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Hydrodynamic magnetotransport in two-dimensional electron systems with macroscopic obstacles
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In high-quality conductors, the hydrodynamic regime of electron transport has recently been realized. In
this paper, we theoretically investigate magnetotransport of a viscous electron fluid in samples with electron-
impermeable obstacles. We use two approaches to describe the fluid flow. The first one is based on the equations
of hydrodynamics of a charged fluid, which assume that the kinetic equation considers the two harmonics of the
electron distribution function. The second approach is based on the equations that are obtained by considering
three harmonics of the distribution function (quasihydrodynamics). Within the hydrodynamic approach, we
consider the cases of the rough and smooth edges of disks, on which the electron scattering is diffusive or
specular, respectively. The longitudinal magnetoresistivity turns out to be strong and negative, the same for
both the rough and smooth disk edges up to small corrections. For rough disks, the Hall resistivity is equal
to its standard value. For smooth disks, the Hall resistance acquires a small correction to the standard value,
proportional to the Hall viscosity. In the quasihydrodynamic approach, we consider the case of smooth disks
and small magnetic fields. In the regime when the flow is substantially different from the hydrodynamic one, the
longitudinal resistivity does not depend on the shear stress relaxation time (but depends on the relaxation time
of the third angular harmonic), while the correction to the standard Hall resistivity does not depend on both
the relaxation times. We compare the results of the hydrodynamic calculation of the longitudinal resistance
with the experimental data on magnetotransport in high-quality GaAs quantum wells with macroscopic defects.
Agreement between theory and experiment evidences in favor of the realization of the hydrodynamic transport
regime in such systems.
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I. INTRODUCTION

A. Hydrodynamics of viscous electron fluid in solids

Frequent electron-electron collisions in high-quality con-
ductors can lead to formation of a viscous electron fluid and
realization of the hydrodynamic regime of charge transport
[1]. In such systems, flows of the electron fluid are space
inhomogeneous and determined by the geometry of a sample.
This transport regime was recently reported for high-quality
graphene [2–6], layered metal PdCoO2 [7], Weyl semimetal
WP2 [8], and GaAs quantum wells [9–24]. Formation of the
electron fluid was detected by a specific dependence of
the resistance on the sample width [7,24], by observation
of the negative nonlocal resistance [2,3,15,22], by the gi-
ant negative magnetoresistance [8–14,16,17,23,24], and by
the magnetic resonance at the double cyclotron frequency
[18–21,24].

There are various types of samples, being different in
their geometry, where the viscous flows of the electron fluid
were reported. The simplest one is the flat geometry of the
Poiseuille flow in a long narrow sample. Such samples were
studied in Refs. [2–8,24]. In this case, the flow is quasi-
one-dimensional: Its profile depends only on the coordinate
perpendicular to the longitudinal edges of the sample. Hy-
drodynamic flow of another type is formed in a high-quality
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sample with localized macroscopic defects, on average ho-
mogeneously distributed and impermeable to electrons. In
addition to this, the hydrodynamic electric transport has been
studied in samples with a variety of complex geometries and
complex arrangements of the electric contacts. For example,
in Refs. [25,26], experimental and theoretical studies of the
flow of the electron fluid in a long sample with one obstacle
inside the bulk of the sample were performed.

Samples with macroscopic defects were experimentally
studied in Refs. [13,27]. In Ref. [13], GaAs quantum well
samples with oval defects, which appeared in the growth
process, were examined. The electron mean free path related
to scattering on these defects was determined from the sam-
ple resistance in zero magnetic field. In classically strong
magnetic fields, the giant negative magnetoresistance, which
evidences the formation of the viscous electron fluid [17],
was observed in Ref. [13]. In Ref. [27], a set of samples
of GaAs quantum wells was fabricated in which localized
macroscopic obstacles of different densities were made us-
ing electron beam lithography and subsequent reactive ion
etching. Extensive magnetotransport measurements of those
samples were performed, in which various types of giant
negative magnetoresistance were observed.

A first theory of the hydrodynamic charge transport of the
two-dimensional (2D) electron fluid in a sample with local-
ized defects was developed in Ref. [28]. Recently, in Ref. [29],
a theory describing the crossover between the ohmic and the
hydrodynamic regimes in such systems with increase of the
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interparticle scattering rate was constructed. In Refs. [28,29]
and other previous works, only electron fluid flows in the
absence of magnetic fields were studied.

B. Flows of ordinary viscous fluids via porous media

In fact, the flows of uncharged fluids through an array
of obstacles were systematically studied in ordinary hydro-
dynamics many years ago. The simplest example of such
systems is a flow of water through an array of rocks in a
mountain river. A more general example is the flow of a fluid
via a porous media formed by randomly placed obstacles with
various densities. An example of such systems in chemistry
is the so-called packed bed, which is used to improve contact
between two phases, a solid and liquid, in a chemical process.

The simplest qualitative description of such a system is the
Kozeny-Carman equation [30,31]. It models the fluid flow in a
sample of porous media as laminar fluid flow in a collection of
curving passages crossing the packed bed. For each passage,
the Poiseuille law was used to describe the laminar fluid flow
in each section of the passage. Then the averaging of these
results was performed to calculate the whole flow and the
pressure drop in a sample.

There are two more rigorous analytical approaches for the
calculation of the relation between the pressure drop and the
magnitude of the flow in systems where the average distance
between obstacles far exceeds their size.

The first one, known as the Brinkman approach, is the
effective media approximation. In it, only the flow near one
(any) obstacle is explicitly considered, while the influence
of other obstacles is considered by introducing the term
−V(r)/τ into the Navier-Stokes equation [32]. Herewith, at
a large distance from the considered obstacle, the hydrody-
namic velocity V(r) is considered fixed and equal to the
average flow velocity in the sample. Thus, the problem of
the flow via an array of obstacles is reduced to the problem
of a flow around a single obstacle immersed in a dissipative
medium, the parameters of which are calculated in a self-
consistent way. The microscopic derivation of the Brinkman
equation and its corrections were described in Refs. [33,34].

The second approach is the so-called cell model. In it, the
hydrodynamic Stokes problem was solved for a cell with one
obstacle with boundary conditions on the obstacle boundary
and on an imaginary cell boundary. Boundary conditions on
the obstacle edges can be of two types: the Kuwabara con-
ditions for sticky disks [35] and the Happel condition for
mirror-edge disks [36,37]. The Happel condition requires the
tangential component of the stress tensor to vanish at the disk
boundary, while the Kuwabara condition requires zeroing of
the full hydrodynamic velocity. As for the cell boundary, it is
assumed that the hydrodynamic velocity on it is equal to the
average velocity in the sample.

There is also a combined approach [38]: A boundary con-
dition on an imaginary cell boundary matches the solution of
the Stokes problem inside the cell (solution of usual Navier-
Stokes equation) with the solution of the Brinkman problem
with the Drude-like friction term −V(r)/τ around the cell.
The continuity of the velocity, pressure, and stress tensor at
the cell boundary is required.

Further development of theory led to many quantitative,
detailed results. It became possible to obtain relationships
between the parameters of the effective media and of the
flow properties to explain specific experimental data (see, for
example, Refs. [39,40]).

In Ref. [17], a simple qualitative description has recently
been proposed for the flow of a viscous 2D electron fluid in
the magnetic field in a sample with macroscopic obstacles.
An estimate for the sample resistance was derived for the
case when the size of the obstacles is of the same order of
magnitude as the distances between them. Consideration was
performed by a method analogous to the simplest Kozeny-
Carman method of description of flows an uncharged fluid
via a porous media. The sample resistance turns out to be
proportional to the diagonal viscosity, which leads to a strong
negative magnetoresistance, like the one in a Poiseuille flow.

C. Hall effect in electron hydrodynamics

In studies of the hydrodynamic regime of electron trans-
port, the Hall effect was of great interest. It was believed that
the Hall voltage in such systems consists of two contributions:
the main standard contribution, associated with the balance of
the Lorentz force and the electric force, and a contribution
arising due to the term of the off-diagonal Hall viscosity in
the Navier-Stokes equation. In Refs. [4,16], the measurements
of the Hall resistance in samples in which 2D electrons form
a viscous fluid were reported. These experiments were per-
formed on different materials (grapheme and GaAs quantum
wells) and for samples of different geometries, but their results
turned out to be rather similar: The Hall resistance has an
additional size-dependent contribution to the standard Hall
resistance. The value of the size-dependent contribution in
Ref. [4] was directly related to the coefficient of the Hall
viscosity.

In Ref. [41], magnetotransport of interacting 2D electrons
in long samples with rough edges was theoretically stud-
ied. Using the numerical solution of the kinetic equation,
the longitudinal and Hall resistances were calculated for the
parameters corresponding to both the ballistic and hydrody-
namic regimes of transport. It was shown that, for the samples
in which the hydrodynamic regime is realized (the mean free
path relative to interparticle collisions is much less than the
sample width), the Hall resistance deviates from the standard
value by a small negative value.

In Refs. [42–45], the Hall effect was theoretically studied
for systems of interacting electrons in long samples in the
ballistic regime and transition subregimes between the ballis-
tic and hydrodynamic regimes. A variety of anomalies was
predicted: For example, the giant value of the Hall resistance
in the ballistic region [44] and a kink and other singularities
in the longitudinal and Hall resistances in the transition point
[45]. Some of these features have been previously discovered
in numerical theory [41].

In Ref. [46], the influence of the near-edge layers of the
Poiseuille flow on the Hall effect was studied for a long
sample with rough edges. In the layers of widths of the order
of the interparticle scattering length, half of the electrons are
just reflected from an edge of the sample. Therefore, the flow
in such layers is semiballistic. It was described by the full
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kinetic equation, in contrast to the rest, the bulk part of the
sample, where the hydrodynamic equations were applicable.
The description of the near-edge layers was carried out in
Ref. [46] according to a method like the one developed in
Refs. [47,48]. It was shown in Ref. [46] that the contribution
of the near-edge semiballistic layers to the Hall resistance
is significant: It is of the same order of magnitude as the
contribution from the bulk Hall viscosity term.

D. Subject of this paper

In this paper, we develop a theory of the flow of a 2D
electron fluid in high-quality samples with rare macroscopic
obstacles (disks) in a perpendicular magnetic field. Through-
out the paper, it is assumed that the free path of electrons
with respect to electron-electron collisions (more precisely,
the relaxation length of the shear stress in the fluid) is much
smaller than the obstacle size. We develop two approaches.

The first one is hydrodynamic. We consider a long sample
with disks and solve the Navier-Stokes equation for 2D fluid
hydrodynamics, accounting for the diagonal and nondiago-
nal (Hall) viscosities. Specific calculations were performed
within the effective medium method, which we generalized
for the case of a charged fluid in a magnetic field. Following
Refs. [32–34], we calculate average characteristics of the flow
in the whole sample by consideration of the flow around
some disk immersed in an effective medium. The last one,
consisting of the fluid and all other disks, provides effective
resistance for the flow far from a chosen disk.

We calculate the velocity field around a fixed disk as well
as the corresponding longitudinal and Hall resistivities within
such a model. Owing to the magnetic field dependence of the
diagonal viscosity ν, a strong negative magnetoresistance, like
in the Poiseuille flow [17], arises. Within small corrections,
the longitudinal resistance does not depend on the boundary
conditions at the edges of the disks. The Hall resistance de-
pends on the type of disk edges. In the case of rough edges, it
is exactly equal to the standard Hall resistance corresponding
to the balance between the magnetic Lorenz force and the
electric force in the bulk of the fluid. On the contrary, in the
case of smooth disk edges, a correction to the standard Hall
resistance which is proportional to the Hall viscosity arises.

The second approach goes beyond hydrodynamics. Indeed,
the hydrodynamic equations are derived from the kinetic
equation formally assuming that all harmonics of the distribu-
tion function starting from the third one relax instantaneously.
In fact, the relaxation time of the third harmonic is of the
same order as the relaxation time of the second harmonic
or even far exceeds it [49]. Thus, the question arises, how
would the predictions of the purely hydrodynamic theory
change, if the three harmonics were included in the calcula-
tions? Additionally, from the analogy with the consideration
of Ref. [46], it is obvious that a thin semiballistic layer around
the obstacle edges is formed. In this layer, the hydrodynamic
approximation is not applicable, and higher harmonics of the
distribution function should be considered. Approximation of
three harmonics is a step in this direction. We derive a system
of 2D quasihydrodynamic equations of the electron fluid from
the Boltzmann kinetic equation in the three-harmonic approx-
imation and solve it using the effective medium method.

It turns out that, in addition to the spatial scales l2, R,
and λτ = √

ντ , being characteristic for the hydrodynamic
approximation and satisfying the inequality l2 � R � λτ , an-
other scale λ ∼ √

l2l3 arises. We demonstrate that the last
scale, depending on the relaxation length l3, can be greater
than l2 and R but is always smaller than λτ . If the inequali-
ties λ � R, l3 � R are fulfilled, then thin semiballistic layers
around disks have the width λ. The corresponding resistivity
tensor is equal to the hydrodynamic result with an accuracy
of small corrections. If λ � R � l3, then the longitudinal
resistivity still coincides with its hydrodynamic value, while
the correction to the standard Hall resistivity turns out to
be nonhydrodynamic. Finally, if R � λ � l3, then the flow
regime becomes nonhydrodynamic: The longitudinal resistiv-
ity does depend not on the shear stress relaxation length l2
but on the length l3 controlling the relaxation of the ballistic
contribution. Herewith, the Hall resistance does not depend on
both the relaxation lengths l2 and l3 at all and is determined
only by the properties of obstacles.

We compare our theoretical results on the longitudinal
resistance with the experimental data from Ref. [27] on
magnetotransport of high-quality GaAs quantum wells with
artificial disklike defects, namely, micron-sized holes made by
ion etching. The observed giant negative magnetoresistance
of different amplitudes is compared with our results for the
cases of the flow via an array of disks with rough or smooth
edges. Good agreement between theory and experiment is
demonstrated. To describe the experimental data, we used
only one fitting parameter, the shear stress relaxation rate
1/τ2. It allows us to describe the shape, width, and amplitude
of the observed magnetoresistance curves. Based on the good
agreement between theory and experiment, we conclude that
flows of 2D electron fluid, like the ones studied in this paper,
were realized in the studied structures in Ref. [27].

E. Structure of this paper

Below, for convenience, we describe the structure of the
rest of this paper.

In Sec. II A, starting from the Navier-Stokes equations in a
linear approximation, we present general rigorous statements
and derive equations which are the basis of our further calcu-
lations.

In Sec. II B, we briefly describe the effective medium
method as applied to the hydrodynamic equations of the 2D
electron fluid.

In Sec. II C, we perform exact calculations of the velocity
field and the resistivity tensor for the flows via arrays of
rough disks (those scatter electrons diffusely) and smooth
disks (those reflect them mirrorlike).

In Sec. II D, we calculate fluctuations of the components of
the resistivity tensor due to irregularities in the arrangement of
the disks. We show that the resistivity fluctuations are much
smaller than their mean values.

In Sec. II E, we present and briefly discuss the velocity
profile in the vicinity of a disk.

In Sec. III, we derive quasihydrodynamic equations based
on the three-harmonic approximation for the distribution func-
tion. We solve them for the case of smooth disks within the
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FIG. 1. Long sample with disks and two-dimensional (2D) elec-
tron Fermi gas.

effective medium method for different values of the fluid
parameters and sizes of disks.

In Sec. IV, we compare our results for the longitudinal
resistance with experimental data on magnetoresistance of
Ref. [27] of high-quality GaAs quantum well samples in
which localized macroscopic obstacles of different densities
were fabricated.

In the Conclusions, we sketch all the obtained results and
discuss their importance and perspectives.

In the seven appendices, we present derivations of the basic
equations used in the main text as well as details of lengthy
calculations.

II. HYDRODYNAMIC APPROACH

A. Basis equations

We consider a 2D long sample of length L and width
W � L located in plane (x, y) and oriented along axis x (see
Fig. 1). A homogeneous magnetic field B is applied in the
direction of axis z. It is assumed that the sample contains a
degenerate electron gas and that interelectron collisions are
the dominant mechanism of electron scattering.

We also suppose that the sample contains macroscopic
electron-impermeable obstacles, about which we will assume
that they are disks with radius R. The concentration of the
disks nD is assumed to be small enough, namely, the inequality
nDR2 � 1 is fulfilled. Throughout this paper, the inequal-
ity l2 � R will be assumed to be fulfilled, which allows us
to use the hydrodynamic or hydrodynamiclike equations to
describe the motion of electron gas. All our results will be
obtained in the thermodynamic limit S = LW → ∞ provided
nD = const .

Our problem is to find the distribution of flow of the elec-
tron fluid in the sample and the resistivity tensor of the sample
ραβ .

We also assume that the perturbation of the electron system
caused by the time-independent voltage applied to the sample

is small, which allows us to use the linearized continuity
equations and the linearized Navier-Stokes equations to solve
the problem:

divV = 0,

eE + mωc[V × ez] − mν	V + mνH [	V × ez] = 0. (1)

Here, V(r) is the velocity of the electron fluid at the point
r, the symbol E(r) denotes the gradient of the electrochemical
potential 
(r) taken with a minus sign, ez is a unit vector
along the z axis, ν = ν0/(1 + β2

2 ) is the diagonal viscosity
coefficient depending on magnetic field, β2 = 2ωcτ2 is the
parameter proportional to magnetic field, νH = β2ν is the Hall
viscosity coefficient, ωc is the cyclotron frequency, and τ2 is
the relaxation time of the second harmonic of the distribution
function, or equivalently, the relaxation time of the shear
stress. The value 
(r) considers (i) an external bias, (ii) inter-
nal electric fields related to the redistribution of 2D electrons
due to a nonzero flow, and (iii) a space inhomogeneity of the
chemical potential of 2D electrons. Тhe distribution of the
disks is considered random and homogeneous, on space scales
larger than the average distance between the disks, so that, in
sufficiently large samples, the electric field and the electron
flow are homogeneous on the same scales.

The first of the equations in Eq. (1) allows us to express the
hydrodynamic velocity V and the vorticity � through the flow
function ψ :

Vx = −∂ψ

∂y
, Vy = ∂ψ

∂x
, � = ∂Vy

∂x
− ∂Vx

∂y
= 	ψ. (2)

Introducing the function e
̃ = e
−mνH�−mωcψ , let us
rewrite the Navier-Stokes equations in the form:

∂
̃

∂x
= −mν

e
	Vx,

∂
̃

∂y
= −mν

e
	Vy, (3)

or equivalently:

∂
̃

∂x
= mν

e

∂�

∂y
,

∂
̃

∂y
= −mν

e

∂�

∂x
. (4)

By differentiating the first of these equations by y, the
second by x, and subtracting the results from each other, we
obtain a simple equation for the vorticity 	� = 0. By virtue
of Eq. (2), it is equivalent to the biharmonic equation on the
flow function ψ :

	2ψ = 0. (5)

By integrating Eq. (4) over the flow area and dividing the
result by the sample area S, we obtain

1

S

∫ W

0
[
̃(L, y) − 
̃(0, y)]dy =R

S

∑
k

∮
�k


̃ cos θkdθk − mνR

eS

∑
k

∮
�k

� sin θkdθk + mν

eS

∫ L

0
[�(x,W ) − �(x, 0)]dx,

1

S

∫ L

0
[
̃(x,W ) − 
̃(x, 0)]dx =R

S

∑
k

∮
�k


̃ sin θkdθk + mνR

S

∑
k

∮
�k

� cos θkdθk − mν

eS

∫ W

0
[�(L, y) − �(0, y)]dy. (6)

Here, the symbol
∮
�k

. . . dθk means the integration over the edge of the disk with the number k. The lines x = 0 and L correspond
to the source and drain, respectively. The lines y = 0 and W correspond to the lower and upper edges of the sample in the direction
of the ordinate axis. The angle θk in each summand is counted from the abscissa axis.
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From Eq. (5) and the equality Ẽθ = −∂
̃/R∂θ = mν∂�/e∂r, which follows from Eq. (4), we get

1

S

∫ W

0
[
̃(L, y) − 
̃(0, y)]dy = mνR

eS

∑
k

∮
�k

(
R

∂�

∂r
− �

)
sin θdθ + mν

eS

∫ L

0
[�(x,W ) − �(x, 0)]dx,

1

S

∫ L

0
[
̃(x,W ) − 
̃(x, 0)]dx = mνR

S

∑
k

∮
�k

(
−R

∂�

∂r
+ �

)
cos θdθ − mν

eS

∫ W

0
[�(L, y) − �(0, y)]dy. (7)

Now transferring the functions −(mωc/e)ψ and −(mνH/e)�, included in 
̃, from the left parts of these equations to the right
ones and introducing the notations Ux and Uy for the differences of electrochemical potentials (voltages), we obtain

Ux

L
= mνR

eS

∑
k

∮
�k

(
R

∂�

∂r
− �

)
sin θdθ + mωc

e
V̄y + mν

eS

∫ L

0
[�(x,W ) − �(x, 0)]dx + mνH

eS

∫ W

0
[�(L, y) − �(0, y)]dy,

Uy

W
= −mνR

eS

∑
k

∮
�k

(
R

∂�

∂r
− �

)
cos θdθ − mωc

e
V̄x − mν

eS

∫ W

0
[�(L, y) − �(0, y)]dy + mνH

eS

∫ L

0
[�(x,W ) − �(x, 0)]dx.

(8)

In Appendix A, we present details of the derivation of
Eq. (8). We show how in these equations appear the velocities
averaged over the flow region V̄x and V̄y.

The integrals along the edges of the sample in the thermo-
dynamic limit turn to zero. Indeed, the increase of the vorticity
� with the increase of the sample size would mean an increase
in velocity with increasing size, which is obviously not the
case. Thus, we obtain

−mωcV̄y + eUx

L
− mνR

S

∑
k

∮
�k

(
R

∂�

∂r
− �

)
sin θdθ = 0,

mωcV̄x + eUy

W
+ mνR

S

∑
k

∮
�k

(
R

∂�

∂r
− �

)
cos θdθ = 0.

(9)

In other words, the transition to these equations is possi-
ble only in the case of sufficiently large samples when the
contribution to the resistances associated with the edges is
small compared with the contribution from the inner region.
Equation (9) is the basis for further calculations. Another form
of writing these equations, using the momentum flux density
tensor, is presented in Sec. III [see Eqs. (46)–(48)].

It is important that Eqs. (5) and (9) do not contain terms
with the Hall viscosity. From this fact, we deduce the follow-
ing statement. In the case when the Hall viscosity νH is absent
in the boundary conditions on the disk edges, the vorticity �

also does not depend on the value νH according to Eqs. (2) and
(5). Therefore, the components of the resistivity tensor also do
not depend on νH . In Appendix B, we show that, in fact, this
statement is true for obstacles of any shape.

It is not difficult to show that the voltages on the disks and
on the flow region separately contain contributions propor-
tional to νH , but in total, they exactly compensate each other.
For this compensation, it is crucial that the flow bypasses
around the disks from all sides. To calculate the integral over
the interior of the disk, we should account for the potential-
ity of the electric field. Namely, the integral of the electric
field over the curve that lies inside the disk and connects
two points on its edge is equal to the integral over the curve
that lies outside the disk and connects the same two points.

The statement formulated can be proven just as strongly but
more physically. Namely, it is not difficult to show that the
work of the force related to the term with the Hall viscos-
ity is zero. The corresponding calculations are performed in
Appendix C.

From Eqs. (2) and (5), the second statement also fol-
lows: The velocity profile in the sample is independent of
the magnetic field if the boundary conditions do not depend
on it.

We emphasize that both statements are true only in the case
of small amplitudes of flows, when it is possible to discard all
nonlinear contributions.

Note that, in a finite-sized sample, there is a small correc-
tion to the resistance containing the Hall viscosity. It is given
by the integrals at the edges of the sample. In the absence of
disks, this correction is responsible for the deviation of the
Hall resistance from its standard value in the Poiseuille flow
problem.

We conclude this section by a following remark. One can
show that, in three-dimensional (3D) bulk flows of electron
fluid with disklike 2D symmetry of the 3D flow (columns
along axis z, instead of disks), in the absence of a magnetic
field, the electron charges are concentrated at the boundaries
of the flow region (like in the Hall effect in bulk ohmic con-
ductors). In contrast, from the above equations, it follows that,
in the 2D electron flow, the charge density creating the internal
electric fields in a 2D sample is distributed over its entire
surface (inside disks as well as in the fluid between disks).
This means that a 2D electron fluid, unlike a 3D fluid, cannot
be considered fully incompressible. Perturbations of the 2D
electron density are very small (in the sense of applicability
of the equation div V = 0) but are still important in the above
consideration, as they are responsible for the appearance of
the internal electric field, particularly the Hall field. Namely,
in linear approximation, by the flow magnitude, we can find
from Eqs. (1) and (2) the internal electric field E(r) cor-
responding to the solution of Eq. (5) for the flow function
ψ and the velocity V(r). Then by solving the integral equation
relating the electric field to the charge density, proportional to
the perturbation of the electron concentration, we can find the
latter.
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B. Effective medium method

The exact profile of the fluid flow cannot be calculated for a
given arbitrary arrangement of disks in a sample analytically.
Therefore, we propose a method of derivation of mean hy-
drodynamic equations averaged over the positions of disks,
that is, over the realizations of disorder. In this derivation,
we will follow Refs. [32,39,40], in which the problem of a
viscous neutral fluid flowing through an array of randomly
placed solid obstacles was considered. It was shown there
that, under the condition nDR2 � 1, the problem reduces to
describing the fluid flow in a system with one disk immersed
in a medium with an effective relaxation time τ simulating the
influence of all other disks. The results of these works cannot
be transferred directly to the case of a charged fluid, but it is
possible to use some ideas expressed there.

First, we average Eq. (9) over the positions of disks, as-
suming their distribution over the sample to be homogeneous
on average and neglecting the contribution of disks close to
the edges of the sample. The result is

−mωcV̄y + eUx

L
= mνRnD

∮
�

(
R

∂〈�〉1

∂r
− 〈�〉1

)
sin θdθ,

mωcV̄x + eUy

W
= − mνRnD

∮
�

(
R

∂〈�〉1

∂r
− 〈�〉1

)
cos θdθ,

(10)

where the angle brackets with the subscript 1 mean the av-
erage value under the condition that one disk (any disk) is
fixed, and averaging is performed on the positions of other
disks. The values V̄x and V̄y will hereafter be considered as
given, determined by the given flows of the electron fluid. The
voltages are averaged, but we will not put them in the angle
brackets for simplification of notation. The method for finding
〈�〉1 is set forth below.

The calculations presented in Appendix D lead us to the
equation:

− eE + mν	V − mνH [	V × ez] − mωc[V × ez]

− mδωc[V × ez] − mV
τ

= 0, (11)

where τ and δωc at V̄y = 0, which is the case in our problem,
are given by the expressions:

1

τ
= νRnD

V̄x

∮
�

(
R

∂〈�〉1

∂r
− 〈�〉1

)
sin θdθ,

δωc = νRnD

V̄x

∮
�

(
R

∂〈�〉1

∂r
− 〈�〉1

)
cos θdθ. (12)

Such an equation implies that the effective force of the effec-
tive medium acting on the fluid can be written in the form:

f = −mV
τ

− mδωc[V × ez].

Let us emphasize that the average local field E(r) in
Eq. (11) includes both the contribution of configurations in
which point r lies in the flow region and the contribution of
configurations in which it appears inside one of the disks for
the positions of which the averaging is performed.

Applying the rotor operation to Eq. (11), we obtain the
equation for 〈�〉1:

	〈�〉1 − 1

λ2
τ

〈�〉1 = 0, λτ = √
ντ , ε2 = R2

λ2
τ

. (13)

Here, the parameter ε is small: ε � 1. The solution of the
first from these equations, however, will not help us since the
boundary conditions formulated are not set for vorticity but
for velocity, which is not directly expressed by 〈�〉1. Since
� = 	ψ , it follows from Eq. (13) (the angle brackets and
subscript 1 we hereafter omit):

	2ψ − 1

λ2
τ

	ψ = 0. (14)

After solving this equation with proper boundary conditions,
we can find V(r) and �(r) by Eq. (2).

Because of the invariance of Eq. (14) with respect to ro-
tations, it is natural to represent its general solution in the
one-disk problem as a sum over harmonics exp(imθ ). The
condition for the velocity field to be homogeneous at infinity
requires that m = ±1. Therefore, we construct the solution
being proportional only to these two m = ±1 harmonics. The
general real solution of Eq. (14), containing only these har-
monics, is

ψ = 2Re

{[
αρ + δ

ρ
+ γ K1(ερ ) + μI1(ερ )

]
exp iθ

}
, (15)

where α, β, γ , and δ are complex constants independent of ρ

and θ ; ρ = r/R is the dimensionless radius vector; and K1(x)
and I1(x) are the modified Bessel functions. The function
I1(ερ) exponentially increases with the increasing argument,
so we put μ = 0. The function K1(ερ), in contrast, exponen-
tially decreases at large distances. Therefore, we have

ψ = 2Re

{[
αρ + δ

ρ
+ γ K1(ερ )

]
exp iθ

}
. (16)

Since the velocity vector of the fluid at ρ → ∞ tends to
a coordinate-independent value (V̄x, V̄y), according to Eqs. (2)
and (16), we get

α = RV̄y

2
+ i

RV̄x

2
≡ α1 + iα2. (17)

The radial velocity Vr = −∂ψ/r∂θ at the edge of the disk
(at ρ = 1) is zero. From this condition and Eq. (16), it follows

α + δ + γ K1(ε) = 0,

ψ = 2Re

{[
α

(
ρ − 1

ρ

)
− γ

K1(ε)

ρ
+ γ K1(ερ )

]
exp iθ

}
.

(18)

Substituting this expression into the equality � = 	ψ , we
obtain

�(r, θ ) = ε2

R2
K1(ερ )[γ exp (iθ ) + γ ∗ exp (−iθ )]. (19)

The coefficient γ will be found below from the second
boundary condition at the edges of the disks separately for
the cases of rough and smooth disks. From Eqs. (12) and (19),
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it follows

1

τ
= 2πνnDε3 K2(ε)

RVx
γ2, δωc = −2πνnDε3 K2(ε)

RVx
γ1,

(20)

where γ1 = Re(γ ) and γ2 = Im(γ ). Equation (20) allows us
to self-consistently find expressions for the parameters of the
effective medium τ and δωc.

From Eq. (10), we obtain (recall that V̄y = 0)

Ux

L
= −2πmνnDε3 K2(ε)

eR
γ2,

Uy

W
= −2πmνnDε3 K2(ε)

eR
γ1 + mωcV̄x. (21)

Remember that ε = R/λτ depends on τ . From here, we
find

ρxx = 2πmνnDε3 K2(ε)

e2 n0RVx
γ2,

ρxy ≡ρH = ρ0
H + 2πmνnDε3 K2(ε)

e2 n0RVx
γ1, ρ0

H = B

en0c
. (22)

In the next section, we will derive from these relations the
exact expressions for the components of the resistivity tensor
in the limiting cases of rough and smooth disks.

C. Calculation of resistivity tensor

1. Rough disks

In this case, the tangential velocity at the edge of the disk
is also zero, so using the expression in Eq. (16) for ψ , the
expression in Eq. (17) for α (at V̄y = 0), and the relation for
the Bessel function xK ′

1(x) = −K1(x) − xK0(x), we obtain

γ1 = 0, γ2 = RV̄x

εK0(ε)
, (23)

which yields

1

τ
= 2πνnDε2 K2(ε)

K0(ε)
≈ 4πνnD

K0(ε)
, δωc = 0. (24)

Here, we use the fact that ε2 K2(ε) ≈ 2 at ε � 1. From
Eqs. (24) and (13), the equation on the parameter ε follows:

ε2 = 2πnDε2 K2(ε)R2

K0(ε)
≈ 4πnDR2

K0(ε)
. (25)

In the expansion of the function K0(ε), we should limit
ourselves to the main logarithmic contribution by putting
K0(ε) ≈ ln[2/(ε exp γE )] ≈ ln(1/ε), where γE ≈ 0.58 is the
Euler constant. The next (power) terms in the expression for
the function K0(ε) are illegitimate since the effective medium
method, which we use, is valid only in the main order by a
small parameter nDR2. As a result, from Eq. (24), we find

1

τ
≈ 8πνnD

ln (A ln A)
≈ 8πνnD

[
1

ln A
− ln (ln A)

ln2A

]
,

A = 1

8πnDR2

 1. (26)

Finally, we get

ρxx ≈ 8πmνnD

e2 n0 ln (A ln A)
≈ 8πmνnD

e2 n0

[
1

ln A
− ln (ln A)

ln2A

]
,

ρH = ρ0
H . (27)

2. Smooth disks

In this case, the second boundary condition at the disk edge
requires that the nondiagonal component of the momentum
flux tensor is zero:

�θr = −mν

(
∂Vθ

∂r
+ 1

r

∂Vr

∂θ
− Vθ

r

)
− 2mνH

∂Vr

∂r
= 0. (28)

Note the presence of the Hall viscosity in this boundary
condition. Substituting here the expressions for the radial
Vρ = −∂ψ/∂θ and tangential Vθ = ∂ψ/∂ρ velocity compo-
nents and considering the expression in Eq. (19) for the
function ψ , we obtain

γ = 4α(1 + iβ2)

ε[2(1 + iβ2)K0(ε) + εK1(ε)]
. (29)

From this equation and the formulas in Eq. (20), it follows

1

τ
= 4πνnDε2 K2(ε)

[
2K0(ε)

(
1+ β2

2

)+ εK1(ε)
]

[2K0(ε) + εK1(ε)]2 + 4β2K2
0 (ε)

≈ 4πnDν

K0(ε)
,

δωc ≈ 4πnDε2 K2(ε)εK1(ε)νH

[2K0(ε) + εK1(ε)]2 + 4β2
2 K2

0 (ε)
≈ 2πnDνH

K2
0 (ε)

(
1 + β2

2

) ,

(30)

and the equation for the parameter ε:

ε2 = 4πnDR2ε2 K2(ε)
[
2K0(ε)

(
1+ β2

2

)+ εK1(ε)
]

[2K0(ε) + εK1(ε)]2 + 4β2K2
0 (ε)

≈ 4πR2 nD

K0(ε)
.

(31)

Here, we have omitted small corrections since the parameter
ε enters the expressions for the resistivities only under the
logarithmic sign. Finally, for the resistivity tensor, we obtain
the result (up to the inverse square of the large logarithm):

ρxx ≈ 8πmνnD

e2 n0

[
1

ln A
− ln (ln A)

ln2A
− ν2(

ν2 + ν2
H

)
ln2A

]
, (32)

ρH ≈ ρ0
H + 8πmnDν2νH

e2 n0
(
ν2 + ν2

H

)
ln2A

. (33)

Here, we see an appearance of the correction to the stan-
dard Hall resistance, as we announced in Sec. II.

Note that the expressions for ρxx in the cases of the rough
and smooth disks differ only by the corrections, being small
by the inverse square of the large logarithm. If we neglect
these corrections, we will have in both cases the following
dependence of resistivity on the magnetic field:

ρxx = m

e2 n0τ
≈ 8πmnDν

e2 n0 ln (1/4πnDR2)
,

qualitatively coinciding with the experimental one (see
Sec. IV). It is important that the disk radius enters this expres-
sion only under the sign of the logarithm. One can show that
the appearance of the logarithmic dependence here is related
to the so-called Stokes paradox.
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It can be seen from the expression for ρxx that the charac-
teristic relaxation time of the flow velocity τ is of the order of
the momentum diffusion time by the distance d ∼ √

ln A/nD:
τ ∼ d2/ν (we recall that the viscosity coefficient ν has the
meaning of the momentum diffusion coefficient).

D. Corrections to self-consistent results due to fluctuations
in location of disks

In the previous sections, we have considered values av-
eraged over realizations. Now let us discuss the role of
fluctuations in arrangements of disks, which we will consider
random, so that a typical fluctuation of the number of disks in
a region containing N disks is

√
N . Let us first discuss in detail

the resistance fluctuations in the absence of a magnetic field
and, second, briefly describe the Hall resistance fluctuations.

Within the framework of the effective medium method,
we calculated the rate τ−1, standing on one of the disks and
replacing all other disks by a homogeneous medium with
the mean effective momentum relaxation time. It turned out
that the result is determined by disks located inside the cir-
cle of the radius Rε = R/ε = √

ντ . On average, there are
Nε = nDντ ∼ ln A disks in this circle with a concentration
equal to nD = Nε/Sε, where Sε = πR2

ε . The typical deviation
of the number of disks in this region from its mean value
is of the order of

√
Nε ∼ √

ln A, whence it follows for the
concentration fluctuation: δnD ∼ ±nD/

√
ln A. According to

Eq. (22), we estimate the inverse time τ−1 fluctuation caused

by this density fluctuation as

δτ−1 ≈ νδnD

ln A
+ νδnD

ln2(1/nDR2)
≈ ± νnD

ln3/2A
.

Now using the formula from Ref. [49]:

δρ ∼ 〈(δτ−1)2〉
τ−1

,

we obtain the typical deviation of the resistivity of a sample
from its average value:

δρxx ∼ ρxx

ln A
� ρxx. (34)

In the case of smooth disks, similar estimates of the contri-
bution of fluctuations to the correction to the Hall resistivity
	ρH yield

δ(	ρH ) ∼ 	ρH

ln A
� 	ρH . (35)

In this way, the fluctuations of the value 	ρH are indeed
small as compared with its mean value.

E. Electron fluid velocity in the vicinity of disks

In this section, we discuss the velocity field near a fixed
disk and briefly touch on the problem of finding the electric
field. Using the first two formulas in Eq. (2), the expression in
Eq. (16) for ψ , and the fact that, in our problem, V̄y = 0, we
obtain α1 = 0 and

Vx = 2

R

{
α2 − εγ2K0(ερ )

2
+

[
γ2S(ρ) − α2

ρ2

]
cos 2θ + γ1S(ρ) sin 2θ

}
,

Vy = 2

R

{
−γ1εK0(ερ )

2
− γ1S(ρ) cos 2θ +

[
γ2S(ρ) − α2

ρ2

]
sin 2θ

}
, S(ρ) = εK0(ερ )

2
+ K1(ερ )

ρ
− K1(ε)

ρ2
.

Hence, for the case of rough disks, when γ is given by the expression in Eq. (19) and γ1 = 0, it follows from the above
equations:

Vx = V̄x

(
−1 + K0(ερ )

K0(ε)
+

{
K0(ερ )

K0(ε)
− 1

ρ2
+ 2

εK0(ε)

[
K1(ερ )

ρ
− K1(ε)

ρ2

]}
cos 2θ

)
,

Vy = V̄x

{
K0(ερ )

K0(ε)
− 1

ρ2
+ 2

εK0(ε)

[
K1(ερ )

ρ
− K1(ε)

ρ2

]}
sin 2θ.

From these expressions, in the domain ερ � 1, we obtain with the logarithmic accuracy:

Vx ≈ V̄x

ln [4/(ε2 exp 2γE )]

[
ln ρ2 +

(
1 − 1

ρ2

)
cos 2θ

]
,

Vy ≈ V̄x

ln[4/(ε2 exp 2γE )]

(
1 − 1

ρ2

)
sin 2θ.

These expressions mean that the velocity profile is, on
average, symmetrical about an axis passing through the center
of a disk and parallel to the abscissa axis (see Fig. 2).

It is seen from the above expressions for the velocity com-
ponents that, according to the second statement in Sec. II B,
the velocity profile (at given value V̄x) does not depend on the

magnetic field. Indeed, according to Eq. (25), the value ε2 is
only a function of nDR2.

Similarly, it is not difficult to find Vx and Vy in the case of
smooth disks. The resulting expressions are too cumbersome,
and we do not present them. Let us only note that the approx-
imation in Eq. (25) is too crude for γ2, and we should use the
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FIG. 2. Profile of the hydrodynamic velocity of the electron fluid
near a rough disk. Size of the plot is 16R.

formula:

γ2 ≈ 2α2

εK0(ε)
− 2α2

4εK2
0 (ε)

(
1 + β3

2

) .

Indeed, in the approximation in Eq. (25) and in the absence
of a magnetic field, we get the same expressions for velocity
as in the case of rough disks and, therefore, V = 0 at the
edge of the disk, which is not true. The velocity field now
directly depends on the magnetic field, and at B �= 0, there is
no symmetry with respect to the abscissa axis.

Knowing the velocity profile, we can find the distribution
of the electric field E(r) everywhere in the region of the flow
from the Navier-Stokes Eq. (1) for both cases of rough and
smooth disks.

III. BEYOND STANDARD HYDRODYNAMICS

In this section, we present a theory that goes beyond the
hydrodynamics described above in the sense of a complication
of the type of distribution of electrons by velocities in a flow.

There are two reasons for such a consideration (both were
formulated in the Introduction).

First, the Navier-Stokes equation is derived from the ki-
netic equation under the assumption that all harmonics of the
distribution function, starting from the third harmonic, relax
instantaneously. In fact, the relaxation time of the third har-
monic is of the same order as the relaxation time of the second
harmonic, τ2 ∼ τ3, or even much longer than it: τ2 � τ3 [50].
In the latter case, τ4 ≈ τ2 and τ5 ≈ τ3, and the influence of
the slow-relaxing third harmonic terms may be substantial.
According to Appendix E, each of the amplitudes of the
distribution functions fns,c is related only to the amplitudes
fn±1s,c, whence and from the above relations between τm it
follows that the influence of the harmonics f4s,c, f5s,c, and so
on, on the values of harmonics f1s,c, f2s,c, and f3s,c is rapidly
decreasing, and thus, f4s,c, f5s,c … are far less substantial than
the role of the third harmonics. In this way, the question arises,
how will the predictions of the theory change, if the three
harmonics are included in the calculations (and higher ones
are neglected)?

Second, it is obvious in advance that there is some layer
near the obstacle edges where electrons can be scattered on the
obstacle edges; therefore, the hydrodynamic approximation is
inapplicable there, and the flow in these layers is semiballistic.
In these regions, it is necessary to consider higher harmonics
of the distribution function. Approximation by three harmon-
ics is a step toward this direction. We limited ourselves to the
case of smooth disks because, in the hydrodynamic approach,
exactly in this case, there appears a nontrivial correction to the
standard Hall resistance, proportional to the Hall viscosity νH ,
and it is interesting to see how it will change due to accounting
for the third harmonic terms, being a rough description of the
semiballistic character of the flow.

A. Basis equations

We start our consideration from the derivation of the exact
equations for the momentum flux density tensor �ik (r).

Let us write the kinetic equation in the form:

div( f v) − eE(r)
∂ f

∂p
+ ωc

∂ f

∂φ
= Stee( f ), e > 0. (36)

By representing the function f (p, r) in the form of f =
f0(ε, r) + f̃ (ε, φ, r),

∫ 2π

0 f̃ dφ = 0, multiplying Eq. (36) by

py, and by integrating the result with 2d2p/(2π h̄)2, we obtain
∂ε̄(r)

∂y
+ en(r)Ey(r) + n0

∂�yx(r)

∂x

+ n0
∂�yy(r)

∂y
− mωcVx(r)n(r) = 0, (37)

where

ε̄(r) ≡
∫

f0(ε, r)ε
2d2p

(2π h̄)2 ,

�ik (r) ≡ m

n0

∫
f̃ vivk

2d2p

(2π h̄)2 ,

Vi(r) = 1

n(r)

∫
f̃ (p, r)vi

2d2p

(2π h̄)2 ,

where n(r) is the concentration of electrons, n0 is the equilib-
rium concentration, ε̄(r) is the energy density of the electron
gas, and �ik (r) is viscous stress tensor. We recall that,
in the case of interparticle collisions, there is an equality∫

Stee( f )vd2p = 0. Similarly, we obtain the equation:

∂ε̄(r)

∂x
+ en(r)Ex(r) + n0

∂�xx(r)

∂x

+ n0
∂�xy(r)

∂y
+ mωcVy(r)n(r) = 0. (38)

Note that Eqs. (37) and (38) are exact. They can be conve-
niently rewritten in the form:

enEx + ∂ε̄

∂x
+ n0div�x + mnωcVy = 0,

enEy + ∂ε̄

∂y
+ n0div�y − mnωcVx = 0, (39)

�i(r) ≡ m

n0

∫
f̃ viv

2d2p

(2π h̄)2 .
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Throughout this paper, we assume that the screening
length is smaller than all other spatial scales of the problem;
therefore, in absence of a current, the electric field is zero.
Correspondingly, in the last case, the concentration and the
density of the energy of electrons are the same everywhere. If
the electric field applied to the sample is small, we linearize
Eq. (39), which yields

eEx + 1

n0

∂ε̄

∂x
+ div�x + mωcVy = 0,

eEy + 1

n0

∂ε̄

∂y
+ div�y − mωcVx = 0. (40)

Now we introduce the electric φ and the electrochemical

 = φ − ε̄/en0 potentials. Equation (41) is now written in the
form:

∂


∂x
= 1

e
div�x + B

c
Vy,

∂


∂y
= 1

e
div�y − B

c
Vx. (41)

By integrating these equations over the flow domain, we
obtain the following expressions for the longitudinal and Hall
voltages:

Usd ≡ 1

W

∫ W

0
[
(L, y) − 
(0, y)]dy

= L

eS

∑
j

∮
� j

dl j · �x + RL

S

∑
j

∮
� j


(θ, R) cos θdθ,

UH ≡ 1

L

∫ L

0
[
(x,W ) − 
(x, 0)]dx

= W

eS

∑
j

∮
� j

dl j · �y + RW

S

∑
j

∮
� j


(θ, R) sin θdθ

+ BI

en0c
, (42)

where θ is the polar angle vector pointing from the center
of this disk to its edge. Also remember that we assume
V̄y = 0 and omit the integrals on the edges of the sample.
Equivalently, Eq. (42) can be written via the effective electric
field E θ :

Usd = L

eS

∑
j

∮
� j

dl j · �x + R2L

S

∑
j

∮
� j

Eθ sin θdθ,

UH = BI

en0c
+ W

eS

∑
j

∮
� j

dl j · �y

− R2W

S

∑
j

∮
� j

Eθ cos θdθ, (43)

Here, the symbol Eθ denotes the value −∂
/R∂θ , and dl j is
the vector of the disk boundary element pointing to its center.
The first terms in the right-hand sides of Eq. (43) are equal

to the voltage drop on the flow region, and the last terms are
equal to the voltage drop on the disks.

Let us transform the second equation in Eq. (43). Since
dl j · �y = −�yrRdθ and vy = vr sin θ + vθ cos θ , the contri-
bution of the flow region will be written as

W

eS

∑
j

∮
� j

dl j · �y = −RW

eS

∑
j

∮
� j

(�rr sin θ

+ �θr cos θ )dθ. (44)

We consider that, due to the condition
∫ 2π

0 f̃ (ε, φ, r)dφ =
0, the relations �yy = −�xx,�θθ = −�rr are fulfilled,
and the equalities Vx cos θ + Vy sin θ = Vr , ∂
/∂θ =
R cos θ∂
/∂y − R sin θ∂
/∂x, and Vr (r)|r=R = 0 are valid.
After cumbersome but elementary calculations, we obtain
from these relations and Eq. (41)

Eθ = −1

e

(
∂�rθ

∂r
+ 2

r
�rθ − 1

r

∂�rr

∂θ

)
. (45)

Substituting Eqs. (44) and (45) into the formula in Eq. (43),
we obtain for the Hall voltage

UH = BI

en0c
+ RW

eS

∑
j

∮
� j

(
∂�rθ

∂ρ
− 2

∂�rr

∂θ

)
ρ=1

cos θdθ,

(46)

or after averaging over the positions of the disks:

UH = BI

en0c
+ RW nD

e

∮
�

(
∂�rθ

∂ρ
− 2

∂�rr

∂θ

)
ρ=1

cos θdθ.

(47)

Similarly, for the source-drain voltage, we get

Usd = −RL

eS

∑
j

∫
� j

(
∂�rθ

∂ρ
− 2

∂�rr

∂θ

)
ρ=1

sin θdθ.

Within the effective-media approach, this yields

Usd = −RLnD

e

∫
�

(
∂�rθ

∂ρ
− 2

∂�rr

∂θ

)
ρ=1

sin θdθ. (48)

In the derivation of the expressions in Eqs. (47) and (48),
it was considered that, at the edge of the disk, the condition
�rθ = 0 takes place. We will also need the last expression in
the future consideration.

Our approach of description of the ballistic effects is based
on using a truncated representation of the generalized distribu-
tion function f̃ (r, φ) as a sum over three angular harmonics:

f̃ (r, φ) =
3∑

m=1

[ fmc(r) cos (mφ) + fms(r) sin (mφ)]. (49)

Such a form of f leads to the following system of the
quasihydrodynamic motion equations of the electron fluid (for
their derivation, see Appendix E):

∂�xx

∂x
+ ∂�xy

∂y
+ eEx + mωcVy = 0,

∂�yx

∂x
+ ∂�yy

∂y
+ eEy − mωcVx = 0,

∂Vx

∂x
+ ∂Vy

∂y
= 0, �yy = −�xx, �yx = �xy,
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�yx = −mν

(
∂Vx

∂y
+ ∂Vy

∂x

)
− mνH

(
∂Vx

∂x
− ∂Vy

∂y

)
+ ντ3

1 + β2
3

(	�xy + β3	�xx ) + νHτ3

1 + β2
3

(	�xx − β3	�xy),

�xx = −mν

(
∂Vx

∂x
− ∂Vy

∂y

)
+ mνH

(
∂Vx

∂y
+ ∂Vy

∂x

)
− νHτ3

1 + β2
3

(	�xy + β3	�xx ) + ντ3

1 + β2
3

(	�xx − β3	�xy). (50)

It is impossible to solve these equations in a general form;
however, it can be done in two special cases, namely, in the
case of the Poiseuille flow in a long sample with rough edges
and in the case of the flow in a sample with many arbitrary
distributed disks. In both cases, the variables describing the
flow can be separated, as they were in ordinary hydrodynam-
ics. The first of these problems is considered in Ref. [46]. The
second one will be discussed below in the framework of the
effective medium method.

In this method, instead of the first two equations in
Eq. (50), one should use the analogous equation with the intro-
duced effective relaxation time τ and the cyclotron frequency
shift δωc, as in the case of the hydrodynamic Eq. (8):

∂�xx

∂x
+ ∂�xy

∂y
+ eEx + m(ωc + δωc)Vy = −mVx

τ
, (51a)

∂�yx

∂x
+ ∂�yy

∂y
+ eEy − m(ωc + δωc)Vx = −mVy

τ
, (51b)

or equivalently:
∂�xx

∂x
+ ∂�xy

∂y
− ∂�

∂x
= m

τ

∂ψ

∂y
,

∂�yx

∂x
+ ∂�yy

∂y
− ∂�

∂y
= −m

τ

∂ψ

∂x
,

� = e
 − m(ωc + δωc)ψ. (52)

Applying of the rotor operator to Eq. (52) yields

2
∂2�xx

∂y∂x
+ ∂2�xy

∂2y
− ∂2�xy

∂2x
= m

τ
	ψ.

By substituting here the expressions in Eq. (50) for �ik and
using Eq. (52), we obtain

[
mν + mξ 2

τ
(1 − β2β3)

]
	2ψ − ξ 2(β2 + β3)	2� = m

τ
	ψ, ξ =

√
ντ3(

1 + β2
3

) . (53)

Applying the divergence operator to Eq. (51b) and performing similar calculations, we obtain another equation for the
functions � and ψ :

mβ2ν	2ψ + ξ 2(1 − β2β3)	2� − 	� = 0.. (54)

Equations (53) and (54) can be written as

β2 + β3(
1 + β2

2

)
mν

	� =
[

1 + λ2(1 − β2β3)2

λ2
τ

(
1 + β2

2

)2

]
	2ψ − 1 − β2β3

λ2
τ

(
1 + β2

2

)	ψ,

mβ2

τ
	ψ = − λ2

[
1 + λ2(1 − β2β3)2

λ2
τ

(
1 + β2

2

)2

]
	2� +

(
1 + λ2

λ2
τ

1 − β2β3

1 + β2
2

)
	�, (55)

where

λ2 = ξ 2
(
1 + β2

2

) = ν0τ3

1 + β2
3

= l2l3
4
(
1 + β2

3

) , ν0 = ν(0), λ2
τ = ντ.

Now expressing 	� from the first equation and substituting it into the second as well as expressing from the second equation
	ψ and substituting in the first, we get two identical equations for the potentials ψ and �:

λ2

[
1 + λ2

λ2
τ

(1 − β2β3)2(
1 + β2

2

)2

]
	3ψ −

(
1 + 2λ2

λ2
τ

1 − β2β3

1 + β2
2

)
	2ψ + 1

λ2
τ

	ψ = 0,

λ2

[
1 + λ2

λ2
τ

(1 − β2β3)2(
1 + β2

2

)2

]
	3� −

(
1 + 2λ2

λ2
τ

1 − β2β3

1 + β2
2

)
	2� + 1

λ2
τ

	� = 0. (56)

We conclude this subsection by deriving the boundary conditions at the edge of a smooth disk. The mirrorlike reflection of
electrons from the disk boundary means that the distribution function is symmetric at the reflection with respect to the tangent
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to this boundary:

f̃ (ε, φ, R, θ ) = f̃ (ε, π + 2θ − φ, R, θ ). (57)

From this condition for f , we can obtain the following two conditions for � (they are derived in Appendix F):

�rθ |r=R = 0,

(
−∂�rr

∂r
+ 2�rr

r
+ 1

r

∂�rθ

∂θ

)
r=R

+ β3

(
∂�rθ

∂r
+ 1

r

∂�rr

∂θ
− 2�rθ

r

)
r=R

= 0. (58)

The first of these conditions is accurate, while the second, as can be seen from Appendix D, is approximate: It does not consider
the contribution of the fourth harmonic.

B. Solution of equations for ψ and � around one disk

Equation (56) can be solved by the decomposition of the
differential operator as a product of three commuting differ-
ential operators as follows:

	(	 − κ+)(	 − κ−)ψ = 0, (59)

where κ± are roots of the equation:

λ2

[
1 + λ2

λ2
τ

(1 − β2β3)2(
1 + β2

2

)2

]
κ2

−
(

1 + 2λ2

λ2
τ

1 − β2β3

1 + β2
2

)
κ + 1

λ2
τ

= 0. (60)

With corrections of the order of λ2/λ2
τ , the values κ± have

the forms κ+ = 1/λ2 and κ− = 1/λ2
τ . Bearing in mind that

we are interested in the first-order harmonic of the function
ψ , the operator in the left part of Eq. (59) can be written as
the product of three radial differential operators:

	r (	r − κ+)(	r − κ−)χ = 0, (61)

where χ is the absolute value of ψ , ψ = 2Re[χ exp(iθ )], and

	r = 1

r

d

dr

(
r

d

dr

)
− 1

r2

is the radial part of the Laplace operator. The solution of
Eq. (61) is the sum of the solutions of the three differential
equations:

	rχ = 0, (	r − κ+)χ = 0, (	r − κ−)χ = 0.

Such a sum can be presented as

χ = αr + δ

r
+ γ+K1(

√
κ+r) + γ−K1(

√
κ−r)

≈ αr + δ

r
+ γ+K1

( r

λ

)
+ γ−K1

(
r

λτ

)
. (62)

Similarly, putting � = 2Re[ϕ exp(iθ )], we have

ϕ = α̃r + δ̃

r
+ γ̃+K1(

√
κ+r) + γ̃−K1

(√
κ−r

)
≈ α̃r + δ̃

r
+ γ̃+K1

( r

λ

)
+ γ̃−K1

(
r

λτ

)
. (63)

In the expressions in Eqs. (62) and (63), we omit the exponen-
tially increasing terms.

By virtue of Eq. (55), the coefficients in front of the
cylindrical functions are not independent. Substituting the
functions γ̃−K1(

√
κ−r), γ−K1(

√
κ−r) into the first equation

in Eq. (55) and considering that 	K1(
√

κ−r) = κ−K1(
√

κ−r),

we obtain
β2 + β3(

1 + β2
2

)
mν

γ̃−

=
{[

1 + λ2(1 − β2β3)2

λ2
τ

(
1 + β2

2

)2

]
κ− − 1 − β2β3

λ2
τ

(
1 + β2

2

)
}

γ−.

Substituting here the root of Eq. (60), we have

γ̃− = 2mβ2

τ
[
1 +

√
1 − 4 λ2β2(β2+β3 )

λ2
τ (1+β2

2 )2

]γ− ≈ mβ2

τ
γ−. (64)

Similarly, using the function K1(
√

κ+r), from the second
equation in Eq. (55), we find

γ+ = 2τ (β2 + β3)λ2

m
(
1 + β2

2

)[
1 +

√
1 − 4 λ2β2(β2+β3 )

λ2
τ (1+β2

2 )2

]
λ2

τ

γ̃+

≈ τ (β2 + β3)λ2

m
(
1 + β2

2

)
λ2

τ

γ̃+ = τ3(β2 + β3)

m
(
1 + β2

3

) γ̃+. (65)

We see that only six of the eight constants introduced
above are independent. Indeed, these constants arises from the
solutions in Eqs. (62) and (63) of Eq. (56), which were derived
from Eqs. (51a) and (51b) by differentiations, which leads to
an increase in the number of solutions.

Let us now find a solution to Eq. (52). In radial variables
[see the formulas in Eq. (F3) in Appendix F]; they are written
in the form:

∂�rr

∂r
+ 2�rr

r
+ 1

r

∂�rθ

∂θ
= ∂�

∂r
+ m

τ

1

r

∂ψ

∂θ
,

∂�rθ

∂r
+ 2�rθ

r
− 1

r

∂�rr

∂θ
= 1

r

∂�

∂θ
− m

τ

∂ψ

∂r
. (66)

By substituting into them

�(r) = 2Re{ϕ(r) exp (iθ )},
�αβ (r) = 2Re{Qαβ (r) exp (iθ )},

ψ (r) = 2Re[χ exp(iθ )],

we get
∂Qrr

∂r
+ 2Qrr

r
+ i

Qrθ

r
= ∂ϕ

∂r
+ i

m

τ

χ

r
,

∂Qrθ

∂r
+ 2Qrθ

r
− i

Qrr

r
= i

ϕ

r
− m

τ

∂χ

∂r
, (67a)

or

r2 ∂2 Qrθ

∂r2
+ 5r

∂Qrθ

∂r
+ 3Qrθ = ∂F

∂r
,
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Qrr = −ir
∂Qrθ

∂r
− 2iQrθ − ϕ − im

τ
r
∂χ

∂r
,

F (r) = 2irϕ − m

τ
r
∂ (rχ )

∂r
. (67b)

The following calculations, due to their cumbersome na-
ture, we place in the Appendix G. As a result, we obtain the
closed system of equations for the constants γ±, γ̃± , and the
corresponding solutions for φ, χ , and �ik .

C. Resistivity tensor

First, note that, according to the expressions in Eqs. (62),
(63), and formulas for κ± after Eq. (60), there are two scales
of change of physical quantities as functions of the distance
from the center of the disk. They are the characteristic lengths
related to the eigenvalues of our problem [which are the roots
in Eq. (60)]: 1/

√
κ+ ≈λ and 1

√
κ− ≈ λτ .

The scale λτ is always much larger than the disk radius
and even the distance between the disks, while λ can be both
much smaller and much larger than the disk radius. In the first
case, we have a narrow kinetic layer around the disk in which,
strictly speaking, we should solve the kinetic equation, while
outside this layer, the standard hydrodynamics works, and all
spatial dependences are slow. In the second case, the flow also
allows a macroscopic description, although not everywhere in
terms of standard hydrodynamics.

Substituting into Eqs. (47) and (48) the expressions for
the components of the tensor �αβ (r) [see Appendix G, the
expressions in Eq. (G3)], after some calculations, we obtain

Usd = 2πνmnDLε2

eR
[γ−2ε−K2(ε−) + γ+2ε+K2(ε+)], (68)

and

UH = BIW

en0c
+ 2πνmnDW ε2

eR
[γ−1ε−K2(ε−) + γ+1ε+K2(ε+)],

(69)

where we introduce the notations ε2 = R2/ντ � 1, ε− =√
κ−R � 1, ε+ = √

κ+R, and γ∓1,2, being the real and imag-
inary parts of the coefficients of γ∓.

In our calculations, the inequality ε− � 1 is always sat-
isfied, so we can assume here with sufficient accuracy that
K2(ε−) ≈ 2/ε2

−, whereas ε+ can be any ε+ 
 1 at λ � R as
well as ε+ � 1 at λ 
 R. In the first case, despite the expo-
nential smallness K2(ε+), the second terms in square brackets
in the expressions in Eqs. (68) and (69) cannot be neglected,
as the coefficients γ+1,2 are exponentially large. Indeed, it
can be seen from Eqs. (G8) and (G9) that they include only
combinations of γ+Kp(ε+), p = 0, 1, 2.

Let us first consider the case of λ � R in the limit of small
magnetic fields. Finding the coefficients γ± from Eqs. (E8)
and (E9) and substituting them into Eqs. (68) and (69), we
obtain

ρxx ≈ 8πνmnD

e2 n0 ln A
− 112πνmnD

e2 n0ln2A

λ2

R2
, (70)

	ρH ≡ ρH − ρ0
H = 8πνmnD

e2 n0ln2A
β2 + 16πνmnD

e2 n0ln2A

λ2

R2
(8β2 − β3).

(71)

In both expressions, the main contribution is given by the first
terms that coincide with the hydrodynamic results. As for the
second terms, for the diagonal resistivity ρxx, it is small, while
the situation for 	ρH is more complicated.

The magnitude and sign of the second term in Eq. (71)
depend on the relation between the lengths l2, l3, and R. If all
the relaxation lengths are of the same order, the second terms
are small compared with the first ones, so that the hydrody-
namic corrections dominate. This demonstrates the stability
of hydrodynamics, the equations of which were derived under
the assumption that l2 � l3 or l2 ∼ l3, and both lengths are
smaller than the characteristic space scale of the flow. More
interesting is the situation when l3 
 l2, which is realized in a
degenerate electron Fermi gas [49]. In this case and under the
additional condition l3 
 R, the second term in the right part
of Eq. (71) is larger than the first term and has a different sign.
Thus, we have

	ρH ≈ −16πνmnD

e2 n0ln2A

λ2

R2
β3 = − 6πνmnD

e2 n0ln2A

l2
3

R2
β2. (72)

In the case λ 
 R, the values ρxx and 	ρH turn out:

ρxx = 20πνmnDR2

e2 n0(26λ2 + 5R2 ln A1/2)
, (73)

	ρH = − 88πνmnDR2λ2

e2 n0(26λ2 + 5R2 ln A1/2)2 β3. (74)

At the conditions R2 � λ2 � R2 ln A1/2, the main contri-
butions to Eqs. (70) and (73) coincide, and Eq. (74) differs
from Eq. (72) only by a factor close to unity. At λ2 

R2 ln(λτ/R), we arrive at the results:

ρxx ≈ 10πνmnDR2

13e2 n0λ2
= 10πmnDR2

13e2 n0τ3
, (75)

	ρH ≈ −88πνmnDR2

676e2 n0λ2
β3 = −66πR2 nD

169
ρ0

H . (76)

This result is very unexpected. Indeed, the longitudinal resis-
tance does not depend on the relaxation time of the second
harmonic of the distribution function, i.e., on the viscous
stress relaxation time, and the correction to the Hall resistance
does not depend on the relaxation times of both the second
and third harmonics but depends only on the size and concen-
tration of disks. This means that, within the three-harmonic
approximation, there is a regime that is radically different
from the hydrodynamic one. From Eq. (75), we see that τ ∼
τ3/nDR2, whence it follows λτ ∼ λ/

√
nDR2 
 λ.

The expression in Eq. (73) can be interpreted as the
resistance of the system of two parallel channels, the hydro-
dynamic one and the nonhydrodynamic one:

1

ρxx
= e2 n0τh

m
+ e2 n0τnh

m
,

τh = ln A

2π l2
2 nD

τ2 
 τ2,

τnh = 13

10πnDR2
τ3 
 τ3.

The first term in the right-hand side of this expression coin-
cides with the conductivity in the hydrodynamic regime, and
the second term is the conductivity in the nonhydrodynamic
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regime discussed above. Introducing notation �ik,h for the
hydrodynamic viscosity tensor:

�xx,h = −�yy,h = −mν

(
∂Vx

∂x
− ∂Vy

∂y

)
,

�xy,h = �yx,h = −mν

(
∂Vx

∂y
+ ∂Vy

∂x

)
,

and using Eq. (50), we obtain a diffusionlike equation for
dynamics of the shear stress:

1

τ2
�ik = 1

τ2
�ik,h + ν3	�ik, ν3 = 1

4
vF l3.

In the hydrodynamic regime, the first term dominates in the
right part of this equation, whereas in the nonhydrodynamic
regime, when R � λ, the second term plays the main role in
the regions r < λ. In this case, the balance between relaxation
and diffusion of the shear stress tensor is established:

−ν3	�ik = − 1

τ2
�ik .

The voltage applied to the sample is approximately equal
to the sum of the voltages on the regions r < λ and on the
internal areas of disk.

We note that the described picture breaks down already
in the very small magnetic fields when the inequality λ < R,
equivalent to the inequality:

β2 >
l2
3R

√
τ2

τ3
� 1,

becomes valid.
It is instructive to compare these results with the results

of calculation of the Poiseuille flow in a long sample within
the three-harmonic approximation. The last consideration was
performed in recent work [46]. For such a flow, the Hall
voltage takes the form:

eUH = B

n0c
I − �xx(W ) − �xx(0). (77)

In narrow samples l2, l3 � W , this general formula yields

UH = B

en0c
I − β2ExW + β

1 + λ3/λ
ExW,

λ3/λ ∼ 1√
1 + β2

3

√
l3
l2

. (78)

The first two terms on the right-hand side of this expression
are the hydrodynamic bulk contribution: the first one is the
main part, whereas the second one is the Hall viscosity cor-
rection. The third term in Eq. (78) corresponds to the voltage
drop in the narrow near-edge layers, with the widths of the
order of

√
l3l2/(1 + β2

3 ) � W .
We see that the hydrodynamic correction by its abso-

lute value is always larger than the ballistic correction due
to the third harmonic. It is also seen that, at l3 
 l2, the
hydrodynamic correction dominates, while at l3 ≈ l2, both
corrections are of the same order of magnitude and partially
compensate each other. It is noteworthy that, for the flow
bypassing disks, the situation is the opposite: At l3 
 l2, the

third-harmonic ballistic correction may be the main one, while
at l3 ≈ l2, it is small as compared with the hydrodynamic
one.

In this way, we see that the answer to the question about
the magnitude of the correction to the Hall resistance due to
the third harmonic is not obvious in advance and depends on
the system under study.

Let us briefly discuss the limit l3 → 0 (the purely hydro-
dynamic limit).

In the system with disks in this limit, there, as expected,
only the hydrodynamic correction remains, while in the case
of the Poiseuille flow, the corrections compensate each other.
In other words, for a Poiseuille problem, the result in the
limit l3 → 0 does not coincide with the formulas we for-
mally put at l3 = 0. It is not difficult to understand how it
happens. Indeed, at l3 → 0, the width of the edge layers
∼ √

l2l3 tends to zero, while the derivative of velocity and
other quantities tends to infinity at l3 → 0. Correspondingly,
at the edge jumps or boundary layers are formed, where the
function �xx(y), whose values at edges determine the Hall
voltage by Eq. (78), sharply increases. Thus, all quantities
tend to their hydrodynamic values at all points except the very
sample edges. Such a singularity is obtained in the framework
of the accepted model; however, it is not excluded that con-
sidering higher moments in the real problem may somehow
cure it.

Finally, let us point out the obvious fact that, if the
fourth-harmonic relaxation time τ4 (or the fourth and higher
harmonics relaxation times) is relatively long [for example,
τ4 ∼ τ3 at the above-discussed case τ2 � τ3], then other
diverse complex regimes of quasihydrodynamic flows can
appear.

IV. COMPARISON WITH EXPERIMENT

A. Qualitative comparison

1. General similarity of experimental data
and predictions of theory

Let us compare the theoretical results on longitudinal re-
sistivity obtained in Sec. II with the experimental results
of Ref. [27]. As noted in the Introduction, in this paper, a
set of high-quality GaAs quantum well samples was fabri-
cated in which localized macroscopic obstacles of various
densities were made using electron-beam lithography and
subsequent reactive ion etching. Extensive magnetotransport
measurements of these samples were performed in Ref. [27],
and various types of giant negative magnetoresistance were
observed.

In Figs. 3(a)–3(c), we present electron microscope pho-
tography of a typical sample studied in experiment [27] and
results on the longitudinal resistance in moderate magnetic
fields at different temperatures. It is seen that strong negative
magnetoresistance with some additional features, depending
on temperature, was observed. In Fig. 3(d), we present the
result of our calculation of longitudinal resistance in arbitrary
units for the samples with rough and smooth disks at two
different temperatures. It is seen that the experimental and
theoretical curves qualitatively correspond one to another very
well.
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FIG. 3. (a) and (b) Magnetoresistance of GaAs quantum well
samples with obstacles fabricated by ion etching at different tem-
peratures T reported in Ref. [27]. Data for samples presented in (a)
and (b) differ by their widths w but have the same dimensionless
densities of obstacles n∗ = nDR2. The obstacle radius R is 0.42 μm.
(c) Scanning electron microscope photography of a typical sample.
(a)–(c) are taken from Ref. [27]. (d) The results of the developed
theory for two different temperatures T1 and T2, T2 = 1.5T1, for the
cases of rough and smooth disks [Eqs. (23) and (27)].

2. Comparison of shapes of experimental and theoretical
magnetoresistance

Moreover, we compared the shape of the calculated mag-
netoresistance curves for the samples with rough and smooth
disks studied theoretically with the shape of the experimental
magnetoresistance curve corresponding to the lowest temper-
ature (see Fig. 4). It is seen that the calculation result for
the disks with smooth edges, from which the electrons were
reflected mirrorlike, agrees with the experimental curve much
better than the calculation result for the disks with rough
edges, which scatter electrons diffusely. The theoretical curve
for the latter case in the region of small magnetic fields is

FIG. 4. Magnetoresistance of a GaAs quantum well sample stud-
ied in Ref. [27] with obstacles made by ion etching at temperatures
T = 80 mK. Experimental blue curve is taken from Ref. [27]. Solid
and dashed red curves are the results of our hydrodynamic theory for
the samples with rough and smooth disks. The last curves are plotted
by Eqs. (23) and (27), respectively.

sharper than both the experimental and theoretical curves for
the smooth disks.

Note that we use arbitrary units in Fig. 4 for the resistance
as, in the current subsection, we perform only a qualitative
comparison of the experimental data with our predictions.

Based on the results of Fig. 4, we conclude that a detailed
comparison of theory and experiment allows us to choose a
realistic model of samples with macroscopic obstacles.

B. Quantitative comparison

1. Half-width of magnetoresistance curves

Let us qualitatively discuss the magnetoresistance curves
for the two samples studied in Ref. [27] for some intermediate
temperature, for example, for 8 K [see Fig. 3(b)].

To characterize the width of magnetoresistance curves, we
introduce their half-width В1/2. Within the hydrodynamic the-
ory [17,49], this value is determined by the relaxation time
of the shear stress τ2 from the condition ωc(B1/2) τ2 = 1. In
all samples studied in Ref. [27], the radii of the disks are
R = 0.5 µm. For sample 1, in which the density of defects
is nD = 1.24 × 106 cm−2 [the corresponding mean distance
between defects is d = (nD)−1/2 = 9.0 μm ], we obtain for
the relaxation length the result l2 = vF τ2 = 1.5 μm from the
value В1/2 extracted from the magnetoresistance width. For
sample 2, in which the defect density is nD = 1.0 × 107 cm−2

[in this sample, we have d = (nD)−1/2 = 3.2 μm ], we deduce
within the same procedure l2 = vF τ2 = 1.1 μm.

Our analysis shows that the mean free path lengths l2 are
smaller than the mean distances between the defects in both
samples, as the inequality d > l2 is fulfilled. Thus, a large
hydrodynamic contribution to the flow is expected in both
samples.

We emphasize that the parameter В1/2 is the only fitting
parameter in our analysis of experimental data on giant neg-
ative magnetoresistance. It yields the value τ2, which in turn
leads the hydrodynamic contribution to the resistance at zero
magnetic field 	ρ(B = 0). Below, we compare the values
	ρ(B = 0) calculated for both samples with nD = 1.24 × 106

and 10 × 106 cm−2 with the experimental data on the values
	ρ(B = 0) in these two samples.

2. Important characteristic magnetic fields

The important characteristic values of the magnetic field
are the magnetic field BR, at which the cyclotron radius takes
the value equal to the defect radius, and the field Bd , at which
the cyclotron radius turns out to be of the order of the distance
between the defects d . For both samples, the field BR is the
same, being equal to 164mT , and the field Bd is equal to 9.2
mT for sample 1 and 26.0mT for sample 2. Both fields are
shown by vertical lines in Fig. 5.

The physical nature of the regimes determined by these
fields are as follows. At B < Bd , when Rc > d , the ballistic
effects are important, related to scatterings of electrons only
on disks, without a substantial role of the interparticle scat-
tering. In the diapason Bd < B < BR, corresponding to the
inequality R < Rc < d , viscous flows are formed in the
regions between disks, at distances greater than Rc from
disk edges. When B > BR, one should expect a well-formed
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FIG. 5. (a) and (b) From Fig. 4 with added vertical lines corre-
sponding to the characteristic magnetic fields BR and Bd . Vertical
gray line depicts the center of the magnetoresistance curve corre-
sponding to zero magnetic field inside the sample (the scale on
horizontal axis, apparently, has an artificial shift).

viscous flow everywhere between disks and with some hydro-
dynamic boundary conditions at the disk edges. The last ones
are formed in the semiballistic layers around disk edges with
the width of the order Rc.

3. Amplitude of magnetoresistance

Now we compare the theoretical and experimental values
of the relative amplitudes of magnetoresistance, which is the
difference of the resistance at B = 0 and in the limit B 
 B1/2.

For sample 1 with the defect density nD = 1.24 ×
106 cm−2 (which corresponds to d/R = 18), the magnetore-
sistance amplitude is 	ρexp(B = 0) ∼ 7 Ohm [see Fig. 6(a)],
while the calculation by Eqs. (23) and (27) with the obtained
above relaxation time τ2 yields 	ρtheor (B = 0) = 9.6 Ohm.
For sample 2, in which nD = 1.0 × 107 cm−2 (this value cor-
responds to d/R = 6), we have 	ρexp(B = 0) ∼ 35 Ohm [see
Fig. 6(b)], while Eqs. (23) and (27) without the logarithm
factor ln(A), which is of the order of unity in this case,
yield 	ρtheor (B = 0) ∼ 35 Ohm (recall that our calculations
assumed the inequality of ln(A) 
 1.

We see that the theoretical values of the hydrodynamic con-
tribution to the resistance at zero magnetic field 	ρ(B = 0),
calculated with the time τ2 obtained from the widths of the
magnetoresistance curves, are in reasonable agreement with
the experimental values. For the discussed two samples, both
values d and R correspond to the not-too-large or even not
large (∼ 1) parameter А = (8πnDR2)−1 from Eq. (22), by the
logarithm of which ln(A) the decomposition of the solution
for the flow was performed. Namely, for sample 1, we have
A = 12.8 and ln(A) = 2.6. As a result, good agreement be-

FIG. 6. (a) and (b) From Fig. 4 with added horizontal lines cor-
responding to the relative height of the magnetoresistance curves at
8 K.

FIG. 7. (a) and (b) From Fig. 4 with added horizontal line corre-
sponding to the resistance in the limit B 
 BR at lowest temperature
1.4 K.

tween the theoretical and experimental values of 	ρtheor (B)
is reached. For sample 2, this value turns out to be A = 1.5,
and thus, ln(A) = 0.47. Thus, in the last case, the developed
theory is applicable only on a qualitative but not quantitative
level; the values 	ρtheor (B = 0) and 	ρexp(B = 0) are of the
same order of magnitude but are numerically different.

4. Residual ohmic resistance

In the limit of very low temperatures, when the interparti-
cle scattering time τee ∼ 1/T 2 becomes very long, the giant
negative magnetoresistance persists (see Fig. 3). The reason
for this fact can be in the scattering of electrons on disorder
(for example, short-range defects) between the macroscopic
defects (disks). Such scattering leads to relaxation of the shear
stress with the rate 1/τ2,dis as well as to some residual momen-
tum relaxation with the rate 1/τ1,dis, leading to the residual
resistance. The last value exhibits itself by the longitudinal
resistivity ρxx(B) in the limit ωcτ2,dis 
 1 [17,50].

Now we perform a quantitative analysis of experimental
data for the case of the lowest temperature T = 1.4 K (see
Fig. 7). From the half-width of the curve ρxx(B), we extract the
time τ2,dis by the procedure described above. From the value
ρxx in the limit ωcτ2,dis 
 1 and the Drude formula ρxx =
m/(e2 n0τ1,dis ), we obtain the experimental value of the trans-
port time τ1,dis. The resulting times τ1,dis and τ2,dis differ from
one another anomalously strongly. For sample 1, we have
τ1,dis/τ2,dis = 45, and for sample 2, we have τ1,dis/τ2,dis = 32.
A similar very strong difference of τ1,dis and τ2,dis was also
found when analyzing experimental data obtained on similar
samples (see, for example, Refs. [14,17,50]).

Ordinarily, the values of times τ1,dis, τ2,dis, τ3,dis, etc., have
the same order of magnitude. A possible reason for the anoma-
lously large difference between τ1,dis and τ2,dis may be related
to the following mechanism. It was proposed in Ref. [52] that
dynamically connected pairs of electrons, which repeatedly
collide with one another due to their returns induced by the
action of the magnetic field, play an important role in trans-
port of 2D electrons at classical magnetic fields. Dynamics
of such pairs induced the memory effects in ac hydrody-
namic magnetotransport, particularly the magnetooscillations
of photoconductivity; those may be a mechanism of the well-
known MIRO effect in high-quality samples. It is noteworthy
that similar memory effects in magnetotransport, induced by
the analog of such extended collisions, have been previously
studied for the case of noninteracting electrons in disordered
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samples with localized defects (see, for example, Ref. [51]
and references therein).

For a rigorous description of the effects associated with
such extended collisions, leading to a sharp increase in the
degree of correlation of the dynamics of electrons, the Boltz-
mann equation for the one-particle distribution function of
electrons is not sufficient. Possibly, it is necessary to solve
the equation not only for the evolution of such distribution
function but also for the evolution of spatially inhomogeneous
two-particle correlators of electron distributions. For example,
the construction of such equations was carried out in Ref. [53]
(and in other works by the authors) for the Boltzmann gas of
uncharged particles and in Ref. [54] for a degenerated gas of
electrons. We are currently studying these correlation effects
in relation to our problem for a proper explanation of the giant
magnetoresistance of high-quality samples in the limit T → 0.

V. CONCLUSIONS

We have theoretically studied the magnetotransport of elec-
trons in samples with macroscopic defects (disks) in both
the hydrodynamic and quasihydrodynamic regimes. The latter
assumes that the third-order harmonics of the electron distri-
bution function as well as the first and second ones, control the
flow, in contrast to the hydrodynamic regime, which is based
on the approximation of two harmonics.

We have shown that, in the hydrodynamic regime, the
resistivity tensor does not depend on the Hall viscosity if the
boundary conditions on the obstacles do not depend on it and
that the flux profile is independent of the magnetic field if the
boundary conditions do not depend on it. We have examined
both cases of rough and smooth disk boundaries and have
shown that, in both cases, there is strong negative magne-
toresistance described by the same expression, up to small
corrections. As for the Hall resistivity, in the case of rough
boundaries of the disks, it is exactly equal to the standard
value B/en0c because the boundary conditions in this case
do not depend on the magnetic field and the Hall viscosity.
In the case of smooth boundaries, there is a small correction
to the standard value proportional to the Hall viscosity (the
boundary conditions depend on the Hall viscosity and the
magnetic field).

Based on the obtained results, we argue that the cor-
rection to the standard value of the Hall resistivity is an
important characteristic of the type of defect edge. Namely,
the smother the disk edges, the larger the deviation of the
Hall resistance from its standard value. Moreover, the depen-
dence of the correction in the Hall resistance on the magnetic
field provides information about the relationship between
the relaxation times of the second and higher harmonics of
the distribution function. However, more precise experiments
than Refs. [13,27] are needed for this purpose.

In the second part of the paper, we derive quasihydro-
dynamic equations from the kinetic equation based on the
three-harmonic approximation for the distribution function
and solve them for the case of smooth disks. It is shown
that, depending on the relation between the relaxation lengths
l2, l3 and the disk radius R, the expression for the resistivity
tensor may coincide with the hydrodynamic one or may differ
from it. We assume that, throughout the paper, the inequality

l2 � R is fulfilled, whereas l3 can be any length. At l3 � R,
the resistivity tensor coincides with the hydrodynamic one,
regardless of the relation between l2 and l3. In other words, our
calculations show that hydrodynamics works not only under
the condition l3 � l2, which is usually taken when deriving
the equations of hydrodynamics from the kinetic equation, but
also under any relation between l3 and l2, if

√
l3l2 � R and

l3 � R. If
√

l3l2 � R and l3 
 R, the longitudinal resistivity
remains hydrodynamic, while the correction to the stan-
dard Hall resistivity becomes nonhydrodynamic. Under the
condition

√
l3l2 
 R, the situation is different. At a suffi-

ciently large value of
√

l3l2 (the exact inequality is given in
the main text of the paper), the flow regime that is far from the
hydrodynamic one is realized. In this regime, the longitudinal
resistivity is independent of l2, and the correction δρH to the
standard the Hall resistivity ρ0

H = B/n0ec is independent of
both lengths l3 and l2 but depends only on the radius and
concentration nD of the disks δρH ∼ nDR2ρ0

H .
We have compared the obtained theoretical results with ex-

periment [27] on the magnetotransport of GaAs quantum well
samples with artificially made localized defects of different
densities. Good qualitative agreement between the theoretical
and experimental magnetoresistance curves is demonstrated.
The analysis shows that the model of smooth disks with a
relatively high density of disks describes the experimental
data better than the model of rough disks. We have also per-
formed a quantitative analysis of the experimental data on the
parameters of magnetoresistance curves for two samples with
different densities of defects.

We consider that our results will be useful in analyz-
ing and interpreting experiments on hydrodynamic transport
in samples with 2D viscous electron fluid and macroscopic
localized defects. We hope that the type of giant negative
magnetoresistance, which in Ref. [24] is called bell-shaped
magnetoresistance, is explained by our mechanism. This is
supported by the absence of experimental dependence of the
magnetoresistance on the width of the sample and the temper-
ature dependence typical for the magnetoresistance related to
the diagonal viscosity (see discussion in Ref. [17]).

Based on the obtained results, we also argue that the
correction to the standard value of the Hall resistivity is an
important characteristic of the type of defect edge. Namely,
the smother the disk edges, the larger the deviation of the
Hall resistance from its standard value. Moreover, the depen-
dence of the correction in the Hall resistance on the magnetic
field provides information about the relationship between the
relaxation times of the second and higher harmonics of the
distribution function.
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APPENDIX A: EXPRESSIONS FOR HYDRODYNAMIC
VELOCITIES AVERAGED OVER FLOW REGION

In this section, we demonstrate how the terms with sample-
averaged velocities V̄x and V̄y arise in Eq. (8). For example,
the transfer of the function −mωcψ/e to the right-hand side
of Eq. (6) in the first equation gives

mωc

eS

∫ W

0
[ψ (L, y) − ψ (0, y)]dy.

Let us now calculate the sample average velocity:

mωc

e
V̄y = mωc

eS

∫ W

0
dy

∫ L

0
dxVy(x, y)

= mωc

eS

∫ W

0
dy

∫ L

0
dx

∂ψ (x, y)

∂x

= Rmωc

eS

∑
k

∮
�k

ψ cos θkdθk

+ mωc

eS

∫ W

0
[ψ (L, y) − ψ (0, y)]dy. (A1)

Here, the second term in the right part coincides with the
above expression arising from the transfer of the function
−mωcψ/e to the right part of Eq. (6), while the first term is
zero because, at the edges of the disks, ψ = const. due to the
condition Vr = ∂ψ/r∂θ = 0.

In this way, Eq. (A1) connects the mean velocity V̄y with
the expressions containing the function ψ along the sample
and the disk edges.

APPENDIX B: GENERALIZATION OF THE THEOREM
ABOUT ABSENCE OF DEPENDENCE OF RESISTIVITY

TENSOR ON HALL VISCOSITY

Here, we consider a sample with macroscopic defects of
any form. We will show that properties of the electron fluid

are also independent of the Hall viscosity if the defects edges
are rough. Thus, the corresponding theorem formulated in
Sec. II A has a general character.

In the case of an arbitrarily shaped obstacle, instead of
Eq. (9), we will have the equations:

−mωcV̄y − eUsd

L
− R

S

∑
k

∮
�k


̃dy − mνR

eS

∑
k

∮
�k

�dx = 0,

mωcV̄x − eUH

W
+ R

S

∑
k

∮
�k


̃dx − mνR

S

∑
k

∮
�k

�dy = 0.

(B1)

From Eq. (5), it follows that � does not depend on the Hall
viscosity, and from Eq. (4), it follows that the flow function
can be presented in the form:


̃ = 
̃1 + 
̃2,

where 
̃1(x, y) does not depend on νH , but 
̃2 does
not depend on the coordinates. Since

∫
�k

const .(x, y)dx =∫
�k

const .(x, y)dy = 0, it immediately follows from Eq. (B1)
that the voltages Usd and UH , and thus the components of
the resistivity tensor, are independent of the Hall viscosity.
The independence of the velocity profile in the sample with
such boundary conditions on the magnetic field follows from
Eq. (5).

APPENDIX C: CALCULATION OF WORK OF THE HALL
VISCOSITY TERM IN THE NAVIER-STOKES EQUATION

Below, we calculate the work from the force originated
from the Hall viscosity term and show that it is equal to zero:

AH = mνH

e

∫
[	V × ez]Vd2r = mνH

e

∫
(Vx	Vy − Vy	Vy)d2r = mνH

e

∫
div(Vx∇Vy − Vy∇Vx )d2r

= − mνH R

e

∑
k

∮
�k

(
Vx

∂Vy

∂r
− Vy

∂Vx

∂r

)
dθ = (Vr = 0)

= mνH R

e

∑
k

∮
k

[
(Vr cos θ − Vθ sin θ )

∂ (Vr sin θ + Vθ cos θ )

∂r
− (Vr sin θ + Vθ cos θ )

∂ (Vr cos θ − Vθ sin θ )

∂r

]
dθ

= − mνH R

e

∑
k

∮
�k

Vθ

∂Vr

∂r
dθ =

(
Vθ = ∂ψ

∂r
,Vr = −1

r

∂ψ

∂θ

)
= mνH R

e

∑
k

∮
�k

∂ψ

∂r

∂

∂r

(
1

r

∂ψ

∂θ

)
dθ

= − mνH

eR

∑
k

∮
�k

∂ψ

∂r

∂ψ

∂θ
dθ + mνH

e

∑
k

∮
�k

∂ψ

∂r

∂2ψ

∂θ∂r
dθ = 0 + mνH

2e

∑
k

∮
�k

∂

∂θ

(
∂ψ

∂r

)2

dθ = 0 + 0 = 0.

APPENDIX D: DERIVATION OF THE EFFECTIVE
MEDIUM EQUATION

In this section, we provide a detailed derivation of Eq. (10)
for the case of the absence of a magnetic field (in the presence
of a magnetic field, the calculations are similar but more

cumbersome and contain nothing ideologically new). For this
purpose, let us introduce the function:

H (r; r1, . . . rN ) = 1 −
N∑

j=1

h(R − |r − r j |), (D1)
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where h(x) is the stepped Heaviside function, and the points
r j describe the positions of the centers of the disks. In ad-
dition, we introduce the probability density of the given disk
configuration P(r1, . . . rN ), so that the mean value of the value
Q(r; r1, . . . rN ) at a point r is given by an integral:

〈Q〉(r) =
∫

Q(r; r1, . . . rN )P(r1, . . . rN )dr1 · · · drN .

In the following, we will assume the distribution of disks
to be random and, on average, homogeneous. Disks cannot
overlap, so in general, P(r1, . . . rN ) = 0 at |ri − r j | < 2R. We
will not consider this restriction since it leads to quadratic
corrections in the small parameter R2 nD. This means that
P(r1, . . . rN ) = p(r1) · · · p(rN ), where p(ri ) = 1/S. Multiply-
ing the x component of Eq. (1) by the function H and
averaging the result over the positions of all disks gives

e〈HEx〉 = mνdiv〈(H∇Vx )〉 − mν〈∇Vx · ∇H〉. (D2)

It is not difficult to show (see, e.g., Ref. [39]) that
div〈(H∇Vx )〉 = 	〈Vx〉. In the case of a homogeneous disk
distribution, 	〈Vx〉 = 0. Taking advantage of the symmetry
of the integrand with respect to the permutations of disks, we
obtain from Eqs. (D1) and (D2)

e〈HEx〉 = −mνnD

∫
δ(R − |r − r1|)∇〈Vx〉1 · e1dr1,

e1 = r − r1

|r − r1| , (D3)

where 〈Vx〉1 is the average, assuming one disk is fixed:

〈Vx〉1 =
∫

Vx(r; r1, . . . rN )
dr2 · · · drN

SN−1
.

It is clear that 〈Vx〉1 is a function of the difference r − r1,
which allows us to go from integration over r1 in Eq. (D3) to
integration over ρ = r − r1. Considering the δ function, we
obtain

e〈HEx〉 = mνnDR
∫

∂〈Vx〉1

∂ρ
dθ. (D4a)

It comes out in the same way:

e〈HEy〉 = mνnDR
∫

∂〈Vy〉1

∂ρ
dθ. (D4b)

Now using the relations in Eq. (2), we find

e〈HEx〉 = mνRnD

∮
�

〈�〉1 sin θdθ,

e〈HEy〉 = − mνRnD

∮
�

〈�〉1 cos θdθ. (D5)

These equalities do not consider the field inside the disks. For
this field, we have

e〈(1 − H )Ex〉 = − enD

∫
h(R − ρ)〈Ex〉1dρ,

e〈(1 − H )Ey〉 = − enD

∫
h(R − ρ)〈Ey〉1dρ.

which by virtue of Eq. (4) can be written in the form:

e〈(1 − H )Ex〉 = mνnD

∫
h(R − ρ)

∂〈�〉1

∂y
dρ,

e〈(1 − H )Ey〉 = − mνnD

∫
h(R − ρ )

∂〈�〉1

∂x
dρ.

or after simple transformations, in the form:

e〈(1 − H )Ex〉 = − mνRnD

∫
�

R
∂〈�〉1

∂ρ
sin θdθ,

e〈(1 − H )Ey〉 = mνRnD

∫
�

R
∂〈�〉1

∂ρ
cos θdθ. (D6)

Adding Eqs. (D5) and (D6) and considering that 〈Ex〉 =
−Ux/L and 〈Ey〉 = −Uy/L, for B �= 0, we obtain Eq. (10).

From symmetry considerations, it follows that the integrals
in the right parts of Eq. (D4), and hence in the right parts of
Eqs. (15) and (16), are proportional to the mean flow velocity
(V̄x = 〈Vx〉, V̄y = 〈Vy〉), so that the right parts of Eq. (10) take
the form:

mνRnD

∮
�

(
R

∂〈�〉1

∂r
− 〈�〉1

)
sin θdθ = mV̄x

τ
+ mδωcV̄y,

−mνRnD

∮
�

(
R

∂〈�〉1

∂r
− 〈�〉1

)
cos θdθ = mV̄x

τ
− mδωcV̄x.

(D7)

Here, the relaxation time τ and the shift of the cyclotron
frequency δωc are to be determined.

Now we need to derive equations for the values 〈V〉1, 〈E〉1,
and 〈�〉1. For this purpose, we fix one of the disks and,
multiplying Eq. (1) by H , we average it over the positions
of the other disks. Then for the average local field in the flow
region, we obtain (again, we temporarily assume that B = 0):

e〈HEx〉1 = mν	〈Vx〉1−mνnD

∫
δ(R − |r − r2|)

× ∇〈Vx〉1,2 · e2dr2,

e〈HEy〉1 = mν	〈Vy〉1−mνnD

∫
δ(R − |r − r2|)

× ∇〈Vy〉1,2 · e2dr2,

where〈Q〉1,2 is the average provided that the positions of the
two disks are fixed:

〈Q〉1,2 =
∫

Q(r, r1, r2; r3, . . . , rN )
dr3 · · · drN

SN−2
.

For the field in the area occupied by disks, we obtain, like
Eq. (D6),

e〈(1 − H )Ex〉1 = nD

∫
h(R − |r − r2|)〈Ex〉1,2dr2,

and for the mean total field, we will have (B �= 0)

e〈Ex〉1 = mν	〈Vx〉1 − mωc
〈
Vy

〉
1

− mνRnD

∮
�

(
R

∂〈�〉12

∂r
− 〈�〉12

)
sin θdθ,

e〈Ey〉1 = mν	〈Vy〉1 + mωc〈Vx〉1

+ mνRnD

∮
�

(
R

∂〈�〉12

∂r
− 〈�〉12

)
cos θdθ.

Finally, assuming, following Ref. [39], that the integrals in
these equations are expressed over 〈Vx〉1 and 〈Vy〉1 in the same
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way as the analogous integrals in Eq. (D7) are expressed over
V̄x and V̄y, we obtain Eq. (11) (in it, the angle brackets and
the subscript 1 for the velocity and electric field vectors are
omitted). The point of the assumptions made is the idea of

imagining the second disk, located in the R neighborhood of
the point r, being in a stream flowing at a large distance from
it with velocity 〈V〉1(r − r1) rather than 〈V〉. In Ref. [39], the
corresponding calculations are presented.

APPENDIX E: SYSTEM OF EQUATIONS FOR THE DISTRIBUTION FUNCTION
IN THE THREE-HARMONIC APPROXIMATION

In this section, we present the detailed equations for the amplitudes of the angular harmonics of the truncated distribution
function, which follow from the kinetic equation.

Substituting the expression in Eq. (49) into the kinetic equation, we obtain a system of equations:

v

2

∂ f2c

∂x
+ v

2

∂ f2s

∂y
− eExv f ′

F + ωc f1s = 0,

−v

2

∂ f2c

∂y
+ v

2

∂ f2s

∂x
− eEyv f ′

F − ωc f1c = 0,
∂ f1c

∂x
+ ∂ f1s

∂y
= 0,

v

2

(
∂ f1c

∂x
− ∂ f1s

∂y
+ ∂ f3c

∂x
+ ∂ f3s

∂y

)
+ 2ωc f2s + 1

τ2
f2c = 0,

v

2

(
∂ f1c

∂y
+ ∂ f1s

∂x
− ∂ f3c

∂y
+ ∂ f3s

∂x

)
− 2ωc f2c + 1

τ2
f2s = 0,

f3c = l3
2
(
1 + β2

3

)(
−∂ f2c

∂x
+ ∂ f2s

∂y
+ β3

∂ f2c

∂y
+ β3

∂ f2s

∂x

)
,

f3s = − l3
2
(
1 + β2

3

)(
∂ f2s

∂x
+ ∂ f2c

∂y
+ β3

∂ f2c

∂x
− β3

∂ f2s

∂y

)
. (E1)

We can exclude the third-order harmonics f3s and f3c from these equations:

l2
2

∂ f1c

∂x
− l2

2

∂ f1s

∂y
− l2l3

4
(
1 + β2

3

) (	 f2c − β3	 f2s) + β f2s + f2c = 0, β3 = 3ωcτ3, ln = vτn,

l2
2

∂ f1c

∂y
+ l2

2

∂ f1s

∂x
− l2l3

4
(
1 + β2

3

) (	 f2s + β3	 f2c) − β f2c + f2s = 0. (E2)

Note that, according to our condition of instantaneous relaxation of all harmonics beginning with the fourth harmonic, in the
expressions for f2c and f2s, there is no contribution of the fourth harmonic.

According to the definitions in Eq. (37), we have

�xx = − �yy = πm

n0

∫
f2cv

2 pd p

(2π h̄)2 , �xy = �yx = πm

n0

∫
f2sv

2 pd p

(2π h̄)2 ,

Vx = 2π

n0

∫
f1cv

pd p

(2π h̄)2 , Vy = 2π

n0

∫
f1sv

pd p

(2π h̄)2 . (E3)

Multiplying Eq. (E2) by vi and vivk and integrating, we obtain Eq. (50).

APPENDIX F: BOUNDARY CONDITIONS AT EDGES OF SMOOTH DISKS

Here, we derive the boundary conditions at the disk edges for the momentum flux tensor calculated on the truncated three-
harmonic distribution function.

The condition in Eq. (57) on the distribution function can be rewritten as

[1 − (−1)n cos 2nθ ] fnc − (−1)n sin 2nθ fns = 0,

−(−1)n sin 2nθ fnc + [1 + (−1)n cos 2nθ] fns = 0. (F1)

These equations connect the functions fnc(ε, R, θ ) and fns(ε, R, θ ):

fnc sin nθ = fns cos nθ, n = 2k; fnc cos nθ = − fns sin nθ, n = 2k + 1. (F2)
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For n = 2, we have from these relations f2c sin 2θ = f2s cos 2θ , which is equivalent to the hydrodynamic condition �rθ |r=R =
0. For the third harmonic, the relations in Eq. (D2) yield f3c cos 3θ + f3s sin 3θ = 0, whence considering the first of Eq. (50), we
obtain (

−∂ f2c

∂x
+ ∂ f2s

∂y
+ β3

∂ f2c

∂y
+ β3

∂ f2s

∂x

)
r=R

cos 3θ −
(

∂ f2s

∂x
+ ∂ f2c

∂y
+ β3

∂ f2c

∂x
− β3

∂ f2s

∂y

)
r=R

sin 3θ = 0,

or equivalently(
−∂�xx

∂x
+ ∂�xy

∂y
+ β3

∂�xx

∂y
+ β3

∂�xy

∂x

)
r=R

cos 3θ −
(

∂�xy

∂x
+ ∂�xx

∂y
+ β3

∂�xx

∂x
− β3

∂�xy

∂y

)
r=R

sin 3θ = 0.

From these equations rewritten in the polar coordinates, using the formulas:

�rr = �xx cos 2θ + �xy sin 2θ, �rθ = −�xx sin 2θ + �xy cos 2θ,

�xy = �rr sin 2θ + �rθ cos 2θ, �xx = �rr cos 2θ − �rθ sin 2θ, (F3)

we obtain the second condition in Eq. (58).
We emphasize that the first condition in Eq. (58) is exact, while the second condition is approximate since, in its derivation,

the contribution of the fourth harmonic has been omitted in the expressions in Eq. (C1) for f3c and f3s.

APPENDIX G: CALCULATION OF TENSOR �αβ IN THREE-HARMONIC APPROXIMATION

In this section, we construct the solution of the hydrodynamiclike equations for flow function ψ (r) = 2Re [χ (r)ei θ , the
electrostatic potential �(r) = 2Re[ f (r)ei θ ], and the momentum flux �ik (r) = 2Re[Qik (r)ei θ ] within the three-harmonic ap-
proximation. The differential operator on the left-hand side of the first in Eq. (67b) is zeroed by the two functions 1/r and 1/r3.
Thus, we seek a solution in the form:

Qrθ = a

r
+ g(r)

r3
,

where a is a constant, and g(r) is a new unknown function. The equation for g is

∂2g

∂r2
− 1

r

∂g

∂r
= r

∂F

∂r
..

It contains only derivatives of g(r) and is easily solved. As a result, we have

Qrθ = b

r
+ c

r3
+ 1

r3

∫
rF (r)dr = b

r
+ c

r3
+ 1

r3

∫ [
2ir2ϕ − m

τ
r2 ∂ (rχ )

∂r

]
dr

= b

r
+ c

r3
− m

τ
χ + 2

r3

∫
r2

(
iϕ + mχ

τ

)
dr.

Substituting here the expressions in Eqs. (62) and (63) and considering that
∫

x2 K1(x)dx = − x2 K2(x), we obtain for the
tensor Qαβ :

Qrθ = b

r
+ c

r3
+ ir

2

(
α̃ + im

τ
α

)
+ iδ̃

r
− m

τ
[γ+K1(

√
κ+r) + γ−K1(

√
κ−r)]

− 2

r

[
1√
κ+

(
iγ̃+ + m

τ
γ+

)
K2(

√
κ+r) + 1√

κ−

(
iγ̃− + m

τ
γ−

)
K2(

√
κ−r)

]
,

Qrr = − ib

r
+ ic

r3
+ ϕ + 2i

r3

∫
r2

(
iϕ + mχ

τ

)
dr

= − ib

r
+ ic

r3
+ ir

2

(
α̃ + im

τ
α

)
+ imδ

τ r
+ γ̃+K1(

√
κ+r) + γ̃−K1(

√
κ−r)

− 2i

r

[
1√
κ+

(
iγ̃+ + m

τ
γ+

)
K2(

√
κ+r) + 1√

κ−

(
iγ̃− + m

τ
γ−

)
K2(

√
κ−r)

]
. (G1)

The last two formulas in Eq. (50) in radial variables r and θ take the form:

�rθ = − mν

(
1

r

∂Vr

∂θ
+ ∂Vθ

∂r
− Vθ

r

)
− mνβ2

(
∂Vr

∂r
− 1

r

∂Vθ

∂θ
− Vr

r

)
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+ ντ3

1 + β2
3

(1 − β2β3)

(
	�rθ − 4�rθ

r2
+ 4∂�rr

r2∂θ

)
+ ντ3

1 + β2
3

(β2 + β3)

(
	�rr − 4�rr

r2
− 4∂�rθ

r2∂θ

)
,

�rr = − mν

(
∂Vr

∂r
− 1

r

∂Vθ

∂θ
− Vr

r

)
+ mνβ2

(
1

r

∂Vr

∂θ
+ ∂Vθ

∂r
− Vθ

r

)

+ ντ3

1 + β2
3

(1 − β2β3)

(
	�rr − 4�rr

r2
− 4∂�rθ

r2∂θ

)
− ντ3

1 + β2
3

(β2 + β3)

(
	�rθ − 4�rθ

r2
+ 4∂�rr

r2∂θ

)
. (G2)

From Eqs. (G1) and (G2), using the definitions Vr = −∂ψ/r∂θ,Vθ = ∂ψ/∂r and Eqs. (62) and (63), it can be seen that the
tensor � should not contain linear-in-r terms, whence it follows α̃ = −imα/τ . Moreover, we can also see that there are no terms
proportional to r−1, which gives the relation b = mδ/τ and one more connection between the constants: δ̃ = imδ/τ . Finally, the
terms proportional to r−3 enter only in the hydrodynamic part of the tensor and have the form −4mνδ(1 + iβ )/r3 in the case of
�rθ and −4mνδ(i−β )/r3 in the case of �rr . Comparing these relations with Eq. (G1), we obtain c = −4mν(1 + iβ2)δ.

In this way, all constants of integration are expressed via four quantities α, δ, γ+, and γ−, which can be found from the four
boundary conditions: the three on the edges of the disk and the one at infinity ρ → ∞. In the following calculations, it will be
convenient to use the dimensionless radius ρ = r/R, denote αR by α, δ/R by δ, and introduce the parameters ε− = √

κ−R � 1
and ε+ = √

κ+R. The tensor Qαβ is written as follows:

Qrθ = − 4mνδ

R2ρ3
(1 + iβ2) − m

τ
[γ+K1(ε+ρ) + γ−K1(ε−ρ )] − 2

ρ

[
1

ε+

(
iγ̃+ + m

τ
γ+

)
K2(ε+ρ) + 1

ε−

(
iγ̃− + m

τ
γ−

)
K2(ε−ρ)

]
,

Qrr = − i
4mνδ

R2ρ3
(1 + iβ2) + γ̃+K1(ε+ρ ) + γ̃−K1(ε−ρ ) − 2i

ρ

[
1

ε+

(
iγ̃+ + m

τ
γ+

)
K2(ε+ρ ) + 1

ε−

(
iγ̃− + m

τ
γ−

)
K2(ε−ρ)

]
. (G3)

The boundary condition Vr (1) = 0 is equivalent, as it was in hydrodynamics, to the condition χ (1) = 0, so from Eq. (62), we
have

δ = −α − γ+K1(ε+) − γ−K1(ε−). (G4)

The conditions Vx(∞) = Vx and Vy(∞) = Vy yield

α = RVy

2
+ i

RVx

2
≡ α1 + iα2. (G5)

Since at B → 0 the values γ̃− and γ+ turn to zero, it is reasonable to use the coefficients γ− and γ̃+. The condition Qrθ (1) = 0
gives

−4mνδ

R2
(1 + iβ2) − m

τ
[γ+K1(ε+) + γ−K1(ε−)] − 2

[
1

ε+

(
iγ̃+ + m

τ
γ+

)
K2(ε+) + 1

ε−

(
iγ̃− + m

τ
γ−

)
K2(ε−)

]
= 0. (G6)

Finally, it is necessary to satisfy the second boundary condition in Eq. (58), which for the first harmonic is written as[
−∂Qrr

∂ρ
+ 2Qrr + β3

(
∂Qrθ

∂ρ
+ iQrr

)]
ρ=1

= 0,

or considering Eq. (67) and the condition χ (1) = 0, in the form:[
2(2 + iβ3)Qrr − ∂�

∂ρ
+ iβ3

(
� + i

m

τ

∂χ

∂ρ

)]
ρ=1

= 0. (G7)

Thus, we have the following system of equations for finding the values γ− and γ̃+:

−4mνδ

R2
(1 + iβ2) − m

τ
[γ+K1(ε+) + γ−K1(ε−)] − 2i

[
1

ε+

(
γ̃+ − i

m

τ
γ+

)
K2(ε+) + 1

ε−

(
γ̃− − i

m

τ
γ−

)
K2(ε−)

]
= 0,

[
2(2 + iβ3)Qrr − ∂�

∂ρ
+ iβ3

(
� + i

m

τ

∂χ

∂ρ

)]
ρ=1

= 0, (G8)

where

Qrr (1) = − i
4mνδ

R2
(1 + iβ2) + γ̃+K1(ε+) + γ̃−K1(ε−) + 2

[
1

ε+

(
γ̃+ − i

m

τ
γ+

)
K2(ε+) + 1

ε−

(
γ̃− − i

m

τ
γ−

)
K2(ε−)

]
,

δ = − α − γ+K1(ε+) − γ−K1(ε−),
∂χ

∂ρ
= 2α − γ+ε+K0(ε+) − γ−ε−K0(ε−),

�(1) = − 2i
m

τ
α +

(
γ̃+ − i

m

τ
γ+

)
K1(ε+) +

(
γ̃− − i

m

τ
γ−

)
K1(ε−),
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∂�(1)

∂ρ
= − 2i

m

τ
α −

(
γ̃+ − i

m

τ
γ+

)
K1(ε+) −

(
γ̃− − i

m

τ
γ−

)
K1(ε−) − γ̃+ε+K0(ε+) − γ̃−ε−K0(ε−),

�(1) + i
m

τ

∂χ (1)

∂ρ
=

(
γ̃+ − i

m

τ
γ+

)
K1(ε+) +

(
γ̃− − i

m

τ
γ−

)
K1(ε−) − i

m

τ
γ+ε+K0(ε+) − i

m

τ
γ−ε−K0(ε−). (G9)

The formulas in Eq. (G9) have been derived using the identities xK ′
1(x) + K1(x) = −xK0(x) and xK2(x) = 2K1(x) + xK0(x).

In this way, we have derived a close system of equations for the six constants α, δ, γ±, and γ̃± .
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