indicate that there is no stationary solution existing,
leading to the incoherence of the wave form.

Following chaotic states, the generation of breathing soli-
tons means the arrival of a low-detuning boundary of the
soliton. As depicted in Fig. 6(c), the comb of breathing soli-

FIG. 6. Simulated optical frequency combs of (a) Turing rolls, (b) chaotic states, (c) breathing solitons, and (d) single soliton states.
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tons takes the form of a triangular feature. Note that the
amplitudes of the comb oscillate with the breathing period,
and the comb returns to its initial state after one period.

The self-sustaining wave packets of the single soliton state
indicate that comb lines are phase locked with each other
[Fig. 6(d)]. More importantly, the shape of the spectral output
takes the form of sech2 functions. This behavior of a single
soliton state in the topological resonator is analogous to that
observed in Si3N4 single-ring resonators where single solitons
exist [1]. Note that if the pump and dissipation are ideally
turned off, the propagating time of soliton in our topological
resonator is related to photon lifetime, which can be calculated
by τp = Q/ω0 = 38.04 ps.

We have shown many resemblances between topological
resonators and single-ring resonators, however, for the DKS
and single soliton combs produced in our design, thanks to
the topological nature of VPCs, they are inherited to be robust
against sharp bends and certain disorders. In the experimental
realization, the strong thermal effect becomes an intractable
element to produce stable solitons in the red-detuned region.
To overcome this, heaters can be used to control the tem-
perature of VPC chips [45,47]. Based on the state-of-the-art
nanofabrication technology, our topological DKS combs de-
sign could be implemented experimentally.

IV. CONCLUSION

In this work, we have demonstrated a theoretical scheme
exhibiting topological optical frequency combs and DKS
combs. The triangle resonator is composed of VPCs with
different topologies and can excite topological valley kink res-
onator modes propagating along the interface. We numerically
simulate the nonlinear dynamic evolution of the topological
resonator with the injection of the pump laser. The result
reveals that the single soliton states can be produced in the
resonator, and they are born to be topological. This topolog-
ical nature endows the DKS combs’ robustness against sharp
bends and disorders. Our topological frequency combs could
be readily accessed in on-chip nanofabricated photonics.
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