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Majorana corner modes and tunable patterns in an altermagnet heterostructure
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The mutual competition and synergy of magnetism and superconductivity provide us with a very valuable
opportunity to access topological superconductivity and Majorana fermions. Here, we devise a heterostructure
consisting of an s-wave superconductor, a two-dimensional topological insulator, and an altermagnet, which is
classified as the third magnet and featured by zero magnetization but spin polarization in both real and reciprocal
spaces. We find that the altermagnet can induce mass terms at the edges that compete with electron pairing,
and mass domains are formed at the corners of the sample, resulting in zero-energy Majorana corner modes
(MCMs). The presence or absence of MCMs can be engineered by only changing the direction of the Néel
vector. Moreover, uniaxial strain can effectively manipulate the patterns of the MCMs, such as moving and
interchanging MCMs. Experimental realization, remarkable advantages of our proposal, and possible braiding
are discussed.
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Introduction. In the past decade, Majorana zero modes
(MZMs) have been extensively researched as building blocks
for topological quantum computation [1–6]. Topological su-
perconductors have gained tremendous attention in both
experimental and theoretical settings [1,7–11] as a promising
platform for the realization of MZMs. The key feature that
differentiates topological superconductors from trivial ones is
the presence of MZMs at the boundaries of the system [12–14]
or the core of the vortices [15–18].

The higher-order topological states of matter have ex-
tended our understanding of topological states [19–28] and
provided a new path for the realization of MZMs [29–50].
Compared with first-order conventional topological supercon-
ductors, higher-order topological superconductors (HOTSCs)
have a special “bulk-edge” correspondence. Specifically, the
codimension (dc) of edge states or end states in conventional
topological superconductors is 1, while the dc of hinge states
or corner states in HOTSCs is equal to or greater than 2. Pre-
vious studies have proposed several heterojunction systems to
realize HOTSCs with MZMs, such as utilizing topological
p-wave superconductors [36], unconventional or conven-
tional superconductor/topological insulator heterojunctions
[34,35,47], and ferromagnetic heterojunctions [32,42]. Al-
though progress has been made in the study of HOTSCs,
platforms for tunable MZMs are still difficult to achieve.

Recently, a new magnetic phase dubbed altermagnets
[51,52] was discovered in several materials, such as RuO2

[53,54], Mn5Si3 [55], and KRu4O8 [54], which breaks the
time-reversal symmetry (TRS) despite having zero net magne-
tization. Interestingly, altermagnets with nonrelativistic highly
anisotropic spin splitting [54] are used to explore some
interesting properties [51,56–63], such as finite-momentum
Cooper pairing, Andreev reflection, Hall effect, etc.

*ccliu@bit.edu.cn

A natural question is whether we can use the highly
anisotropic spin splitting and zero magnetization unique to
altermagnets to design and optimize topological superconduc-
tivity, especially higher-order topological superconductivity
and the hallmark Majorana modes.

In this work, we investigate the combination of altermag-
nets with superconductor/topological insulator heterojunc-
tions, as illustrated in Fig. 1(a), and give an affirmative answer
to the above question. There are several forms of spin splitting
in altermagnets with different symmetries, such as d-wave,

FIG. 1. (a) Schematic of the proposed altermagnet heterostruc-
ture. A two-dimensional topological insulator is sandwiched between
an s-wave superconductor and an altermagnet. The emerging MZMs
are localized at the corners. Altermagnets have various spin-
momentum locking with the even-parity waveform, such as d wave,
g wave, and i wave. (b) The phase diagram in the plane of Néel
vector polar angle θ and chemical potential μ. (c) The real-space
wave-function distribution with one MZM localized at each cor-
ner. (Inset) Plot of the several eigenvalues near zero energy. The
common parameters are m0 = 1.0, tx = Ax = Ay = 1.0, ty = 0.5,

�0 = 0.5, and J0 = 1.0.
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g-wave, and i-wave [54]. Without loss of generality, we con-
sider an altermagnets with d-wave magnetism as an example,
and the other symmetries have a similar analysis procedure
[64]. Our findings demonstrate that altermagnetism can drive
the system into a HOTSC phase, resulting in the emergence
of MZMs at the corners of the system, i.e., Majorana corner
modes (MCMs). By adjusting the chemical potential or vary-
ing the direction of the Néel vector, which are both readily
achieved experimentally, we can create or annihilate a pair of
MCMs. Furthermore, combined with uniaxial stress, we can
move and switch MCMs arbitrarily, offering flexible adjusta-
bility for further research.

Model. We begin with a general form of the superconduct-
ing mean-field Hamiltonian H = 1

2

∑
k �

†
k HBdG(k)�k, where

the Nambu spinor basis �
†
k = (c†

kα
, c−kα ), with c†

kα
(ckα) rep-

resenting the fermion creation (annihilation) operator for
the α degree of freedom. The corresponding Bogoliubov–de
Gennes (BdG) Hamiltonian is given by

HBdG(k) =
(

H0(k) − μ�00 −i�20�0

i�20�0 μ�00 − H∗
0 (−k)

)
,

H0(k) = M(k)�03 + Ax sin kx�21 + Ay sin ky�11

+ J (k)s · n ⊗ σx. (1)

�i j = si ⊗ σ j with s j and σ j acting on the spin (↑,↓)
and orbital (a, b) degree of freedom, respectively.
The Néel vector, represented by a unit vector n =
(sin θ cos ϕ, sin θ sin ϕ, cos θ ), can be rotated experimentally
[65]. The first line of the Hamiltonian H0(k) can describe
the conventional topological insulator with a nontrivial
Z2 invariant [66] with M(k) = (m0 − tx cos kx − ty cos ky),
while the second line denotes the d-wave altermagnetism
with J (k) = J0(cos kx − cos ky) [52,54]. Throughout this
work we use the lattice constants as units, and take all the
parameters m0, tx(y), Ax(y), J0, and �0 positive. When we
ignore the altermagnetism term in the normal states, the
Hamiltonian depicts a two-dimensional topological insulator
with time-reversal symmetry [67]. The TRS operation is
given by T = isyK, where K is the complex conjugate. When
the “mass-ring” M(k) = 0 [where the M(k) term changes
sign] of the topological insulator contains an odd number of
time-reversal-invariant momentums (TRIMs), the system has
gapless helical edge states protected by the TRS [68].

Zero-energy MCMs. When proximitized with an s-wave
superconductor and an altermagnet, the helical edge states
will be gapped by breaking the U (1) charge conservation
symmetry and TRS, respectively. The interplay of the s-wave
pairing and altermagnet order parameter will drive the system
into the HOTSC phase. We consider the general case and
choose the chemical potential and Néel vector as variable
parameters, finding that both have significant effects on the
MCMs, as illustrated in the phase diagram [Fig. 1(b)]. One can
find that there are no MCMs when the Néel vector is close to
the in-plane direction. On the contrary, when the Néel vector
has a certain out-of-plane component, it favors the formation
of MCMs. In the HOTSC phase, there is one MCM at each
corner, as shown in Fig. 1(c).

FIG. 2. (a) Quasiparticle spectrum for a cylindrical geometry. In
the presence of altermagnetism and electron pairing, the otherwise-
helical edge states open a gap. The inset shows the variation of
the edge gap with order parameter strength J0 of altermagnets. The
closure of the edge states at the critical J0 = Jc

0 indicates a topo-
logical phase transition at the boundary. (b) Bulk bands along the
high-symmetry path at J0 = 1.0. The inset shows the evolution of
the bulk gap with J0, and no bulk gap closure is found. (c) Schematic
demonstrating the Dirac mass terms of adjacent edges with opposite
signs, forming two domain walls. I, II, III, and IV donate four edges.
(d) The real-space energy spectrum of an open-boundary square
structure of size Lx = Ly = 30. Eight MZMs emerge (red dots). (e)
The distribution of the MZM wave function in real space. (f) The
phase diagram in the plane of the azimuth angle θ and J0. The blue
dotted lines mark the phase boundary. The common parameters are
m0 = 1.0, tx = ty = Ax = Ay = 2.0, and �0 = 0.5.

To get an intuitive picture of the MCMs, we fix the chem-
ical potential μ = 0 and Néel vector along the z direction
(θ = 0) for simplicity. When �0 �= 0, J0 = 0, the TRS of the
system still holds, but the broken U (1) symmetry makes the
helical edge states open a gap, and the system is a trivial su-
perconductor [47]. With the altermagnetism turned on and the
increase of J0, the edge-state gap along the direction of x(y)
will be closed and reopened again, as shown in Fig. 2(a). How-
ever, during the process the bulk state is always fully gapped
[Fig. 2(b)]. This indicates a possible higher-order topological
phase transition [28], which can be made more clearly by the
edge theory in the next section. After the phase transition,
eight MCMs appear with two MCMs at each corner, which are
characteristic of the HOTSC phase, as shown in Figs. 2(d) and
2(e). We will see later that the doubling of MCMs here is due
to the additional symmetry brought about by the zero chemical
potential. In addition, adjusting the Néel vector will affect the
location of higher-order topological phase transitions. With
the chemical potential μ = 0, we analytically obtained the
phase diagram in the plane of the amplitude J0 and the polar
angle θ of the altermagnetic order parameter, as plotted in
Fig. 2(f).

Edge theory. The appearance of MCMs after the higher-
order topological phase transition can be intuitively under-
stood by edge theory. For simplicity, we first consider the case
of the chemical potential μ = 0 and Néel vector along the
z axis [69]. We expand the Hamiltonian HBdG(k) in Eq. (1)
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around � = (0, 0) to the second order,

HBdG(k) =
(

m + tx
2

k2
x + ty

2
k2

y

)
	303 + Axkxsy	321

+ Ayky	011 − J0

2

(
k2

x − k2
y

)
	331 + �0	220, (2)

with 	i jk = τi ⊗ � jk , and τi are Pauli matrices in the
particle-hole space. The parameter m = m0 − tx − ty < 0 en-
sures that the mass ring contains the odd number of
TRIMs [68]. To distinguish the boundaries, we label the
four boundaries using I, II, III, and IV, respectively, as
shown in Fig. 2(c). We first focus on edge I. The mo-
mentum kx is replaced by −i∂x, and the Hamiltonian
can be decomposed into two parts H = H0 + H ′, which
are denoted as H0(−i∂x, ky) = (m − tx∂2

x /2)	303 − iAx∂x	321

and H ′(−i∂x, ky) = Ayky	011 + J0∂
2
x /2	331 + �0	220, re-

spectively. We solve the eigenequation H0ψα (x) = Eαψα (x),
satisfying the boundary condition ψα (0) = ψα (+∞) = 0,
and obtain four Eα = 0 solutions [64]. The perturbation part
H ′ is projected onto the bases ψα and reads as HI = Aykyηz −
MIηyγy + JIηxγz, where the Pauli matrices γi, η j are defined
in the four zero-energy-states ψα space. The mass terms JI =
J0m/tx and MI = �0 originate from the altermagnetism and
electron pairing, respectively [64].

The effective Hamiltonian on the other edges (II-IV) can be
obtained similarly [64]. For the convenience of the discussion,
we define the edge coordinates l counterclockwise, and the
effective Hamiltonian can be compactly written as

H edge(l ) = −iA(l )ηz∂l + M(l )ηyγy + J (l )ηxγz, (3)

where for the edge coordinate l = {I-IV}, A(l ) =
{Ay, Ax, Ay, Ax}, M(l ) = {−�0,�0,�0,−�0}, and J (l ) =
{J0m/tx,−J0m/ty, J0m/tx,−J0m/ty}, respectively. From
Eq. (3) one can obtain that the Dirac masses originated
from s-wave pairing and the altermagnets are commutable,
indicating that they compete with each other on the
edges. The boundary energy spectrum of Eq. (3) reads
as E edge

I,III (ky) = ±√
(Ayky)2 + (∓�0 ± JI(III) )2, E edge

II,IV(kx ) =
±√

(Axkx )2 + (±�0 ± JII(IV))2. One can find that as J0

increases, the gap of the edge state decreases, and at
the critical value Jc

0 m/tx(y) = ±�0, the gap closes that
corresponds to the higher-order topological phase transition
and is consistent with the numerical results of Fig. 2.

Furthermore, we can decompose the Hamiltonian (3)
as H = H+ ⊕ H− with the help of a conserved quantity
� = ηzγx. The effective Hamiltonian for two subspaces with
� = ±1 can be obtained as

H+ = iA(l )η̃z∂l + M̃+(l )η̃x,

H− = iA(l )η̃z∂l + M̃−(l )η̃x, (4)

with Pauli matrices η̃ acting in the subspace and
M̃±(l = I-IV) = {±�0 + J0|m|/tx,∓�0 − J0|m|/ty,∓�0 +
J0|m|/tx,±�0 − J0|m|/ty}. It can be found that once J0

exceeds the critical value Jc = �0t0/|m| (considering the
isotropic case tx = ty = t0), the signs of the mass terms at
the adjacent boundaries in H± are opposite and two mass
domain walls are formed at each corner. The zero-energy
MCMs formed by H+ and H− are decoupled from each

FIG. 3. (a) The phase diagram for the isosceles-right-triangle
geometry. (b) The energy spectrum of an isosceles triangle structure
with two MCMs (red dots) and the density plot of the two MCMs
(c) with V representing the hypotenuse. �0 = 0.2, J0 = 0.5. (d) The
real-space energy spectrum evolves with electron-pairing amplitude
in the isosceles-right-triangle structure with MCMs marked in red
existing in a large range. The common parameters are m0 = 1.0,
ty = Ay = tx = Ax = 2.0, and μ = 0.1.

other, so that two MCMs exist at each corner, as illustrated in
Figs. 2(c)–2(e).

Effect of chemical potential. In contrast to the TRS-
protected Majorana Kramers pairs [34], only one MZM can
stably exist at a given corner without TRS. The chemical
potential will give to the edge Hamiltonian (3) a new term
μγz, which couples the H+ and H− sub-blocks. This coupling
causes two MCMs from the two sub-blocks at the same corner
to mix and disappear. However, two such MCMs are intact if
they are located at different corners despite nonzero chemical
potential. To demonstrate this effect, we start with an isosce-
les triangle geometry. We first analyze the situation where
tx = ty ≡ t0, and we will analyze the situation where tx �=
ty later. The altermagnetism causes the Dirac mass J (α) =
J0m cos(2α)/t0 at an edge, where α is the angle between the
edge and the edge I. For an edge with α = π/4, i.e., edge V in
Fig. 3(c), J (α) = 0. Similarly, we can also get the Dirac mass
at edge V, M̃±

V = ±�0 [64]. By carefully analyzing the signs
of the mass terms on the three sides of the sample, we find
that when �0 < J0|m|/t0, there is a pair of robust MCMs at
two vertices of the triangle sample. In the two sub-blocks, the
signs of the mass terms read Sign[M̃+(I, V, IV)] = {+,+,−}
and Sign[M̃−(I, V, IV)] = {+,−,−}. Note that two adjacent
edges with opposite signs will form a domain wall, so there
will be a MCM at the intersection. It is useful to define the
corner position, corner i-j, which is defined as the intersection
of adjacent edge i and edge j. It can be seen that for the H+
sub-block, there are two MCMs at corner IV-V and corner
IV-I, while for the H− sub-block, there are two MCMs at cor-
ner I-V and corner I-IV. The nonzero chemical potential will
annihilate a pair of MCMs on the same corner (corner IV-I),
with only a pair of stable MCMs at two corners (corner V-I,
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FIG. 4. Results with nonzero chemical potential μ. (a) The real-
space wave-function distribution with one MZM localized at each
corner. Inset plots the several eigenvalues near zero energy. (b) The
real-space energy spectrum evolves with electron-pairing amplitude
in a square structure with MCMs marked in red existing in a range.
(c), (d) Tunable MCM patterns. The blue hollow (green solid) circles
represent the MCMs from the H+ (H−) block. The arrows indicate
the uniaxial stress direction. The common parameters are m0 = 1.0,
ty = Ay = 1.0, tx = Ax = 2.0, J0 = �0 = 0.5, and μ = 0.1.

corner V-IV). When �0 > J0|m|/t0, there is no MCM. These
theoretical analyses are also verified by our direct numerical
calculations, as shown in Figs. 3(b)–3(d). We also give the
phase diagram in Fig. 3(a).

Tunable patterns of MCMs. We discover that uniaxial strain
can interestingly manipulate the patterns of the MCMs. We
first apply uniaxial stress to a square structure, say along
the x direction such that tx > ty. We find that as the pairing
strength increases, the gap of the edge states along the ky

direction of the system is closed and then reopened, but it is
always open along the kx direction, indicating a higher-order
topological phase transition [64]. The numerical results in
Figs. 4(a) and 4(b) confirm the higher-order topological phase
with four highly localized MZMs at each corner. Such results
can be understood through edge theory [64]. When J0|m|/tx <

�0 < J0|m|/ty, we obtain, for the two sub-blocks, the signs
of the mass terms Sign[M̃+(l = I − IV)] = {+,−,−,−} and
Sign[M̃−(l = I − IV)] = {−,−,+,−}, respectively. For the
H+ sub-block, there are two MCMs at corner I-IV and corner
I-II, while for H− sub-block, there are two MCMs at corner
III-II and corner III-IV. Since the four MCMs are located at
four different corners, the nonzero chemical potential does
not work, and they can exist stably, as shown in Fig. 4(c).
Such an analysis can clearly explain the above numerical
results.

We can also apply uniaxial stress along another direction,
such as the y direction, such that tx < ty. We find a higher-
order topological phase transition occurs again with one
highly localized MZM at each corner [64]. When J0|m|/ty <

�0 < J0|m|/tx, similarly, for the two sub-blocks, the signs of
the mass terms read Sign[M̃±(l = I − IV)] = {+,∓,+,±}.

There are two MCMs at corner II-I (IV-III) and corner II-III
(IV-I) for the H+ (H−) sub-block. Since the four MCMs
are located at four different corners, they can also exist
stably despite the nonzero chemical potential, as shown in
Fig. 4(d).

It is worth noting that comparing Figs. 4(c) and 4(d), one
can find that by changing the uniaxial stress direction, we
can interchange two MCMs at corner IV-I and corner II-III.
Furthermore, we can also freely move a pair of MCMs spa-
tially to locate at any two vertices of the isosceles structure by
applying uniaxial stress [64]. The intriguing properties with
tunable patterns of MCMs hold promise for the implementa-
tion of Majorana braiding [5] and are particularly useful in
the design and fabrication of Majorana systems with desired
properties [70].

Discussion. Although altermagnets have been proposed
as the third magnetic phase besides ferromagnets and an-
tiferromagnets for a short time, there are already abundant
altermagnets available, such as RuO2 [53,54], KRu4O8 [54],
and Mn5Si3 [55], etc. Recently, spin splitting in altermagnets
has been observed by spin- and angle-resolved photoemis-
sion spectroscopy measurement [71]. On the other hand,
superconducting/topological insulator heterojunctions have
been experimentally realized, and induced electron pairing
by proximity effect has been observed in topological insu-
lators [72–76]. Consequently, it is evident that the required
material ingredients for implementing the proposal are all
experimentally accessible. In the experiment, a scanning tun-
neling microscope can be used to detect MZMs [77], where
the differential conductivity peaks at zero energy due to the
resonant Andreev reflection are quantized at 2e2/h [78,79]. In
addition, the fractional Josephson effect [12] is also strong ev-
idence for the existence of a zero-energy Majorana mode, and
anomalous response to radio frequency irradiation produced
by a 4π -Josephson current could be observed experimentally
[80,81]. The existence of MZMs can be proved by combining
the above experimental means.

Our proposal has certain remarkable advantages. First, it
does not necessitate the use of unconventional superconduc-
tors with small electron coherence lengths and an external
magnetic field which make experimental realization and con-
firmation of the existence of MZMs more difficult. Second,
by adjusting the direction of the Néel order parameter of
altermagnets, which is readily experimentally, one can cre-
ate MCMs. In experiments, current, voltage [82,83], and
spin-orbit torques [84] can manipulate and detect the di-
rection of the Néel vector in antiferromagnetic materials.
Last but not least, altermagnets with zero net magnetization
have a non-negligible advantage over conventional mag-
netic materials when combined with superconductivity [85].
All of these make the experimental realization of the pro-
posal very possible and open a new path for the realization
of MCMs.

In addition, the patterns of MCMs implemented by our
scheme are flexible and adjustable. For example, for an isosce-
les triangular structure, a pair of MCMs can be freely moved
to any two vertices of the triangle by adjusting uniaxial strain,
and for a square structure, two MCMs can be interchanged by
adjusting uniaxial strain. These operations are important for
braiding MCMs. In particular, we noticed that the triangular
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structure hosts a pair of MCMs, so it is equivalent to 1D
topological superconductivity nanowires [13,14] and thus can
be used to construct T junctions [70] or Y junctions [86–88]
for braiding MCMs to exhibit the non-Abelian statistics and
potential for topological quantum computation.
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