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Quantum dots are frequently used as charge-sensitive devices in low-temperature experiments to probe electric
charge in mesoscopic conductors where the current running through the quantum dot is modulated by the nearby
charge environment. Recent experiments have operated these detectors using reflectometry measurements up
to gigahertz frequencies rather than probing the low-frequency current through the dot. In this work, we use
an on-chip coplanar waveguide resonator to measure the source-drain transport response of two quantum dots
at a frequency of 6 GHz, further increasing the bandwidth limit for charge detection. Similar to that in the
low-frequency domain, the response is here predominantly dissipative. For large tunnel coupling, the response is
still governed by the low-frequency conductance, in line with Landauer-Biittiker theory. For smaller couplings,
our devices showcase two regimes where the high-frequency response deviates from the low-frequency limit and
Landauer-Biittiker theory: When the photon energy exceeds the quantum dot resonance linewidth, degeneracy-
dependent plateaus emerge. These are reproduced by sequential tunneling calculations. In the other case with
large asymmetry in the tunnel couplings, the high-frequency response is two orders of magnitude larger than the
low-frequency conductance G, favoring the high-frequency readout.
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I. INTRODUCTION

The ability to detect single electrons in the solid state is
useful for a variety of applications, including spin qubit read-
out [1-4], electrical current and capacitance standards [5,6],
studying Cooper pair breaking [7-9], single-shot photode-
tection [10-13], and nanothermodynamics and fluctuations
[14-19]. While many methods exist to detect charge, one of
the main ways is to utilize quantum dots (QDs). These systems
make excellent charge detectors due to their high sensitivity
and well-established transport theory [20,21], allowing detec-
tors to be made predictable with a well-understood operation
principle. Originally, measurements were performed at DC,
relying on a difference in current for the readout, resulting
in a bandwidth up to some kilohertz [6,22]. In the last two
decades, the readout methods have moved towards measuring
the reflected power in a high-frequency tank circuit with reso-
nant frequency in the 100 MHz to 1 GHz range. This results in
bandwidths in the megahertz range, allowing for microsecond
time resolution [23-25]. The response of the system in these
studies is still governed by the low-frequency response of
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the system; that is, the admittance Y (w) is equal to the DC
conductance G of the system. In this paper, we increase the
QD sensor frequency to the 4-8 GHz frequency range, where
the cavity photon energy /iw is greater than the thermal energy
kT [26]. This opens up an avenue to increase the bandwidth
correspondingly by an order of magnitude, possibly yielding
a time resolution sufficient to probe the electron position in
double-QD systems within the recently achieved coherence
times [27,28]. Pioneering works at these frequencies have ob-
served good agreement with the low-frequency result [29,30]
or have considered primarily the dispersive effects motivated
mostly by quantum capacitance effects [31]. In this paper, we
focus on the dissipative part that yields a stronger response,
making it useful for charge readout [26]. We present exper-
imental results for two devices and show for both of them
that at sufficiently high tunnel couplings such that the states
are lifetime broadened, I' > kT, the low-frequency result of
Y (w) = G still applies. However, when the device is tuned
to the thermally broadened limit where the tunnel couplings
I' < kT, the measured admittance is qualitatively different
from the DC conductance, displaying a linewidth of 2w in
the QD level tuning and a factor of 2 difference in admittance
depending on the direction of the level shift of the quantum
dot relative to the leads e, attributed to spin degeneracy.
These results are well captured by sequential tunneling the-
ory, directly evaluating the admittance for a QD subjected to
a time-periodic drive [32], or using P(E) theory, in which
the admittance is inferred from the absorption in the cavity
[33,34]. Last, we show, in line with Ref. [26], that in the other
device with asymmetric tunnel couplings, the AC response
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FIG. 1. (a) A schematic diagram of the studied device. A microwave resonator (orange) is driven with a high-frequency signal (RF) through
the coupling capacitor Cc, and the reflected amplitude A and phase ¢ are measured. A QD with tunnel couplings I'r and I'L connects to the
resonator via the source contact. The DC electrical current /5p is measured from the drain contact, and DC voltage bias Vsp is applied via the
resonator and a gate voltage V; via a separate gate electrode. (b) The equivalent lumped-element LC circuit for the device with the complex
admittance Y (w) arising from the QD. (c) An optical micrograph of the device. The microwave resonator and DC lines are defined using a Nb
etch-back method. The DC lines are capacitively shunted towards the resonator with a 30 nm aluminum oxide—50 nm aluminum stack (white
area). The contacts near the QD, visible in the scanning electron micrograph in the inset, are defined using EBL and deposited using Ni/Au
evaporation. (d) A close-up of (c) showing the InAs nanowire QD device. (e) The measured detector current Isp as a function of bias and
gate voltages Vsp and V. (f) Measured reflection coefficient R and phase ¢ as a function of frequency f with the QD in Coulomb blockade
(open circles) and conducting at zero bias voltage (solid circles) at Vg = 4.72 V. Solid lines are fits to Eq. (1) with f, = 6.315 GHz, k¢ /27 =
22.3 MHz, and kop = 0 for Coulomb blockade and xqp /2w = 2.1 MHz for the QD in resonance.

remains large, while the DC transport is suppressed. Here
the response of our device with lifetime broadening falls into
a regime where neither noninteracting scattering theory nor
sequential tunneling models are applicable.

II. DEVICE CONFIGURATION

The main device used to perform measurements is illus-
trated schematically in Fig. 1(a). The device builds on a
transmission line resonator, shown in orange, which for the
fundamental mode is equivalent to the LC circuit in Fig. 1(b).
The right end of the resonator is connected to an input line
via a coupling capacitor Cc, which allows the measurement
of the amplitude and phase of a reflected signal. The left end
of the resonator, on the other hand, couples to a QD via the
right junction capacitance. This configuration makes the QD
source-drain transport admittance Y (w) appear directly on the
LC resonator. At low drive frequency w = 2x f, this admit-
tance is given by just the DC conductance G, i.e., Y (w) = G,
and the QD gives rise to dissipation in the resonator.

The reflection coefficient of the input port is given by (see
Appendix A)

_ (kgD + Ki)kc
(«/2)* + (@ — w; — 8w p)*’

ey

where w, = 1/+/LC is the resonance frequency, k = koD +
ki 4+ k¢ the sum of all the couplings defining the linewidth
of the resonance, «; is the internal losses, k¢ = ZowZCé /C is
the input coupling [35], and «kop = Re[Y (w)]/C is the QD
coupling strength. The term kqp is directly proportional to
the admittance Re[Y (w)]; determining «gp from a change
in the measured reflection coefficient R thus allows us to
determine the dissipative part of the QD response Re[Y (w)].
On the other hand, Im[Y (w)] gives rise to a dispersive shift
dw gp = Im[Y (w)]/2C in Eq. (1), which results in a change in
the resonance frequency. These dispersive shifts are typically
small, of the order of 10~ 3w,, which is also the case for our
devices, and have been studied in detail for QDs coupled
capacitively via a gate electrode [31].

To measure the DC conductance G of the QD at the same
operation point as Y (w), we apply a DC bias voltage Vsp to
the voltage node point in the middle of the A /2 resonator such
that it does not disturb the resonance but instead appears at
the source contact of the QD [12,31]. The current Isp, mea-
sured from the drain contact, then yields the conductance G =
dIsp/dVsp and enables the comparison of this low-frequency
transport result to the high-frequency admittance Y (w). These
DC lines, in addition to a gate line with applied gate voltage
Vs to change the electron number in the QD, are shunted
with a large capacitor to ground to prevent microwaves from
leaking out from the lines.
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The physical realization of the device is presented in
Fig. 1(c). The coplanar waveguide, highlighted in orange, is
a 9.86 mm long metallic strip with a width of 10 ym and
a gap of 5 um to the ground plane. Based on Ref. [35],
we estimate the lumped-element capacitance C = 765 fF and
inductance L = 871 pH, giving a characteristic impedance
Zy =1 /24/L/C = 53 Q, where the factor of 7 /2 appears
from the mapping from distributed to lumped elements [35].
An RF port is connected to the resonator with a 400 um
long two-finger geometry capacitor which defines the input
coupling kc. The QD forms in an epitaxially grown InAs
nanowire [see Fig 1(d)] by altering the growth between zinc
blende (ZB) and wurtzite (WZ) crystal phases [36]. The WZ
segments have a conduction band offset of 135 meV compared
to the ZB segments [37], forming tunnel barriers, and a ZB
segment between the barriers defines a QD with a length
of 130 nm and a diameter of 80 nm [38]. The location of
these barriers is discerned by selectively growing GaSb on
the ZB segments, which highlights the features of the QD
[39]. The offset between ZB and WZ allows the atomically
sharp definition of barriers, leading to a well-defined QD.
The DC lines are capacitively shunted by growing a 30 nm
thick aluminum oxide layer with atomic layer deposition and
evaporating a 50 nm thick aluminum film in the light-gray
area in Fig 1(c). Additional inductive filtering is added to all
the DC pads as well as the midpoint connections to reduce
RF leakage [40]. The device is bonded to a printed circuit
board and measured in a dilution refrigerator at an electronic
temperature of 7 = 50 mK at base temperature. Figure 1(e)
shows the measured Coulomb diamonds exhibiting a charging
energy Ec = 3.5 meV and excited states with energies around
300 ueV. The lever arm to the gate, o« = 0.03 eV/V, is also
determined.

Figure 1(f) presents the resonator response with the QD in
Coulomb blockade (CB) and in the conduction resonance at
Ve = 5.9V, which is attained with an input power P = —130
dBm to the resonator. With the QD transport suppressed in
CB (open circles), we determine the bare resonator proper-
ties by fitting these data to Eq. (1) with kop = 0 and Swqp
= 0. We obtain the resonance frequency f, = 6.318 GHz
and determine the coupling strengths k¢ /2w = 22.3 MHz and
k;/2m = 0.7 MHz. The phase response (cyan circles) shows a
27 winding, characteristic of an overcoupled resonator. Next,
the QD is tuned to resonance, and the measurements are
repeated. The corresponding data (solid circles) demonstrate
that the linewidth of the resonance increases due to additional
absorption in the QD. The reduction in amplitude also re-
flects the increase in total dissipation in the resonator by «qp.
Keeping the resonator parameters acquired from the previous
data set fixed, the fit to Eq. (1) is now repeated, providing
kop/2m = 2.1 MHz and vanishing Swqp.

III. COMPARISON OF CONDUCTANCE AND
HIGH-FREQUENCY ADMITTANCE

Now we turn to comparing the low-frequency conduc-
tance G and the high-frequency response Y (w) presented in
Figs. 2(a) and 2(b) for a lifetime-broadened resonance at Vg =
6.7 V. The QD conductance G has a peak width of 60 yeV >
4 kT; hence, a fit (solid line) to Landauer-Biittiker theory [21]
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FIG. 2. (a) The DC conductance G measured at zero bias (Vsp =
0) as a function of the level shift € = —a(Vg — Vo) for the QD
resonance at Vgo = 6.78 V without applying the RF drive. An ad-
ditional gate voltage Vg, = 0.5 V is applied to the two remaining
gate contacts in order to tune the tunnel couplings of the single dot
slightly (set to 0 V in subsequent measurements). The solid purple
line shows a fit to Landauer-Biittiker (LB) theory, Eq. (B17), while
the solid black line indicates the linewidth of a thermally broadened
peak (4 kT). (b) The admittance data Re[Y (w)] around the same
resonance as in (a). The solid orange line is the finite-frequency
Landauer-Biittiker theory in Eq. (B15). (c) and (d) Data for another
resonance at Vgo = 4.72 V. The fit in (c) is done using Eq. (C12),
and in (d) the dashed orange line is a sequential tunneling (ST)
calculation of Eq. (C13) based on the formalism in Ref. [32], while
the dashed black lines indicate the photon energy. (e) and (f) Band
diagrams with the two energy level shift ¢ directions indicated in
(d). The lines indicate the photon energy (dotted red), the level shift
¢ due to the applied gate voltage (dashed green), and the transport
processes due to photon-assisted tunneling (solid orange upwards
arrows) and regular tunneling (solid purple horizontal arrows). The
number of orange arrows specifies the number of electrons which
can participate in the corresponding tunneling process between the
N = 1and N = 2 electrons on the dot.

yields the tunnel couplings I't, = 6 ueV and I'r = 55 ueV.
In Fig. 2(b) the measured admittance Re[Y (w)] = kgpC is
shown for the same resonance with an input power P = —120
dBm. This admittance response is identical to the DC con-
ductance G within 30%, as expected from the low-frequency
prediction of Y (w) ~ G. A numerical calculation based on
Landauer-Biittiker theory (orange line) for this system (see
Appendix B and Ref. [41]) also predicts the equivalence
Re[Y (w)] = G for this configuration. The deviation from the
theoretical prediction could arise from spin degeneracy effects
similar to those in Fig. 2(d) or could be due to a spurious
coupling between the resonator and a nearby charge state [42].

The energy of a single microwave photon is fiw, = 26 peV;
hence, in the configuration in Figs. 2(a) and 2(b) the lifetime
broadening exceeds the photon energy. With a reduction in
the gate voltage, the tunnel coupling decreases, reducing the
lifetime broadening. This allows us to make the linewidth
of the DC conductance peak smaller than the photon en-
ergy. Tuning from Vi = 6.78 V to V5 =4.72 V results in a
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thermally broadened peak, as shown in Fig. 2(c). Note that
here the clustering of data points is likely a consequence of
a noisy voltage source because it is operated at its resolution
limit. The Landauer-Biittiker theory fit again reproduces the
results with I', = 0.25 ueV. As the linewidth is now set by
temperature and not the tunnel couplings, the larger coupling
may vary from I'r = 0.5 to 6 ueV without disrupting the fit
to the data. Now the measured Y (w), presented in Fig. 2(d),
shows a broader peak with a qualitatively different peak shape
than the conductance has; hence, the equivalence Y (w) = G is
broken. The response has two plateaus at 3.6 and 7.2 uS, ex-
tending out by ~30 ueV in either direction from the midpoint
and matching the photon energy in line with the DC response
studied in Ref. [43]. The broadening of Y (w) arises since with
the energy of the photon, the system overcomes an additional
charging energy cost up to fiw,, as depicted in Figs. 2(e) and
2(f).

The admittance for each level shift polarity within the
energy window is constant. This admittance is directly propor-
tional to the tunneling rate due to photon absorption, which is
proportional to the number of available states in the metallic
leads. Thus, tuning the level shift within the energy window
probes changes in the density of states in the leads. The flat
plateaus observed in Fig. 2(d) therefore indicate a constant
density of states in the leads, as expected for a metal within a
narrow energy range [44]. The factor of 2 difference between
level shift directions arises from the spin degeneracy in the
QD. The photon absorption rate is two times higher for
tunneling out of the QD (which applies for € > 0) compared
to tunneling into the QD (which applies for € < 0). As the
Landauer-Biittiker model [solid line in Fig. 2(d)] does not
account for spin effects in the quantum dot system the pre-
dicted response is inaccurate, capturing only the broadening
of the line due to the photon energy and failing to capture
the two plateaus that appear in the data. Instead, a sequen-
tial tunneling (ST) model with either time-dependent voltage
drive [32] or P(E) theory [33,34] describes the full response
more accurately in this regime. The two ST models agree at
weak resonator-QD couplings, but as the coupling increases
(e.g., with increasing cavity impedance), the P(E) theory pre-
dicts spontaneous emission events which further change the
transport. See Appendixes C and D for details. Here we have
fitted the value of the larger tunneling rate to I'r = 1.65 eV,
which sets the overall height of the response. The spin de-
generacy shifts the resonance point and the total height of the
resonance peak by a small amount [see Eq. (E6)]; thus, the
DC fitting parameter values were adjusted to I't, = 0.25 peV
and ¢ AVgo = —1.5 peV.

Figure 3 extends the measurements of Figs. 2(c) and 2(d)
as a function of drive power P. At low drives P < —100 dBm,
the linewidth of Y (w) is essentially set by 2%iw,, while the
linewidth of G remains thermally broadened for P < —120
dBm. At high power additional broadening is observed in
both the DC and RF results, in line with the previous work
in Refs. [45,46]. The amplitude of the microwave oscillations
inside the resonator is estimated by following the steps in
Refs. [47,48], yielding the microwave amplitude
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FIG. 3. (a) The DC conductance and (b) reflection coefficient of
the microwave cavity are measured simultaneously as the microwave
power to the resonator input is changed. (c) The measured linewidths,
along with a dashed black line indicating 2%w, and a solid black line
corresponding to the calculated microwave amplitude in Eq. (2).

With characteristic impedance Zy = 7 /2,/L/C = 53 €2, qual-
ity factor Q = w, /k = 262, and external quality factor Qcx; =
270, we obtain the solid line in Fig. 3(c). As the voltage
amplitude Vyrw enters the high-power regime, the broadening
of the RF and DC responses both arise from the amplitude of
the microwave signal. For the microwave response, the bound-
ary point P &~ —100 dBm between the high- and low-power
regimes is set by the condition eVyw = hw,, i.e., whether the
energy related to the amplitude or single photon is dominant.
Howeyver, the width of the DC feature continues to be defined
by the drive amplitude until the power P = —120 dBm, at
which point the energy corresponding to the drive amplitude
becomes smaller than the thermal energy, i.e., eVyw < kT.
The measurements of Y (w) performed in the measurements
in Fig. 2 were performed at P < —120 dBm, allowing high-
power effects to be ignored in the analysis. Note also that the
DC measurements in Fig. 2 were performed without applied
microwave drive, although applying the drive does not change
the DC response at this power level.

Figures 4(a) and 4(b) repeat the study in the lifetime-
broadened case for a second device. Now we have a much
more asymmetric device with fitted values of I'r, = 1.4 peV
and I'r = 357.5 peV, reaching again the equivalence Y (w) =
G, valid in both experiment and theory. Tuning the QD to a
lower gate voltage Vg, = 6.73 V [Figs. 4(c) and 4(d)] again
has the effect of reducing the tunnel barriers such that the
conductance G is suppressed by two orders of magnitude. This
results in a correspondingly smaller I'L = 6.7 neV, while the
right barrier 'y = 80 ueV still provides a lifetime broadening
to the system. In the measured high-frequency response, we
observe a peak with the same linewidth as the DC feature but
with an amplitude value of ¥ (w)|c—o = 3.6 uS, which is two
orders of magnitude greater than the peak value of the DC
conductance of 30 nS. In this case, Landauer-Biittiker theory
still predicts Y (w) = G. Therefore, the linewidth of ¥ (w) in
Fig. 4(d) is reproduced correctly, but the predicted overall
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FIG. 4. The same measurements as in Fig. 2 for a second device
at (a) and (b) Vgo = 9.4 V and (¢) and (d) Vg9 = 6.4 V. For the second
QD, the charging energy and lever arm are £ = 2 meV and o =
0.04 eV/V.

magnitude is two orders of magnitude lower than the mea-
sured response. The sequential tunneling calculations miss
lifetime-broadening effects and thus does not replicate the
linewidth. The predicted peak admittance of Y (w) =30 u S,
on the other hand, predicts qualitatively correctly that the
RF response is stronger, although the predicted value is an
order of magnitude larger than the measured one. With these
arguments and findings, we interpret that the correct picture to
describe is closer to the sequential tunneling case in Ref. [49]:
Here the junction capacitances determine how the microwave
drive is divided between the junctions, independent of the
junction transparency. We take the two junction capacitances
to be comparable as they depend inversely on the barrier
thickness compared to the much stronger exponential depen-
dence of the tunnel couplings. Also, based on the Coulomb
oscillation period, the gate capacitance is much smaller than
the junction capacitances. Therefore, the AC drive is evenly
divided across the two junctions and gives rise to considerable
drive and dissipation at the transparent junction. This is in
stark contrast to DC transport, in which most of the voltage
signal is across the opaque barrier. Such an enhanced RF
response was observed before both in single-dot devices [26]
and for double quantum dots [31,50] in which one dot in CB
blocks transport from one side. However, because our device
operates in the lifetime-broadened regime, a more advanced
theory combining the strong tunnel coupling with spin and
charging effects [49] that is beyond the scope of this work
would be needed to fully explain the response.

IV. CONCLUSIONS

In summary, we studied the high-frequency source-drain
response of a quantum dot. We showed experimentally that
the low-frequency result of Y (w) = G holds for quantum dots
tuned to sufficiently large tunnel couplings in line with the
slow-drive limit. However, when the tunnel couplings are

tuned to be smaller than the photon energy, the measured
linewidth of the admittance Y (w) is set by the photon energy.
This response is well described by sequential tunneling theory,
taking into account spin effects of the quantum dot, which are
not properly accounted for in Landauer-Biittiker formalism.
Additionally, the low-frequency limit does not hold when the
drive amplitude is made sufficiently large or there is large
asymmetry in tunnel couplings of the junctions. For the highly
asymmetric case, it was also shown that the admittance Y ()
can be orders of magnitude larger than the conductance G,
indicating a potential benefit of measuring at high frequencies,
as the readout strength remains large even for weakly coupled
quantum dots.
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APPENDIX A: LUMPED-ELEMENT CIRCUIT AND
MICROWAVE REFLECTION PROBABILITY

The QD-resonator system, linearly driven at a frequency w
close to resonance, is modeled as a lumped-element circuit, as
shown in Fig. 1(b). The resonator is described by an induc-
tance L and capacitance C, and internal losses are accounted
for by a resistance R;. The QD has a frequency-dependent
complex admittance Y (w). The resonator is coupled to an
input transmission line, with impedance Zy, via a coupling
capacitance Cc. The total impedance Z(w) of the circuit is
then given by

1 1\
iwCe iowL
(ATD)

Writing o, = 1/+/LC, ki = R;/C, kgp = Re[Y (w)]/C, and
dwgp = Im[Y (w)]/(2C) and using the fact that o ~ w,, we
can write the real and imaginary parts of the impedance as

7o — (kgD + Ki)/(4C)
R =
(kop + ki)*/4 + (0 — o + Swgp)?
< 1 (w — @ + Sawgp)/C )
Z=— + .
oCc  (kgp + ki)*/4 + (0 — @ + Swgp)?
(A2)

The reflection probability R for a coherent microwave drive
tone at w is given by

2 47r 7

Z(w) — Z
- ‘ZECU; — ZZ (G + 20 + zr (A3)
and the corresponding reflection phase is
¢ = atan(—zzlzO ) (A4)
+7r-7¢
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FIG. 5. Sketch of the quantum dot showing, in addition to Fig. 1
in the main text, the tunnel junction capacitances C. and Cr and the
applied potential V (¢) on the right contact and induced potential U (¢)
in the QD.

For the reflection probability, inserting Zg and Z; into
Eq. (A3), writing the -capacitive coupling rate kc =
Zoa)fCé/C, and neglecting terms proportional to the small
parameter Ccw,Zy < 1, we arrive at

_1_ (kgD + Ki)kc
(k/2)? + (0 — &F + Swgp )’

(A5)

where we introduced the total ¥ = kgp + ki + k¢ and @} =
w,(1 + Cc/C), the capacitive coupling renormalized reso-
nance frequency. By noticing that Cc/C < 1 we can put
! ~ o, and we then arrive at Eq. (1) in the main text.

APPENDIX B: LANDAUER-BUTTIKER FORMALISM

An extended sketch of Fig. 1(a) is presented in Fig. 5. It in-
cludes junction capacitances and potentials. In this Appendix,
we calculate the QD admittance within the Landauer-Biittiker
formalism. With this approach, the QD admittance Y (w) is
evaluated within a time-dependent scattering approach, ne-
glecting Coulomb blockade effects but fully accounting for
the current conservation at the QD via the flow of dynamic
screening currents. Our result is an extension of the discussion
presented by Prétre, Thomas, and Biittiker [41], here including
QD-lead capacitive couplings. We therefore present only the
main steps in the derivation.

The starting point for the calculation is the energy-
dependent, symmetric scattering matrix S(E) of the QD,
effectively assuming a single transport channel, given by

r(E)

_ t'(E)
S(E) = (t(E) r/(E)), (B1)

where the reflection and transmission amplitudes are given by
the Breit-Wigner expressions

i,
FE)=1— : ,
E —e+i(I'L +Tr)/2
F(E) =1 - T ,
E—e+i(TL +Tr)2
HE) = {'(E) = VILTR (B2)

E—e+i(L+Tr)/2

Here € = ¢4 — oV is the energy of the discrete QD level,
where ¢4 is the bare dot energy and o« = eCg/(CL + Cr +
Cg) is the lever arm for the gate potential Vi;. Unprimed
(primed) amplitudes correspond to particles incident from the
left (right) lead.

We consider the case with a pure AC voltage V(¢) =
V cos(wt) at contact R, while contact L is grounded and the
gate contact is kept at the constant potential V corresponding
to the experimental settings. The case with a pure DC voltage
bias is discussed below. As a result of the oscillating potential
V(t), a potential U (¢) is induced on the QD. The effect of
the oscillating potentials is that electrons can pick up or loose
quanta of energy /iw when scattering at the QD.

Our focus is on the regime of weak microwave drive, where
the response is linear in the potentials. In this regime V <
hw, and only a single quantum can be picked up or lost. As a
consequence, the time-dependent particle current at lead L/R
has only a single Fourier component,

LR(t) = (@)™ + L (@)e™™. (B3)

The current component Iy r(w) can be expressed in terms
of the scattering amplitudes in Eq. (B2) and the lead Fermi
distribution f(E) as

2
IL(w) = % / dE{—[1 — r*(E)r(E + lho)|U (w) — t™(E)t’

X (E 4+ ho)[V(w) — U(w)]}F(E, ) (B4)
and
2
o) = f dE([1 = F*(EY (E + he)l[V(®) — U ()]
+ *(EY(E + hiw)U ()} F(E, o), (B5)
where
FE) — F(E + hw)
F(E, )= o , f(E)ZW,
(B6)

and we have introduced the Fourier components V (w) and
U (w) of the potentials V (¢) and U(¢). We note that V(w) =
V/2, independent of w, but the frequency-dependent notation
is kept for convenience.

Inserting the scattering amplitude expressions in Eq. (B2)
into the current components in Eqgs. (B4) and (BS), we can
write

ihw
IL(w) = G(a))[F—RU(a)) - V(w)} (B7)

and

R(w) = G(w)[iﬁ—:uU(a)) + (1 — iﬁ—f)V(a))}, (B8)

where

Gw) = % / dET(E, »)F (E, ») (B9)
and
T(E, w)
Iilx 1
T E—e+i(TL+TR)/2E + hiw—e€ —i(TL +Tr)/2’
(B10)
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For nonzero frequencies, the particle currents flowing into
the QD typically do not add up to zero, i.e., I (®) + rR(w) #
0. As a consequence, there is nonzero charge Q(t) on the QD
dot, which induces AC screening, or displacement, currents
flowing between the QD and the leads L and R as well as the
gate G. The total screening current into the QD is given by
I (t) = dQ(t)/dt, with the charge determined from classical
electrostatic considerations, via the potentials V (¢) and U (¢)
and the capacitances Cr, Cg, and Cg. This gives the screening
current Fourier component /() as

Iie(@) = —iw[-U(0)(CL + Cr + Cg) + V(0)CR]

The induced QD potential U (w) can then be determined using
the condition that the total current flowing into the dot is
conserved,

(B11)

IL(0) + r(®) + Ie(w) =0, (B12)
giving
Uw) = rR(AG(w) + CRTL) V(o).
hG(w)(I'L + T'r) + (CL + Cr + Co)IRIL
(BI13)

We note that in the limit @ — oo, we have G(w) — 0 and
U(w) = Cr/(CL + Cr + Cg)V (w), which is the purely capac-

itive voltage division. The sought admittance is given by

_ k(@) — ioCR[V (w) — U(w)]

B V(o)

the ratio of the total current, i.e., the sum of the particle
and screening currents, flowing into the QD from contact R
and the potential at R. Inserting the expression for Ir (®) in

Eq. (B8) and U (w) in (B13), we arrive at

iw[hG(w) + 'LGrI[7G(w) + T'r(CL + Co)]
TLIR(CL + Cr + Co) + AG(@)(TL + Tr)

(B15)

Y(w)

, (B14)

Y (0)=G(w)—

This is the expression used for the numerical evaluations in
the main text.

For the lifetime-broadening cases I'L + I'r > kg7, effec-
tively taking 7 = 0, we can evaluate the integral in Eq. (B9),
giving
e iTLTR |
— n
h ha)(FL + FR - lfl(,())

[62 + ('L +I'r1/2— ihw)z}
€2+(FL+FR)2/4 '

We note that at o — 0 we have Ig(0) = —I.(0) = G(0)V (0),
where

Glw) =

(B16)

62 FLFR
h e+ ('L +TRr)?/4

is the known DC bias conductance, as expected.

G0) =

(B17)

APPENDIX C: SEQUENTIAL TUNNELING MODEL WITH
PERIODIC VOLTAGE DRIVE IN THE CLASSICAL LIMIT

Another extensively used model to describe QD trans-
port builds on sequential tunneling of the electrons. Within
this model, charging effects are intrinsically accounted for,

while the lifetime-broadening effects are neglected. This
Appendix calculates the QD admittance Y (w) within the
sequential tunneling approach for an applied, time-periodic
voltage V(t) = Vpc + Vac sin(wt). We closely follow the
work of Bruder and Schoeller [32], fully accounting for
Coulomb blockade effects, and present only the main steps
in the derivation. The starting point is a rate equation for
the Fourier components of the probabilities Py(z) and P;(t)
to have zero extra electrons or one extra electron on the dot.
Writing the Fourier series

oo

Pit)y= Y Pimye ™, j=0,1,

m=—0oQ

(ChH

and noting that P¥(m) = Pj(—m), the rate equation can be
written as

—imhwPy(m) =N(I'y + Tr)P;(m)

- Z Z zm[po(n)‘i‘Npl(n)], (C2)

a=L,R n=—0o0

where
Agm = Fno,[m + (Ffln,fm)*’ Fn%
- eVy eV,
= Jivn| — Miam| — ) Jo s C3
5 k;w i+ (hw) [ (hw)f (). (C3)

Ju(x) is the Bessel function, f,(¢;) is the Fermi function
of lead o = L, R (incorporating the DC bias Vpc at contact
R), and ¢; = € + khiw, with € being the dot energy. The AC
potential drops Vg across the L and R barriers are Vi, = —U
and Vg = Vac — U, where U = VacCr/(Cr + Cp) is the am-
plitude of the induced dot potential. Here we have assumed
C; < CR, Cy, which is the case for the studied devices. The
integer N arises from the degeneracy of the QD energy level
[16,51]; that is, it sets the number of possible charge states
in the dot, effectively multiplying the out tunneling rates. For
our spin-degenerate QD we have N = 2. The probability con-
servation condition, from Py(¢) + P;(t) = 1 for any ¢, further
gives

Py(m) + Py(m) = 8. (C4)

The Fourier component of the particle current I, (¢) in lead o
is given by
el >
Tu(m) = == (Nﬁl (m)— Y A%, [Py(n) + NP, (n)]>.

n=—00

(C5)

As in the lifetime-broadened limit, the total current is obtained
by the sum of the particle currents and the displacement, or
screening, currents. However, as pointed out in Ref. [32],
the screening currents are typically very small in Coulomb
blockaded systems, and we neglect them here. This gives the
expression for the Fourier components of the total current,
I(m) =

- G -
IL(m) — —= T, (CO)

Cr
CL+ Cr CL+ G

which is valid for arbitrary drive amplitude and frequency.
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Like for the Landauer-Biittiker theory in Appendix B,
we focus on the regime of small AC driving amplitude,
eVac < hw. Expanding the Bessel functions J, in the ar-
gument eVac/(hw), and writing the probabilities Pj(m) =
15;°>(m) + (eVac /[hw])ﬁ;“(m) +---, we can solve Eq. (C2)
order by order in eVxc/(fiw). To evaluate the DC 7(0) (in the
absence of AC drive) as well as the first AC component /(1),
we need only the nonzero probability components 131(.0)(0) =
1 — P{”(0) (at Vac = 0) and PV (1) = —P{"(1) (at Vpc = 0),
given by

NIT'L(1 = fu) + Tr( — fr)]

p(0) _
Py (0) = ,
Fufi + TR + N[I'L(1 = fu) + Tr(1 = fr)]
(C7)
where, for brevity, we write fi = frL(¢), fr = fr(€), and
- —i r r
Pél)(l) _ e [TLVL + TrWR]

2hw (TL 4+ TR)IN + (1 = N)f(€)] — ihw
x [N+ 1 —=NBEOO)][f(er) — fle-]. (C8)

Within the same small-amplitude approximation we have the
current components

1,(0) = %{Nﬁf‘”((}) ~ L[N+A=NB O]} (©9)

and
- eFa 5(1)
Io(1) = - —IN+A=N)f(eIF (1)
ieVa 5(0)
~ [N+ (1 = NF " (O][f (1) — fle-D] ¢
w

(C10)

Inserting the expressions for the probabilities and noting that
I (0) = —Ix(0), the DC becomes
NI T fR—I

'L+ Tr (1 =N)(ATL + fkIR) + N(T'r + TR) "
(Cl11)

[(0)=e

Expanding the Fermi distributions to first (linear) order in the
DC bias voltage, we arrive at the linear conductance
62 NFLFR df(e) 1

C=1Ooe = = F i T de N+ (-N)fe)
(C12)

which is the expression used in the plot in Fig. 2(c) in the
main text. With N = 1, this expression matches the stan-
dard nondegenerate result, found, e.g., in Ref. [52], and the
Landauer-Biittiker result in the limit of I';, + I'r < kgT and
w — 0.

For the AC, we can write 1(1) = i¥ (w)Vac/2, with the
admittance (Cx = Ci, + Cr)

_ @ NIf(e) = fen)]
= 27 hwlN + fe)(1 = N)]
PURIN + f()(1 = N)] = [T G + T & ]

{TL+TRIN + (1 =N)f(e)] — ihw} ~
(C13)

Y ()

which is the expression used for the fit of Fig. 2(d) in the main
text. We note that for ® — 0 we have Y (0) = G, as expected.

APPENDIX D: SEQUENTIAL TUNNELING MODEL
WITH P(E) THEORY

The sequential tunneling model in Appendix C treats the
voltage drive V (¢) as a purely classical signal. Here we briefly
consider another sequential tunneling model approach, the
P(E) theory, which treats the voltage in the resonator quantum
mechanically. To calculate the electron and photon transport
properties of the studied system within the P(E) theory, we
follow the formalism of Refs. [33,34,53]. In the presence of a
photon environment, the tunneling rate I';. into the quantum
dot (QD) from an electronic reservoir and the opposite rate I"_
out from it [16,51] are convoluted with the probability P(E)
to absorb energy E from the environment. The resulting tun-
neling rates for left, i = L, and right, i = R, tunnel junctions
are

r [
Pise) = / dE P(E)f(s: + E),

i () =N %/w dE P(-E)[1 — f(ei + E)]. (DD)

Here TI'; is the tunnel coupling strength, ¢; is the QD energy
level position with respect to the reservoir Fermi level, f(E)
is the Fermi function defining the electron occupation dis-
tribution in the reservoir, and the additional prefactor N for
tunneling out arises from the degeneracy of the considered QD
energy level [16,51], as above. For our system, we have N = 2
because there are two electrons to choose from to tunnel out
and only one vacant state to tunnel into the QD.

The P(E) function is set by the environment. In our case,
the resonator forms a single-photon mode at frequency w,
as the environment [34,54]. For the characteristic impedance
Zo = 532 of our resonator, we have z = 7ZyGy < 1, where
Gy = ¢€?/h is the conductance quantum. For the coherent drive
used in the experiment with low enough input power and at
low temperature kT < fiw,, the resonator is in a coherent
state with a small photon number (n) < 1/z. In this limit, the
P(E) function reads [34]

P(E)=[1— zv2(2(n) + DIS(E) + zvz(n) S(E + hw)
+ 2v*((n) + D)S(E — hw), (D2)

where v is the fraction of the resonator voltage that appears
across the tunnel barrier where the tunneling takes place [55].
We assume that the junction capacitances of the quantum dot
are equal. In addition, the gate capacitance is much smaller
than the junction capacitances in the studied devices. Under
these conditions, the resonator voltage is divided evenly over
the two tunnel barriers, v = 1/2, and the P(E') function is the
same for the two tunnel junctions.

The three terms in Eq. (D2) correspond to (1) no interac-
tions with the photons, (2) absorption of a photon, and (3)
emission of a photon with probabilities Py = 1 — zv?(2(n) +
1), P_; = zv*(n), and Py = zv?({n) + 1) respectively. In-
terestingly, the photon absorption or emission probability is
solely set by the impedance z, coupling v, and photon num-
ber (n) of the microwave resonator and does not depend on
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the tunnel coupling I';. The absorption and emission rates,
however, depend on I'; via Eq. (D1). Note also that Eq. (D2)
contains only single-photon absorption and emission pro-
cesses. Multiphoton processes are suppressed in the low drive
limit (n) < 1/(zv?), in line with the experiments in Ref. [48].

APPENDIX E: TUNNELING RATES AND
ELECTRICAL CONDUCTION

With Egs. (D1) and (D2), we obtain the tunneling rates

I
Fi+(5i):;[POf(8i) + P_1f(&; — hw) + Py f(&; + hw)],

I
Ii_(ei) :NZ{PO[I — f(e)] + P_1[1 — f(& + hw)]

+ Pl — f(ei — ho)l} = NTip(—&).

The energy differences across the two junctions are e, = &4 +
aVg —eVy/2 and eg = g4 + aVi + eV, /2, where « is the gate
lever arm, V is the voltage applied to a gate electrode, and
V}, is the bias voltage between the source and drain. Here we
have again assumed that the junction capacitances are equal
and the gate capacitance is small compared to the junction
capacitances which divide the bias voltage Vj, evenly over the
junctions.

Next, we determine the electrical conductance G by setting
a rate equation to describe the probability p of having an
excess electron in the QD and the probability (1 — p) of not
having the excess electron. This rate equation reads

(ED)

dp
o -I_p+T4(-p), (E2)
where I'_ = I'L_(eL) + I'r_(eRr) is the sum of the rates for

the electron to tunnel out and I'y = I'(eL) + ['ry(er) is
the sum of the rates to tunnel in. The steady-state solution,
dp/dt =0, is

S

The electrical current I through the QD is given by

I'=e[l'Ly(eL) (1 — p) —T_(eL) pl
. Ly (eL)TR-(er) — 'L (6L)TR1 (¢R) .
ILy(eL) + Try(er) + F—(eL) + Ir-(er)
Finally, the differential conductance is obtained as
dl
T dVsp
For small bias voltage, eVsp < kT, and low photon absorp-
tion and emission probabilities, P_;, Py < Py, we obtain
& I'.I'r
" hkT Ty + g

p (E3)

(E4)

(E5)

1

X l 5 l , (E6)
I+ 5 + 5 cosh [(ea + aVG)/kT + 3 InN]

which is the zero bias conductance G for a QD with degen-
eracy N and matches Eq. (C12). Compared to the standard
nondegenerate result with N = 1, the degeneracy N # 1 keeps
the line shape the same but displaces the peak position by

(kT InN)/2 in energy and increases the maximum value by
a factor of 4/(1 + 1/+/N)2. For N = 2, these are both small
effects: (kT InN)/2 ~ 0.35 kT and 4/(1 + 1/+/N)* ~ 1.37.
With photon absorption accounted for, two side peaks appear
in G. These are separated by /iw in energy from the main
conduction peak. The size of these peaks are P_; /P, relative to
the main peak and can therefore be neglected for our devices
with P_; < P.

APPENDIX F: PHOTON ABSORPTION AND
EMISSION RATES

Above, we determined the low-frequency electrical con-
ductance G. By collecting the photon absorption terms from
Eq. (E1), we obtain the photon absorption rate

=P_{[T'L f(eL — hw) + Tr f(er — hiw)I(1 — p)

+ N[I'L f(—eL — hiw) + T'r f(—er — iw)]p}/h,
(F1)

thoton

where we have summed the absorption terms with the corre-
sponding weights of (1 — p) and p of the probability to be
in the right starting state of the QD. The absorption rate per
photon corresponds to a resonator loss term «qgp, which is thus

T photon

(n)
= v*Z{[[L f(eL — hiw) + Tr f(er — Fw)](1 — p)

+ NII'L f(—eL — hw) + T'r f(—¢er — hw)]p}/h.
(F2)

KQDp =

For zero bias voltage, Vsp = 0, at low temperature, kT < ho,
and for a small photon number (n), we have e = eg, and
the photon absorption takes place in two distinct regimes.
The first one has —/iw < ¢; < 0. Here we have p = 1; that
is, the quantum dot is occupied essentially at all times, and
f(—&; — hw) = 1. With this, Eq. (F2) yields

Kkop = zv* ('L + Tr)N/A.

The other regime takes place for 0 < ¢; < hw. In this case we
have the QD essentially always unoccupied, i.e., p = 0, while
the energy ¢; is still low enough that f(¢; — iw) = 1. Now we
have

(F3)

ko = z2v*(TL + Tr)/h, (F4)

which is the same as above but smaller by the degeneracy
factor N. The sum (I'L + I'r) reflects the fact that with no bias
voltage applied, the two junctions are effectively in parallel.
The dashed lines in Fig. 2(d) in the main text are the results of
Egs. (F3) and (F4) and show that the measured response fol-
lows these values. The fitted solid curve in Fig. 2(d), based on
Appendix C, is essentially the same as the result of Eq. (F2).
This demonstrates that the two sequential tunneling models
yield identical results in this regime. For a stronger coupling
via larger impedance Zj, deviances are expected: In the ab-
sence of the drive, the calculation in Appendix C still predicts
no changes to the standard DC transport result, while the P(E)
theory has a strong spontaneous emission process and thus a
suppressed probability Py for the DC transport known as the
dynamical Coulomb blockade [56].
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