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Gapless helical edge modes are a hallmark of the quantum spin Hall effect. Protected by time-reversal
symmetry, each edge contributes a quantized zero-temperature conductance quantum G0 ≡ e2/h. However, the
experimentally observed conductance in WTe2 decreases below G0 per edge already at edge lengths around
100 nm, even in the absence of explicit time-reversal breaking due to an external field or magnetic impurities. In
this work, we show how a time-reversal breaking excitonic condensate with a spin-spiral order that can form in
WTe2 leads to the breakdown of conductance quantization. We perform Hartree-Fock calculations to compare
time-reversal breaking and preserving excitonic insulators. Using these mean-field models we demonstrate via
quantum transport simulations that weak nonmagnetic disorder reproduces the edge length scaling of resistance
observed in the experiments. We complement this by analysis in the Luttinger liquid picture, shedding additional
light on the mechanism behind the quantization breakdown.
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I. INTRODUCTION

The discovery of the quantum spin Hall (QSH) effect gave
rise to a flurry of research on the topological aspects of quan-
tum materials behavior. One of the key features of the QSH
is the presence of helical edge states protected by the com-
bination of symmetry and topology [1–9]. The low-energy
spectrum of such a system consists of counterpropagating
electron states with opposite spins, connected by time-reversal
symmetry. Due to the orthogonality of states in a Kramers
pair, elastic backscattering by a static potential is forbidden
as long as time-reversal symmetry is preserved. When the
bulk of the material is insulating, each such helical edge state
yields a quantized zero-temperature conductance given by
G0 ≡ e2/h, the conductance quantum. The first QSH insula-
tors to be observed experimentally were HgTe/CdTe quantum
well heterostructures, which have been intensively studied
[10–27] since the initial proposal [28]. However, because the
penetration depth of the edge states in HgTe quantum wells is
large, it is often difficult to separate the edge physics from the
bulk behavior [29]. This has lead to the search for alternative
platforms, among which the most prominent are single layers
of the transition metal dichalcogenide WTe2 in the 1T′ crys-
talline structure [30–34]. Several experiments have observed
signatures of the QSH effect in that platform, both through
transport measurements [31,33] as well as scanning tunneling
microscopy/spectroscopy [32,35,36].

Unfortunately, while the edge transport provides a new
way towards dissipationless transport and quantum compu-
tation [1–9], the experimental observation of robust con-
ductance quantization in realistic scenarios has been elusive
[10,11,15,17,31,33,37–39]. For example, in the case of WTe2,
while signs of QSH have been observed up to temperatures
of 100 K, these pertain to the devices with edge lengths

shorter than 100 nm, much smaller than the multiple-micron
lengths for the conductance quantization seen in the inte-
ger quantum Hall effect, which also is topological in origin.
This discrepancy between the expected robustness of quan-
tization and the imperfect experimental behavior prompted
intense theoretical exploration of the possible explanations
for this difference. One of the fundamental reasons for the
deviation from perfect quantization is that, while the time-
reversal symmetry precludes the overlap of wave functions
of counterpropagating degenerate time-reversal states, there
is no such restriction for them at different energies. There-
fore, time-reversal-invariant perturbations can still lead to
backscattering of the electrons in a helical channel through
interaction-induced inelastic processes with the help of non-
magnetic disorder [40]. In fact, interaction-induced inelastic
one- or two-particle backscattering is allowed since the mo-
mentum difference between the initial and final states can be
compensated by nonmagnetic disorder [41,42]. The deviation
of the perfect conductance quanta has been thus attributed to
many factors, including coupling to charge puddles [43,44],
incoherent electromagnetic noise [9], nuclear spins [45,46],
quenched disorder [47,48], spin orbit coupling [49–55], and
spin-phonon coupling [56,57].

In this work we explore the possibility of explaining the
deviation from the perfect conductance quantization in WTe2

via the formation of a time-reversal breaking excitonic con-
densate [58–61]. Besides the quantum spin Hall effect, WTe2

exhibits also fascinating interaction-driven effects, including
superconductivity [62] and potential excitonic insulator states
[63–65]. In the latter case, the effect is due to the possible
semimetallic noninteracting band structure of WTe2 with a
hole pocket around the � point of the Brillouin zone and two
electron pockets along the � − X direction. Formation of an
excitonic condensate with finite momentum pairing equal to
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the separation between the pockets was postulated and exper-
imental signatures of such a state were observed [64,65]. The
impact of exciton condensation on the transport properties of
quantum spin Hall phase was previously investigated in the
context of electron-hole bilayers of InAs/GaSb described by
the Bernevig-Hughes-Zhang model [58,66,67].

However, the exact nature of the excitonic state is unclear
and the possibility of time-reversal-breaking spin-spiral or
spin-density wave at the Hartree-Fock mean-field level has
been raised [60]. Starting from a bulk Hartree-Fock calcula-
tion, we observe both time-reversal-breaking and -preserving
energy minima, with unconstrained minimization often favor-
ing the former. We then derive a lattice model for the excitonic
insulator states and use it to perform quantum transport calcu-
lations for a finite width ribbon with disorder. We demonstrate
that, while the time-reversal-preserving excitonic insulator is
topological and thus exhibits robust conductance quantization
of edge state transport, the time-reversal-breaking condensate
deviates from e2/h per edge state conductance in the presence
of nonmagnetic static disorder. However, the remnants of the
helical edge states, though unprotected from backscattering,
remain in the exciton-induced gap and allow us to reproduce
the experimentally observed edge-length scaling of resistance,
with results close to quantized below 100 nm but with the
deviation increasing substantially for longer edges. We then
supplement these simulations by analysis in the Luttinger
liquid picture, whose relevance to edge transport in WTe2 has
been recently demonstrated experimentally [68]. The second
order perturbation theory calculation shows that the combina-
tion of scattering from the spin spiral state and nonmagnetic
disorder is necessary to introduce backscattering, shedding
additional light on the mechanisms that lead to the breakdown
of conductance quantization.

II. TRANSPORT FROM THE BULK THEORY

To perform the quantum transport simulations for the exci-
tonic insulator phases of WTe2, we employ a k · p model as a
starting point [65]:

H0(k) =
(

ak2
x + bk4

x + 2bk2
x k2

y + byk4
y + δ

2

)
Id

+
(

− k2

2m
− δ

2

)
Ip + vxkxτxsy + vykyτys0, (1)

where k2 = k2
x + k2

y , τi and si are Pauli matrices in p, d or-
bitals and spin spaces, respectively, Id = (τ0 + τz )/2 s0 and
Ip = (τ0 − τz )/2 s0 are identity matrices for d and p orbitals,
while vx and vy determine the spin-orbital coupling. The pa-
rameter values we use in the calculations, which were chosen
in Ref. [65] in order to reproduce the first principles calcu-
lations at low energies, are a = −3, b = 18, by = 40, δ =
−0.9, m = 0.03, vx = 0.5, vy = 3, where all the energies
are expressed in eV and lengths in Å. The different value of by

parameter as compared to Ref. [65] was chosen to ensure that
the low energy behavior of the full lattice model is consistent
with the continuum model within the cutoff employed therein,
with no extra low-energy valley along the � − Y direction.

We then discretize this Hamiltonian on a rectangular lat-
tice with lattice constants ax = 2.805 Å and ay = 6.27 Å.

In discretizing the Hamiltonian we use the finite difference
terms up to (±3,±3) hoppings in x and y directions, respec-
tively. At charge neutrality point this system has a hole pocket
around � point and two electron pockets with minima at
qc = ±0.32x̂ along the � − X direction of the Brillouin zone
(see the Appendix for band structure of the model). The value
of qc itself is not exactly commensurate with any crystalline
lattice structure and could be affected by effects such as strain
and other scenarios that deform the band structure. Based
on previous works [60,65], we expect the formation of an
excitonic condensate at finite momentum corresponding to the
pocket separation qc in momentum space. When time-reversal
symmetry is not enforced, the excitonic order can form either
a spin spiral or spin density wave phases, depending on the
interaction strength. The lattice constant ax was therefore
chosen such that for qc as determined for WTe2 from first
principles the resulting order would be commensurate with
the discretized lattice with a period increased by a factor of
Lx = 7. This simplifies expressing the model with a mean-
field order parameter in real space. When a finite q order is
allowed, the period of the lattice increases correspondingly
and the Brillouin zone (BZ) shrinks, while the electron bands
are folded into the smaller BZ. We can then label these bands
by their corresponding momenta k, spin and orbital index α,
and finally the reciprocal lattice vector of the enlarged unit cell
Gi, which indicates from which extended Brillouin zone the
particular state comes from. In other words, the original mo-
mentum k0 of the state before folding becomes decomposed
as k0 = k + Gi.

We then consider Coulomb interaction of the electrons in
the lattice model given by

Hint = 1

2Nk0�

∑
k0,p0,q0

∑
α,β

Vq0 c†
k0+q0,α

c†
p0−q0,β

cp0,βck0,α, (2)

where � is the area of the crystal unit cell, Nk0 is the number
of momentum points taken in the summation, and c†

k0,α
are

creation operators of a particle with momentum k0 and α

labeling both the orbitals and spin. We assume double-gate
screening of the Coulomb potential [69–72], with the resulting
Fourier transform

Vq = V0
tanh ξq/2

ξq/2
, (3)

with ξ = 250 Å being the distance between the gates and
V0 the interaction strength parameter. The strength of this
interaction can thus be controlled experimentally by either
changing the distance between the gates or switching the gate
dielectric. We then include the impact of Coulomb interaction
at the mean-field level by performing Hartree-Fock calcula-
tions. While Hartree-Fock is only an approximate method that
is not guaranteed to represent the true ground state of the
system, it nevertheless gives insight into the properties of the
interacting system. Moreover, in many cases it works surpris-
ingly well when compared to more accurate methods, such
as density matrix renormalization group (DMRG), even when
considering more strongly correlated systems as compared to
the current system under study, for example in the case of
moiré heterostructures [73,74]. The Hartree-Fock method is
also very convenient for our application in quantum transport
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simulations as it results in an effective single-particle Hamil-
tonian that can be discretized on a lattice, enabling calculation
of conductance.

To remain consistent with the previous Hartree-Fock cal-
culations for this model, even though we work with a lattice
model, we still maintain the cutoff in momentum summation
as in the continuum model of Refs. [60,65], with |kx| < 3/2qc

and |ky| < 0.25. With the cutoff imposed, we also appropri-
ately rescale the interaction strength parameter to reflect the
decreased number of momentum points within the cutoff. We
compare the results when we allow for breaking of inversion
and time-reversal symmetries during the self-consistent calcu-
lation to the case where time reversal is preserved. We choose
the interaction strength parameter V0 so that the rescaled in-
teraction energy within the cutoff at wave vector qc is Ṽqc =
1.71 eV in the case with time-reversal symmetry enforced and
Ṽqc = 0.9 eV otherwise. In expressing the rescaled interaction
strength, we follow the convention of Ref. [65]. In both cases
we consider the formation of the finite momentum order pa-
rameter at qc = 0.32 along x direction as mentioned above.
In each self-consistent iteration we diagonalize the quadratic
Hamiltonian HMF = H0 + HHF to obtain a set of n = 4Lx

eigenvalues εkn at each momentum and their corresponding
eigenvectors ukGαn, which are n component spinors. These
eigenvalues and eigenvectors are then used to obtain the order
parameters according to



G1G2
Hαβ = δαβ

∑
pGn

V (G1 − G2)

Nk
u∗

pG−G1+G2βnupGβn f0(εpn),

(4)



G1G2
Fαβ (k)=

∑
pGn

V (p−k+G1− G2)

Nk
u∗

pG−G1+G2βnupGαn f0(εpn),

(5)

where Nk is the number of points within the cutoff and
f0(ε) = (eβ(ε−μ) + 1)−1 is the Fermi-Dirac distribution, with
β = 1/kBT being the inverse temperature and μ the chemical
potential.

The order parameters given by the formulas above repre-
sent all the possible couplings between orbital and spin degree
of freedom for states separated in momentum by integer mul-
tiples of qc. In particular, some of them represent formation of
excitonic order with center of mass momentum qc. All of these
order parameters enter the mean-field Hamiltonian through

HHF =
∑
k,α,β

∑
G1,G2

[



G1G2
Hαβ − 


G1G2
Fαβ (k)

]
c†

kG1α
ckG2β. (6)

The new HMF is then again diagonalized and the whole
procedure is repeated until convergence is achieved, which
is monitored by the change in the average value of the order
parameters 


G1G2
Hαβ and 


G1G2
Fαβ (k), with the calculation ending

when the difference between each step is smaller than 10−14.
The appearance of various excitonic phases is established

by calculation of several different quantities. The overall
presence of excitonic condensate with qc momentum is de-
termined through [60]:


exc =
√√√√ 1

Nk

∑
kGαβn

|u∗
kGαnukG+qcβn f0(εkn)|2. (7)

The time-reversal-breaking spin spiral and spin density wave
components are characterized using the Fourier components
of spin density that correspond to the qc ordering vector [60]:

ρs
i = 1

Nk�̃

∑
kσσ ′an

si,σσ ′u∗
k0σanukqcσ ′an f0(εkn), (8)

with �̃ = �ABZ/Ac being the area of the crystal unit cell �

rescaled by the ratio of the Brillouin zone ABZ and area within
the cutoff Ac. Expressing the spin density as a vector ρs we
can then give the expressions that separate the spin spiral and
spin density wave components:

ρSDW =
√

2|ρs · ρs|, ρSS =
√

2|ρs|2 − ρSDW. (9)

The exact phase obtained as the Hartree-Fock ground state
depends on several factors, most important of which is the
screened interaction strength V0. This parameter is deter-
mined by the device configuration, in particular the spacing
between the metallic gates that are used to control charge
density within the device and the gate insulator material it-
self. Through the self-consistent calculation we obtain results
in agreement with the previous calculations with [65] and
without [60] time-reversal symmetry, reproducing the phase
diagram that contains spin spiral and spin density wave in
the latter case. Representative examples of mean-field band
structures are presented in Fig. 1. In panel (a) we show that
when time-reversal symmetry is enforced, the exciton con-
densate forms and the gap opens up, but the bands remain
doubly degenerate. The state is topological in nature as will
be explicitly demonstrated by the presence of the edge states.
In panel (c), the band structure for the time-reversal-breaking
state is shown. Again, the exciton condensate formation leads
to gap opening, but now the band degeneracy in the proximity
of the gap is lifted due to the formation of the spin spiral state.
As this degeneracy lifting is small, the system will still retain
some of the quantum spin Hall effect features, but will no
longer be robust to perturbations.

For the purpose of quantum transport simulation with dis-
order we need to convert these Hamiltonian terms to their
real space counterparts. While the unit cell of the original
lattice Hamiltonian consisted of a single site with four spin
orbitals, when excitonic order with finite q arises, the unit
cell has to increase correspondingly to allow for the spatial
modulation of the charge and spin densities. Since we have
chosen the lattice constant so that the postulated excitonic
order wave vector is commensurate with the original lattice,
we can simply extend the original model by including Lx

sites in the extended unit cell. The chosen value of Lx = 7
enables a reasonable approximation for the modulation of
densities within the unit cell while keeping the computational
complexity in check. At the same time, we can easily convert
the Hartree-Fock order parameters to real space hoppings. As
a result of a Fourier transform with c†

kα = 1/
√

N
∑

ri
eik·ri c†

ri
,

we obtain hoppings between ri and r j sites of the
lattice:


αβ (ri, r j ) =
∑

kG1G2



G1G2
αβ (k)eik·rei[(G1−G2 )·r j+G1·r], (10)

where 

G1G2
αβ (k) = 


G1G2
Hαβ − 


G1G2
Fαβ (k) and r = ri − r j . Sim-

ilar to the discretization of the continuum model, we use
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FIG. 1. Band structures of the excitonic condensate systems within Hartree-Fock mean-field approximation. (a) 2D lattice model with
time-reversal symmetry preserved. The gap is opened by the exciton formation, but the bands remain doubly degenerate due to symmetry
preservation. (b) Spectrum of system from (a) placed on a quasi-1D ribbon. The system is topological, which results in the presence of helical
edge states within the excitonic band gap. (c) 2D lattice model with time-reversal symmetry broken. The excitons open the gap, but the spin
degeneracy is lifted due to formation of the spin spiral state. (d) Spectrum of system from (c) placed on a quasi-1D ribbon. Even though time
reversal is broken, as the magnitude of symmetry breaking terms is relatively small, the remainder of the helical edge states remain in the gap.

hoppings up to (±3, ±3) in x and y directions. While the
Fourier decomposition of 


G1G2
αβ (k) includes an infinite num-

ber of 
αβ (ri, r j ), in practice for the system under study
such a limited number of terms reproduces the Hartree-Fock
potential with sufficient accuracy, partially due to the choice
of lattice constant that results in an order that is commensurate
with the initial lattice.

With a real-space model defined as above, we can now
set up the quantum transport simulation to study the effect of
the time-reversal-breaking excitonic condensate on the helical
edge states of the quantum spin Hall state. To perform all the
quantum transport calculations we use the KWANT package
[75]. The procedure is as follows: the starting point is the
two-dimensional model of WTe2 from Eq. (1) with Hartree-
Fock terms that describe the excitonic condensate as given
by Eq. (6), which has the band structure represented in either
Figs. 1(a) or 1(c), depending on the parameter set. We then
restrict this model expressed in real space to a ribbon with
a finite width in y direction, establishing hard walls at the
boundaries. This means we retain the translational invariance
in the x direction, along the spin density modulation coming
from the spin spiral state. Due to this translational invariance
we can still label the quantum states by their momentum in x
direction and calculate the spectrum within the 1D Brillouin
zone (which is indicated by primes in the labeling) of the
ribbons. Such spectra are presented in Figs. 1(b) and 1(d), both
for time-reversal-preserving and -breaking cases. The lines
in these panels represent the transverse electronic modes of
the ribbon, which are responsible for carrying the electrical
current through the sample if they are crossing the Fermi level.
Thus the transverse modes that cross the Fermi level form
the basis for the scattering matrix that describes transmission
of these modes through the region under study. In panel (b),
the time-reversal-preserving case, the helical edge states re-
sulting from the topological nature of the excitonic insulator
are clearly visible. However, in panel (d) even though the
time-reversal symmetry is broken, the remainder of helical
edge states is still visible in the gap. These states are partially
gapped, but because the magnitude of symmetry breaking
terms is not large, there are energy windows within the gap
for which a pair of edge states is present and in the absence of
any disorder they would contribute 2e2/h to the longitudinal
conductance of the ribbon.

In a standard Landauer-Buttiker calculation fashion, we
attach the semi-infinite leads to the opposite ends of the ribbon
that extend in the x direction. We then introduce additional
random on-site potential to the lattice model within the central
scattering region to model the disorder that preserves time-
reversal symmetry:

Hdis =
∑
ri,α

U (ri )c
†
ri,α

cri,α. (11)

The random on-site values U (ri ) are taken from a uni-
form distribution over the range [−U0/2,U0/2], where we
call U0 the disorder strength. We calculate the scattering
matrix of the system for navg = 100 independent disorder
realizations and then average the conductances over these
realizations. In the usual circumstances, the quantum spin Hall
edge states are robust with regards to such a disorder and
the breakdown of the quantized sample conductance happens
only for extremely large disorder strengths. This remains true
even in the presence of the excitonic condensate which pre-
serves time-reversal symmetry, as demonstrated in Fig. 2(a).
The conductance remains precisely quantized for much of
the investigated disorder strength range and the leading source
of the quantization breakdown is the coupling between the
opposite edges of the sample. This is evident as the conduc-
tance curve is sensitive to the width of the ribbon (see the
Appendix), with the disorder strength needed to decrease the
conductance increasing for wider ribbons. At the same time,
when disorder is chosen within the quantized plateau, the
result does not depend on the length of the ribbon, reveal-
ing the robustness characteristic of the topological transport.
Moreover, the variance displayed among the different disor-
der realizations shows that conductance in that case is very
unstable, being dependent on whether the disordered potential
forms a path connecting to the opposite edge. Note that, while
strong disorder in the bulk of the sample may act to reduce the
excitonic order parameter, the gap in the bulk means that weak
disorder does not qualitatively modify the phase, unlike at the
gapless edge. As long as the bulk gap remains nonzero, we
expect the edge treatment here and in the following section to
be applicable.

However, once the time-reversal symmetry breaking ex-
citonic condensate is formed, even a small scalar disorder
causes a deviation from the perfect value, as exemplified in
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FIG. 2. Quantum transport simulation results. (a) Disorder strength U0 dependence of conductance for the case of time-reversal-breaking
and -preserving exciton condensates. The solid lines show average over 100 disorder realizations, with each realization shown as a separate set
of points. In both cases the length of the ribbon is 200 nm and the width is 50 nm. (b) The comparison between the experimental data as reported
in [33] and quantum transport simulation in the time-reversal-breaking case averaged over disorder realizations. The experimental data from
two different devices and channel lengths 50–1000 nm demonstrates increasing channel resistance for longer edge channels, suggesting lack
of topological protection of the quantum spin Hall edge states. This observation is consistent with the simulation result, which can reproduce
the observed length dependence and sample variation with relatively small changes to disorder strength value U0.

Fig. 2(a). In contrast to the time-reversal-preserving case, the
decrease from 2e2/h value is immediate. Moreover, the dis-
order strength dependence is insensitive to the width scaling,
indicating that the backscattering processes occur within the
same edge. The variance among disorder realizations is also
much smaller than previously, confirming that the backscat-
tering is not dependent on the accidental appearance of a
pathway across the device. At the same time, increasing the
length of the ribbon decreases the conductance for all disorder
strengths, revealing the lack of the topological protection.

To further demonstrate this, and to relate our simulations
in the time-reversal-breaking case to the experimental data,
we calculate the channel resistance of the edge states with
increasing ribbon length, keeping all the other Hamiltonian
parameters, including the disorder strength U0, constant. The
results are presented in Fig. 2(b), where a comparison between
the simulation and experimentally obtained resistance values
[33] is made. The experimentally studied edge lengths range
from 50 to almost 1000 nm, which we also use as the ribbon
lengths in our calculations. While making the comparison,
we have to consider that obtaining the edge length scaling
of resistance in a single device is nontrivial and requires
measurements between multiple different sets of contacts. Re-
sistance measured for each pair thus strongly depends not only
on the properties of the edge, but on the quality of each of the
contacts as well. Moreover, the experimental data is gathered
for one particular disorder realization, which cannot be deter-
mined to be the input of our simulation. Therefore, we make
the comparison with simulations averaged over multiple dis-
order realizations and compare the general trends in the data.
We include calculations with two different, but comparable
disorder strengths. The smaller value U0 = 0.3 eV reproduces
the device data represented by the black points quite well,
while the larger disorder strength U0 = 0.35 eV reproduces
the trend for the device represented by the green points. This
demonstrates that the variability between the devices can be

explained by a relatively small change in disorder strength
that can realistically be expected in experimental conditions.
While we cannot obtain a perfect fit to the experimental data
(the nonmonotonicity in the data in particular would require
knowing more about the disorder pattern and contact quality),
the general trends are well explained using realistic material
parameters. In both cases, the simulations mirror the exper-
imental data for almost two orders of magnitude in channel
length, suggesting that the breakdown of quantization of edge
conductance as observed in WTe2 could be explained by a
bulk time-reversal-breaking excitonic condensate.

III. TRANSPORT FROM THE EDGE THEORY

To better understand the mechanism behind the breakdown
of quantization in the presence of the time-reversal-breaking
excitonic condensate, we use an analytical model based on
the Luttinger liquid picture. Such a model can be applied to
study the helical edge states that arise in the quantum spin Hall
(QSH) insulator under open boundary conditions. The helical
edge state consists of two degenerate counterpropagating elec-
tron states with opposite spins, related by the time-reversal
symmetry, each contributing a quantized zero temperature
conductance G0 ≡ e2/h in opposite directions. Even though
the quantized conductance G0 is protected by time-reversal
symmetry, there exists a multitude of proposals that can ex-
plain the breakdown of the quantization as discussed in the
Introduction. In terms of time-reversal-breaking mechanisms,
previous works suggested backscattering from magnetic im-
purities as one of the most prominent. However, in many
systems such as WTe2 the source of such impurities is not
obvious and thus we look towards a different, intrinsic source
of time-reversal breaking, namely the excitonic condensate. In
this section, following Refs. [40,45,46], we compute the two
terminal conductance for a QSH insulator slab with bulk spin
spiral order. While in the referenced works the justification for
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FIG. 3. Illustration of spin spiral order in the quantum spin Hall
phase. The single layer of WTe2 (orange cuboid) is in a quantum spin
Hall effect phase before the appearance of the bulk spin spiral order
(purple arrows). The red and blue arrows on the boundary stand for
the helical edge states from the original quantum spin Hall effect.

the appearance of such an order is the spontaneous arrange-
ment of nuclear spins, here the spin spiral is purely electronic
as shown in the Hartree-Fock calculations, giving hope for a
more pronounced effect at higher temperatures. Although the
spin spiral order breaks the time-reversal symmetry locally,
when averaged over the whole period of the spiral the symme-
try is still preserved, resulting in a lack of gap opening at the
Dirac point of the edge state dispersion. Therefore, we need
to also take into account scattering on random nonmagnetic
impurities to observe the effect on conductance. To put this on
more concrete terms, we use the bosonization technique and
compute the deviation from the perfect conductance quantum
G0 below.

A. Fermionic model

We consider the setup for a single layer of QSH insulator
WTe2 as shown in Fig. 3, in the form of a ribbon with open
boundary conditions along the y direction. This results in
helical edge states (denoted by the red and blue arrows) on the
upper and lower boundaries. Based on the results of Hartree-
Fock calculations, we further assume the ground state of the
QSH insulator has bulk spin-spiral order, denoted by the violet
arrows. Such a bulk spin spiral preserves the time-reversal
symmetry only when spatially averaged over the period of the
spiral along the x direction. As the edge state decay length is
very short in WTe2 [29], we can neglect any coupling between
the states located at the opposite boundaries. Focusing thus
on states along a single boundary, we can write down the
Hamiltonian for helical edge states as

Hhel = Hkin + Hee + Hm + Himp, (12)

where Hkin and Hee are the kinetic energy and electron-
electron interactions, respectively. The term Hm is the
effective magnetic field from the bulk excitonic spin spiral and
Himp denotes the nonmagnetic impurities. We further assume
that the helical edges are formed by a right-moving mode with
spin down (R↓) and a left-moving mode with spin up (L↑). The

FIG. 4. Spin spiral will not gap out the Dirac cone generically in
the absence of disorder. Instead, it will open a gap on the edge of the
Brillouin zone at ±qc/2, where the effective real-space periodicity is
defined by the spiral.

kinetic energy for the helical edge states reads

Hkin = −ih̄vF

∫
[dx][R†

↓(x)∂xR↓(x) − L†
↑(x)∂xL↑(x)], (13)

with the Fermi velocity vF . When time-reversal symmetry is
preserved, the electron-electron interaction Hee = H2

ee + H4
ee

contains only forward scattering H2
ee and chiral interaction

H4
ee:

H2
ee = g2

∫
[dx]R†

↓(x)R↓(x)L†
↑(x)L↑(x), (14a)

H4
ee = g4

2

∫
[dx]{[R†

↓(x)R↓(x)]2 + [L†
↑(x)L↑(x)]2}. (14b)

The Hm captures coupling between the spin density of the
edge states and the effective magnetic field induced by the
bulk spin spiral order:

Hm =
∫

[dx]
∑
ss′

ψ†
s (x)[Beff (x) · σss′ ]ψs′ (x), (15)

where σ is a vector of Pauli matrices and ψ (x) = (L↑, R↓)T.
The spatial dependence of the coupling to effective magnetic
field Beff (x) can be deduced from the Hartree-Fock mean field
and is given by

Beff (x) = Beff [êx cos(qcx) + êz sin(qcx)]. (16)

Here 2π/qc denotes the period of the bulk spin spiral. In the
noninteracting clean limit, i.e., g2 = g4 = 0 and Himp = 0, we
can transform Eq. (12) into Fourier space:

H ′
hel =

∑
k,s,s′

[
ψ†

s (k)(h̄vF kσ z
ss′ )ψs′ (k)

+ Beff

2
ψ†

s (k + qc)(σ x
ss′ − iσ z

ss′ )ψs′ (k) + H.c.

]
. (17)

Note that Eq. (17) couples the right movers and left movers
separated by a momentum difference ±qc. Thus the energy
spectrum of the Hamiltonian of Eq. (17) is gapless at k = 0,
but gaps open for states at momenta ±qc/2, as shown in Fig. 4.
The lack of gap opening at k = 0 reflects that Hm preserves
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the time-reversal symmetry when averaged over real space.
This behavior is also in contrast to the previously studied spin
spiral state related to the arrangement of nuclear spins. In
that case, the gap opens for states separated by 2kF , meaning
that it occurs on the Fermi surface or is shifted when the
chemical potential is changed. However, in the case of a spin
spiral state caused by excitonic condensation, the momentum
qc which determines the position of the gap is determined
by the electronic band structure and so is not shifting when
the charge density is changed via gating. This means that in
principle it would be possible to tune the Fermi level into that
gap, resulting in a drop in conductance. This could serve as
one of the experimental signatures of the excitonic conden-
sation with time-reversal-breaking spin spiral configuration.
The exact comparison between the Hartree-Fock results of the
previous section and this effective magnetic field is not simple,
since the mean-field order parameters in general include many
terms that are coupling different orbital degrees of freedom
and are in general momentum dependent. However, we can
estimate the resultant effect on the spectrum in terms of the
gaps that open up in the surface states and conclude that Beff

can be on the order of up to a few tens of meV (as high as
50 meV). The exact value however depends on the interaction
strength that governs the size of the excitonic order parameter.

Since we are only interested in the impact of the spin spiral
on transport properties, we can neglect the forward scattering
components of Hm, which are the terms proportional to σz.
Therefore, we can now focus only on the backscattering part,
which written in terms of L↑(x) and R↓(x) reads

Hb
m =

∫
[dx]

Beff

2

∑
δ=±

[
L†

↑(x)R↓(x)eiqδ
cx + R†

↓(x)L↑(x)e−iqδ
cx

]
,

(18)

with qδ
c = ±qc. We further model the impurity Hamiltonian as

Himp =
∫

[dx]Vimp(x)[R†
↓(x)R↓(x) + L†

↑(x)L↑(x)], (19)

where the Gaussian random potential Vimp(x) satisfies
Vimp(x)Vimp(x′) = Mimpδ(x − x′), with · · · denoting the av-
eraging over the random potential. The impurity strength
Mimp = h̄2v2

F /(2πλmfp) here is defined by the mean free path
λmfp of the 2D QSH insulator bulk [40,45,46].

B. Schrieffer-Wolff transformation

We can now derive the combined effect of the random
impurities and the spin spiral arising from the excitonic con-
densate by performing a Schrieffer-Wolff transformation. The
full Hamiltonian with the two perturbations included is H =
Hel + δV , where δV = Himp + Hm. This can be transformed
into momentum space using

R↓(x) = 1√
L

∑
k

eikxR↓(k), L↑(x) = 1√
L

∑
k

eikxL↑(k),

(20)

such that we have kinetic energy diagonal in momentum space

Hkin =
∑

k

h̄vF k[R†
↓(k)R↓(k) − L†

↑(k)L↑(k)]. (21)

FIG. 5. Spin spiral assisted backscattering on nonmagnetic im-
purities. The initial right moving state with momentum k is first
scattered by the spin spiral to a left mover with momentum k + qc

and then forward scattered by an impurity to a left moving state with
momentum k + qc + q. At low temperatures, the leading scattering
processes will have the initial and final state in the vicinity of the
Fermi energy EF .

The impurity contributes arbitrary momentum shift in the
forward scattering process

Himp =
∑
k,q

Vimp(q)

L
(R†

↓(k + q)R↓(k) + L†
↑(k + q)L↑(k))

(22)

and the coupling to the spin spiral reads

Hm = Beff

2L

∑
k,δ

[
L†

↑
(
k + qδ

c

)
R↓(k) + R†

↓
(
k + qδ

c

)
L↑(k)

]
,

(23)

which changes a right to a left mover and vice versa together
with a momentum shift ±qc determined by the period of
the spin spiral. The forward scattering from Himp on its own
does not change the conductivity and, at low temperatures,
the initial and final states in backscattering process should
come from the vicinity of the Fermi level. Therefore, neither
Himp nor Hm in 1D can affect conductivity on their own.
However, a combined spin spiral and impurity scattering can
lead to the relaxation of the current through a second-order
process, an example of which is illustrated in Fig. 5. This is
a second-order effect, where the Hm first backscatters a state
with momentum k to k + qc (k − qc) and then Himp brings
the state back to the region near the Fermi level through
the forward scattering with the disorder potential. We see
that the scattering with a combination of the spin spiral and
nonmagnetic disorder can be viewed as the scattering with
an effective magnetic disorder, though the former pattern still
respects time-reversal symmetry on average. We term this
kind of the current relaxation mechanism as the spin-spiral
assisted backscattering.

The intuitive picture of spin-spiral assisted backscattering
presented above can be captured by the Schrieffer-Wolff trans-
formation. For simplicity, we first consider the noninteracting
case where Hel = Hkin:

H ′ = eSH e−S = Hkin + δV + [S, Hkin] + [S, δV ]

+ 1
2 [S, [S, Hkin]] + 1

2 [S, [S, δV ]] + · · · . (24)
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We can now choose S such that the transformed Hamiltonian
H ′ does not depend on perturbation couplings to linear order
by fulfilling the condition δV + [S, Hkin] = 0. Since Hkin is
diagonal in momentum space, we can write down the matrix
element Sαβ between the two eigenstates α and β of Hkin:

Sαβ = δVαβ

Eα − Eβ

. (25)

Substituting this back into H ′, we obtain

H ′
αβ = Eαδαβ + 1

2

∑
γ

(
δVαγ δVγ β

Eα − Eγ

+ δVαγ δVγ β

Eγ − Eβ

)
+ O(δV 3).

(26)

We can now consider how the original Hamiltonian acts
within the subspace of the three states presented in Fig. 5. In
the basis of � = [R↓(k), L↑(k + qc), L↑(k + qc + q)]/L, we
have

h(k, q)

= �†

⎛
⎜⎜⎝

h̄vF k 0 Beff/2

0 −h̄vF (k + qc + q) Vimp

Beff/2 Vimp −h̄vF (k + qc)

⎞
⎟⎟⎠�.

(27)

Using these matrix elements in combination with Eq. (26), we
find


h(k, q) = Beff

4

(
Vimp(q)

h̄vF (2k + qc)
− Vimp(q)

h̄vF q

)
. (28)

Now we need to take into account the conservation of energy
in the whole scattering process. The majority of the contribu-
tion in the low temperature limit is given by the states with
an identical energy for the initial and final states around the
Fermi level: with initial k ∼ kF , these energies are h̄vF kF and
−h̄vF (kF + qc − q), leading to q = −2kF − qc + k′. In such
limit, we have


h(k′) ≈ Beff

2

Vimp(−2kF − qc + k′)
h̄vF (2kF + qc)

. (29)

A similar procedure follows for the other possible scattering
processes and in the end the effective backscattering reads

Heff =
∑
k,k′,δ

[V δ (k′)L†
↑(k − 2kF + k′)R↓(k) + H.c.], (30)

where V ±(k′) = BeffVimp(−2kF ∓ qc + k′)/[2L2h̄vF (2kF ±
qc)]. The above results hold even in the interacting case,
provided that g2 = g4 [46]. While Eq. (30) looks very much
similar to Eq. (D5) in Ref. [46], the physical interpretation
is quite different. In Ref. [46], the spin spiral arises from
the RKKY coupling of nuclear spins, whereas in our case it
comes from the time-reversal-breaking excitonic condensate.
The nuclear spin spiral period is thus directly related to kF and
changes with chemical potential, while the excitonic spiral is
determined by the momentum space separation between the
electron and hole pockets in the band structure and is fixed.

Equation (30) can be transformed into real space by the
inverse Fourier transformation after which the Hamiltonian

reads

Heff =
∫

[dx][ξ (x)L†
↑(x)R↓(x) + ξ ∗(x)R†

↓(x)L↑(x)], (31)

with

ξ (x) = Beff
2kF cos(qcx) + iqc sin(qcx)

h̄vF
(
4k2

F − q2
c

) Vimp(x). (32)

The correlation function of ξ (x) averaged over the disorder
realizations can be deduced from the correlation of Vimp(x) to
be

ξ (x)ξ ∗(x′) = Mssδ(x − x′), (33)

with

Mss = Mimp
B2

eff

(
4k2

F + q2
c

)
2h̄2v2

F

(
4k2

F − q2
c

)2 , (34)

where we used the fact that cos2(qcx) = sin2(qcx) = 1/2.

C. Bosonization result for transport properties

With the effective spin spiral assisted backscattering
Hamiltonian derived, we can determine its impact on transport
properties using bosonization, which is especially well suited
for studying two-terminal transport in a disordered 1D quan-
tum system [40,45,46,51,60,76–80]. The chiral component in
Eq. (12) can be expressed in terms of the bosonic field (θ, φ)
[40,45,46,51,60,79,80]:

R↓(x) = UR√
2πα

eikF xei[−φ(x)+θ (x)],

L↑(x) = UL√
2πα

e−ikF xei[φ(x)+θ (x)], (35)

where UR/L is the Klein factor and α = h̄vF /
b is the short-
distance cutoff, which is associated with the high-energy
cutoff set by the bulk gap 
b. With the above definitions,
the helical Hamiltonian without Hm can be bosonized in a
standard way as

Hkin + Hee = h̄u

2π

∫
[dx]

[
1

K
(∂xφ)2 + K (∂xθ )2

]
, (36)

where the velocity u and the interaction parameter K are given
by

u =
[(

vF + g4

h

)2

−
(

g2

h

)2]1/2

,

K ≡
(

hvF + g4 − g2

hvF + g4 + g2

)1/2

. (37)

To find the bosonized form of the effective backscattering
Hamiltonian Heff averaged over disorder, we utilize the replica
method and, similarly to Ref. [46], we obtain the effective
backscattering action:

δSss

h̄
= − Mss

(2π h̄a)2

∫
u|τ−τ ′|>a

dx dτ dτ ′

× cos[2φ(x, τ ) − 2φ(x, τ ′)]. (38)

In the absence of disorder, so long as the Fermi level is not
placed within the gap (see in Fig. 4), the Hamiltonian Eq. (12)
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is similar to the edge of the time-reversal invariant QSH in-
sulator, which has a quantized zero-temperature conductance
G = G0 ≡ e2/h (equivalently, resistance R0 = h/e2) per edge.
Following the results of Ref. [40], we find the increase of
the resistivity Rss due to the combination of bulk spin spiral
and nonmagnetic disorder depends on the relative magnitude
of three possible physical cutoffs. These cutoffs are the edge
length L, the thermal length λT ≡ h̄u/(kBT ), and the localiza-
tion length ξss. We define the dimensionless coupling constant,

Dss ≡ 2aMss

(π h̄2u2)
, (39)

and u = vF /K . If the edge length is the shortest among all
these scales, L < λT , ξss, the correction to edge resistance, is

δRss(L) ∝ R0
MssL

h̄2v2
F

L2−2K = R0
πDss

2K2

(
L

a

)3−2K

. (40)

Secondly, in the limit of high temperatures where λT < L, ξss,
we get

δRss(T ) ∝ R0
MssL

h̄2v2
F

λ2−2K
T = R0

πDssL

2K2a

(
KkBT




)2K−2

. (41)

Finally, if ξss < L, λT , the RG flow reaches the strong cou-
pling regime, so the edge states are gapped, displaying a
thermally activated resistance:

δRss(T ) ∝ R0
πDssL

2K2a
e
ss/(kBT ), (42)

with the gap 
ss = 
(2KDss)1/(3−2K ).
The scaling with respect to the length of the edge and

the temperature of the sample can in principle be measured
experimentally and be used to obtain the K parameter of the
edge state. However, currently available data is insufficient to
arrive at such an estimate.

IV. CONCLUSION

In conclusion, we provided a mechanism for the break-
down of the perfect conductance quantization in WTe2 due
to the formation of a time-reversal-breaking excitonic con-
densate with a bulk spin spiral order. Through Hartree-Fock
calculations we showed the difference between the time-
reversal-preserving and -breaking excitonic condensates that
can form in WTe2 depending on the circumstances. Based
on the mean-field results, we performed quantum transport
calculations for a finite width ribbon with disorder based on a
lattice model. We demonstrated that, while the time-reversal-
preserving excitonic insulator is topological and thus exhibits
robust conductance quantization of edge state transport, the
time-reversal-breaking condensate deviates from e2/h per
edge conductance in the presence of nonmagnetic static disor-
der. Our results are in good agreement with the experimentally
observed edge-length scaling of resistance with results close
to quantized below 100 nm with the deviation increasing
substantially for longer edges.

To provide some additional intuition for the mechanism
behind the breakdown, we then supplemented these simula-
tions by analytical edge transport calculations in the Luttinger
liquid picture. Similarly to the previous work on the effect

of RKKY nuclear spin spiral on helical edge states [46], we
used the Schrieffer-Wolff transformation to capture the effec-
tive spin-spiral assisted backscattering from the nonmagnetic
impurities. This provides a qualitative understanding of the ef-
fective backscattering in disordered excitonic condensate with
spin spiral order. Finally, by using bosonization, we determine
the effect of this backscattering process on the transport prop-
erties of the system, determining the scaling dependence of
resistance on length, temperature, and interaction strength.

Our work thus provides a new mechanism which possibly
contributes to the lack of perfect quantization in WTe2 and
paves the way for bridging the bulk and edge transport the-
ory. It also encourages further experimental investigation to
verify the presence of the spin spiral excitonic condensate.
For example, application of external magnetic field in the spin
spiral phase should lead to the appearance of a charge density
wave state that could be detected using scanning tunneling
microscopy (STM). Moreover, since the direction of the spin
spiral is directly determined by the crystalline axes, its im-
pact on the edge state properties would be directly dependent
on the edge orientation with respect to the spin spiral. The
spatial periodicity of the spin spiral may also contribute to
the modulation of the edge states, which could be observed
using STM in quasiparticle interference patterns [81]. These
and other potential experiments are necessary to verify the
true nature of the ground state of WTe2, providing exciting
new research directions. Our results can also be generalized
to transport in many other quantum physics systems with
topologically protected edge states such as twisted multilayer
graphene [82].

ACKNOWLEDGMENTS

This work was supported as part of the Center for Novel
Pathways to Quantum Coherence in Materials, an Energy
Frontier Research Center funded by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences (Y.-Q.W.
and J.E.M.). M.P. was supported by the Quantum Science
Center (QSC), a National Quantum Information Science Re-
search Center of the U.S. Department of Energy (DOE). M.P.
received additional fellowship support from the Emergent
Phenomena in Quantum Systems program of the Gordon and
Betty Moore Foundation.

APPENDIX: ADDITIONAL DETAILS OF MEAN-FIELD
CALCULATION AND TRANSPORT SIMULATION

We perform the Hartree-Fock calculations using the lattice
version of the model in Eq. (1). Before any band folding or
inclusion of interaction effects takes place, the model consists
of four bands, corresponding to hybridization of two orbital
and two spin degrees of freedom. With the parameter set listed
below Eq. (1) the system is in semimetallic phase and the
corresponding band structure in the region of interest inside
the Brillouin zone is presented in Fig. 6(a). The horizontal
dashed line indicates the position of the Fermi level, which
demonstrates the presence of both electron and hole pockets,
with the electron pocket centered around points ±qc along
the � − X̃ direction of the original Brillouin zone. As we
are looking for mean-field order parameters that couple states
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(a) (b) (c) (d)

FIG. 6. (a) Band structure of Hamiltonian (1) before folding. The position of the electron pocket is indicated by the line at qc and the
folding is performed across the qc/2 line. (b) Band structure after folding, with X point being the qc/2 point of the original band structure.
(c) The phase diagram of the excitonic phases with respect to the interaction strength, separated into spin density wave and spin spiral states
characterized by densities ρSDW and ρSS given by Eq. (9). The inset shows overall excitonic condensate order parameter 
exc. (d) Transport
simulation for ribbons of 200 nm length and increasing width in the time-reversal invariant case. Results are averaged over 100 disorder
realizations.

separated by momentum qc, it is convenient to perform the
calculations using the scheme with bands folded across the
vertical dashed line that crosses the qc/2 point as indicated in
the figure. The qc/2 point then becomes the X point of the
folded Brillouin zone. The band structure after folding, which
is the starting point for the Hartree-Fock calculation, is shown
in Fig. 6(b). We now clearly see the overlap of the electron and
hole pockets, which after folding both end up at the � point.
With such a setup we perform the self-consistent calculation
using the prescription given in the main text.

We characterize the results of the self-consistent calcula-
tion using quantities given by Eqs. (7) and (9), which show
the presence of the excitonic condensate and its spin charac-
ter, respectively. According to our results, when time-reversal
symmetry is not enforced, the calculation will always generate
time-reversal-breaking terms that lead to either spin density
wave or spin spiral state whenever the excitonic condensate
is formed. The phase diagram depends on the strength of
interaction, characterized by Ṽqc , and is shown in Fig. 6(c). It
consists of two regions, separated by a small section which
does not host the excitonic phase. Of the two regions the
much more pronounced one describes the spin spiral phase,
which is the focus of this work. It spans over a broad range of
interaction strengths, suggesting its potential stability. On the
other hand, the spin density wave phase occupies only a small
region of interaction strength space and requires substantially
weakened Coulomb interaction. In the inset, we demonstrate
that both of these phases are excitonic condensates, which are
captured through the order parameter 
exc. We do not observe
any excitonic phases outside of the regions in which either
spin spiral or spin density wave states are present. As the
starting point for our calculations is a gapless semimetallic
phase, the exciton condensation occurs as long as there is

energy gain coming from forming the electron-hole pairs. This
is in contrast to a more common scenario in which excitons
are formed out of electron and hole states at the same mo-
mentum, separated by the material band gap. In that case, for
the condensation to occur the exciton binding energy has to
be larger than the band gap. Nevertheless, we can estimate
the energy gain of the exciton condensate with respect to the
semimetallic phase to be on the order of 110 meV, with the
exact value dependent on the strength of interaction. While
we have multiple different order parameters, we can also
estimate the binding energy of excitons by the largest value
of the excitonic order parameter. In the case of spin spiral
state chosen for the quantum transport simulation, this value
is about 36 meV. Both of these energy estimates suggest the
relative stability of the excitonic condensate in this system.
When time-reversal symmetry is enforced, a single excitonic
dome is observed. The phase diagram for that scenario is
presented in the Supplemental Material of Ref. [65].

We also present additional transport results in the time-
reversal-preserving case in Fig. 6(d). These results demon-
strate that when the time-reversal symmetric excitonic con-
densate is present in the system, as the width of the ribbon
gets increased, so does the disorder strength for which the
conductance quantization breaks down. This indicates that the
backscattering necessary for this breakdown does not occur
within the same edge, but requires coupling between the op-
posite edges. This could be compared to a percolationlike
transition, which requires sufficient disorder strength for a
conducting path to connect the opposite edges of the rib-
bon. On the other hand, in the time-reversal-breaking spin
spiral state, the backscattering occurs within the same edge,
so increasing the ribbon width does not change its transport
characteristics.
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