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We study the linear optical response and second-harmonic generation from a nanoparticle-on-mirror (NPoM)
plasmonic metasurface composed of a nanoparticle array on top of a metal surface. By using transformation
optics, the NPoM system is transformed into a simple geometry for the sake of an analytical solution, relaxing the
analytical dilemma faced by the NPoM structure. In linear and nonlinear nanophotonics, our analytical method
provides a unique understanding of the underlying physical process and endows an efficient scenario in the
optical design for the widely used NPoM system.
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I. INTRODUCTION

Nanophotonics mainly explores light-matter interaction at
the nanoscale, attracting a wide range of interests in the
past few decades [1]. With the development of nanofabri-
cation technology, many kinds of nanoscale structures have
been fabricated, such as V shape [2], nanodisk [3,4], bowtie
[5], split ring [6], and metallic convex groove [7]. However,
these nanostructures usually rely on top-down electron-beam
lithography (EBL), a process requiring high precision and
limited to a small sample area. In contrast, nanostructures
consisting of nanoparticle-on-mirror (NPoM) have obtained
considerable attention [8–12] because the NPoM system
can be obtained efficiently and simply through bottom-up
self-assembly processes while simultaneously not confined
by the limited sample area as EBL [13–15]. These ad-
vantages of the NPoM-type nanostructure make it widely
used for surface-enhanced Raman scattering (SERS) [16–18],
enhanced photoluminescence [19–21], fluorescence enhance-
ment [22], hologram [23], data storage [24], and laser [25].
Moreover, the NPoM system can also achieve giant optical
nonlinearities, including second-harmonic generation (SHG)
[11,26], because it can produce a strong field enhancement
while relaxing the constraints of the phase-matching condition
[27,28]. Therefore, the NPoM system has become an excellent
platform for studying different physical processes and realiz-
ing many novel applications.

Despite its rapid development in nanophotonics, the cur-
rent research on the NPoM system mainly depends on
experimental measurements and pure numerical analysis
(such as the finite-difference time domain [11], finite-element
methods [29], and boundary element method [30]). The ana-
lytical solution of the optical response for the NPoM system
is still limited. From one perspective, an analytical scenario
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allows an in-depth look into the underlying physical process,
offering a different understanding of the problem. On the other
hand, the analytical solution facilitates the optical design of
nanophotonic systems, which avoids cumbersome numerical
parameter optimizations.

Some semianalytical approaches have been suggested to
handle the optical response of the NPoM system. A traditional
method to solve the problem is Green’s tensor approach with
discrete-dipole approximation (DDA), which initially deals
with the optical scattering from a nanoparticle in free space
[31–33]. Later, the DDA was extended to the case of the
NPoM system, where the contribution from the flat surface
is incorporated by using Green’s function for reflected waves
[34–36]. However, the calculation based on DDA can be
rather time consuming for large particles or a particle with
a high refractive index, leading to an extremely fine mesh
in the discretization and a large number of coupled-dipole
equations. Another widely used semianalytical method is the
quasinormal model (QNM) expansion scenario [37,38]. The
optical response from an NPoM system can be expanded as
a superposition of many QNM modes [39,40]. The above-
mentioned semianalytical methods can be utilized to deal
with arbitrary plasmonic systems. However, they still can-
not give an explicit analytical formula for the mode profile.
Some analytical methods based on Mie theory have been
proposed to study the NPoM structure with either particle or
substrate is dielectric [41–43], where the traditional multipole
expansion approach are extended to incorporate the reflec-
tion from the flat surface. However, there is a problem for
Mie expansion when both particle and substrate are metal-
lic, where the plasmonic gap mode dominates the optical
response.

Fortunately, transformation optics has become an effec-
tive tool for studying plasmonic systems [44]. Complex
nanostructures can be mapped into simple structures using
transformation optics [45], where the analytical solution can
be easily obtained. This transformation optics approach has
been previously applied to study the linear optical response
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FIG. 1. Geometry, source transformation, and flat surface model. (a) A plane wave impinges on the plasmonic metasurface and creates
reflected and transmitted waves in the metasurface frame. (b) Source representation in the MIM frame. (c) A plasmonic metasurface is modeled
as a flat metal surface with a pair of surface conductivity (σe, σm) and nonlinear surface susceptibility (χ (2)′eff

⊥⊥⊥ , χ
(2)′eff
‖⊥‖ ).

of a single nanoparticle on a flat metal surface [46,47]. In this
paper, we further study a nanoparticle array on top of the metal
surface, i.e., an NPoM-type metasurface. Our method based
on transformation optics treats the whole NPoM as one struc-
ture transformed from a simple geometry instead of separating
the optical responses from the particle and the substrate as
the Mie expansion approach. Both linear and nonlinear (SHG)
optical responses are thoroughly explored for the NPoM-type
metasurface, providing an analytical solution to this widely
used nanostructure.

II. MAPPING OF GEOMETRY AND SOURCE

In this work, we study the two-dimensional case of an
NPoM-type plasmonic metasurface composed of a metal-
lic nanoparticle array on top of a metal surface, shown in
Fig. 1(a). We set the period as T , the diameter of the nanopar-
ticle as D, and the gap between the nanoparticle and the
metal surface as δ. A direct analytical calculation for this
NPoM structure is involved because of the complex geometric
boundary, so we follow a transformation optics approach.
To solve the electromagnetic field analytically, we employ a
conformal transformation to map the structure from the meta-
surface frame in Fig. 1(a) to a metal-insulator-metal (MIM)
heterostructure with cavity width w in Fig. 1(b), significantly
reducing the complexity of the problem [44]. The metal plane
and the nanoparticle interface in the metasurface frame are
mapped to two planes of x = −w/2 and w/2 in the MIM
frame, respectively. To distinguish the metasurface and the
MIM frame, we use primed coordinates (z′ = x′ + iy′) for the
metasurface frame, while the unprimed coordinates (z = x +
iy) for the MIM frame. In addition, the primed and unprimed
quantity represents a physical quantity in the metasurface and
MIM frame. The nanowire array on top of the metal surface
in the z′ frame can be mapped from a MIM heterostructure in

z frame by the conformal mapping [48,49]

z′ = T

2π
ln

(
1

ae2πz/h − w0
− y0

)
, (1)

where w0 = αae− π
h w, 1 < α < e

2π
h w, y0 = αe

π
h w

α(1−α2 ) , and a =
e

π
h w

α2−1 . The mapping process consists of a three-step transfor-
mation, detailed in the Supplemental Material [50]. These pa-
rameter settings make the flat metal surface of the metasurface
lie on the y′ axis. We point out that the nanoparticle generated
by Eq. (1) is not an exact circle but an ellipse. However, this
ellipse highly resembles a circle in the case of D < 0.3T (see
Supplemental Material for numerical verification [50]).

Throughout this work, the metal is characterized by the

Drude model ε = 1 − ω2
p

ω(ω+iγ ) , where plasma frequency ωp =
1.36 × 1016 rad/s and damping γ = 1 × 1014 rad/s (the typi-
cal value for the gold). The conformal mapping preserves the
permittivity, so the same Drude model characterizes the metal-
lic region of the transformed MIM structure. Note that this
conservation of permittivity is only for in-plane components
[44], and the out-of-plane component can be safely ignored
for the TM polarized pumping.

In the next, we proceed to map the source excitation from
the metasurface frame to the MIM frame. A TM-polarized
plane wave with a peak intensity of 55 MW/cm2 (magnetic
field in the z direction with amplitude H0) impinges on the
metasurface, resulting in reflected and transmitted waves, re-
spectively. These plane waves in the metasurface frame [see
Fig. 1(a)] become two arrays of point sources in the MIM
frame with period h [see Fig. 1(b)]. In Fig. 1(b), the incident
and the reflected waves are mapped to (xs+, nG) residing in
the insulator region, while the transmitted wave is mapped
to (xs−, nG) in the metal region on the left. n is an integer,
G = 2π

h , xs+ = h
2π

ln (w0/a), and xs− = h
2π

ln ( 1+w0y0

ay0
). The

field representation of the point source excitation in the MIM
frame can be written as [49]

H ex
z =

⎧⎪⎨
⎪⎩

∑
n G

(
ax(1 − r) e−|kn ||x−xs+|

|kn| − ay(1 + r)sgn(kn) e−|kn ||x−xs+|
sgn(x−xs+ )|kn|

)
eikny, x < |w|/2

∑
n G

(
− t k′

0x
k0x

ax
e−|kn ||x−xs−|

|kn| + taysgn(kn) e−|kn ||x−xs−|
sgn(x−xs− )|kn|

)
eikny, x < −w/2

(2)
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where kn = nG, ax = −i k0xT
4π

H0, and ay = k0yT
4π

H0. r and t are
reflection and transmission coefficients for the NPoM meta-
surface, respectively. The wave vector k0y = k0 sin θin, k0x =
k0 cos θin, and k′

0x =
√

εk2
0 − k2

0y with θin being the incident
angle. The source representation in Eq. (2) has two kinds

of mode, ax mode and ay mode. The physical meaning of
ax mode is that the wave vector polarizes parallel to the x
direction, while the wave vector of ay mode is parallel to the
y direction. The above point source excites the eigenmode in
the MIM frame

Hz =

⎧⎪⎨
⎪⎩

∑
n Gcn+e−|n|GxeinGy, x > w/2∑
n G(bn+e−|n|Gx + bn−e|n|Gx )einGy, −w/2 < x < w/2∑
n Gcn−e|n|GxeinGy, x < −w/2

(3)

from which the electric field can be obtained straightfor-
wardly. Then, by matching the boundary condition at two
interfaces x = −w/2 and w/2 in Fig. 1(b), we can obtain the
mode coefficients bn and cn of the excited field in the MIM
frame. The detailed derivation is included in the Supplemental
Material [50]. According to the rule of transformation optics,
when the field in the MIM frame is obtained, the field in the
metasurface frame can be obtained straightforwardly by [44]

⎛
⎜⎝

E ′
x

E ′
y

H ′
z

⎞
⎟⎠ = 1

det(�)

⎛
⎜⎜⎝

∂x′
∂x

∂x′
∂y 0

− ∂x′
∂y

∂x′
∂x 0

0 0 det(�)

⎞
⎟⎟⎠

⎛
⎝Ex

Ey

Hz

⎞
⎠, (4)

where Cauchy-Riemann relations have been used and � is

the Jacobian matrix defined as �i j = ∂x′
i j

∂xi j
. This relation means

the z-component magnetic field is invariant while the in-plane
electric fields are stretched inhomogeneously.

III. EFFECTIVE MEDIUM FOR LINEAR
OPTICAL RESPONSE

For the linear optical response in the far field, the NPoM
metasurface shown in Fig. 1(a) can be simplified into a flat
metal surface with conductivities shown in Fig. 1(c). Regard-
ing the far-field calculation, we utilize transformation optics
to obtain the effective surface polarization for the metasurface
by averaging the induced bulk polarization in the MIM frame,
which can be expressed as [51]

P′eff
⊥ = Ps′

x = 1

T

∫∫
metal

(
∂x′

∂x
Px + ∂x′

∂y
Py

)
dx dy,

P′eff
‖ = Ps′

y = 1

T

∫∫
metal

(
−∂x′

∂y
Px + ∂x′

∂x
Py

)
dx dy. (5)

The overline represents the field averaging and superscript “s”
for the surface. The NPoM metasurface considered in our pa-
per is subwavelength, making the plasmonic mode distribute
in a thin layer. This subwavelength polarization layer can be
safely integrated to give an effective surface polarization. Note
that in Eq. (5) the integration of polarization is implemented
in one period of the metasurface, which is converted to the
integration in the MIM frame for simplicity.

It has been well established that the parallel component
of the effective surface polarization gives rise to an effective
surface current, while the gradient of the normal component
of surface polarization contributes to an effective surface

magnetic current, which in Fig. 1(c) reads as [52,53]

J ′eff
m,z = 1

ε0
n × ∇‖P′eff

⊥ ,

J ′eff
e,y = ∂P′eff

‖
∂t

. (6)

By analyzing the mode symmetry, we conclude that the ax

mode only contributes to the effective electric surface current
and the ay mode to the effective magnetic surface current.
Under light illumination, the plasmonic modes are excited,
consuming some energy at the metasurface. This energy
dissipation can be modeled by a pair of effective surface con-
ductivity (σe, σm) when the structural period is subwavelength,
as shown in Fig. 1(c) [54]. The complex surface conductivity
σe = σer + iσei and σm = σmr + iσmi are expressed as follows:

σe = − J ′eff
e1,y + J ′eff

e2,yλ1

(Za + Zmλ1)H0/2
,

σm = J ′eff
m1,z + J ′eff

m2,zλ2

(1 + λ2)H0/2
, (7)

where Za = k0x
ωε0

and Zm = k′
0x

ωε0ε
. Moreover, J ′eff

(e1,e2),y and

J ′eff
(m1,m2),z are independent of r and t , which are related to

currents in Eq. (6) by J ′eff
e,y = J ′eff

e1,y(1 − r) + J ′eff
e2,yt and J ′eff

m,z =
J ′eff

m1,z(1 + r) + J ′eff
m2,zt . The dimensionless coefficients λ1,2 and

the detailed derivation of the above expressions are given
in Supplemental Material [50]. The real part of the surface
conductivities corresponds to the energy dissipation on the
metasurface resulting from the excitation of surface plasmon.
In contrast, the imaginary part gives rise to a phase shift
as required by the Kramers-Kronig relations [55]. Note that
J ′eff

(e1,e2),y and J ′eff
(m1,m2),z are proportional to input field amplitude

H0, so σe,m is independent of input field intensity.
From the above theory, the metasurface can be character-

ized using effective surface conductivity when studying the
linear response. We consider the effective surface conductivity
of the simplified metal plate as a function of frequency ω and
gap δ, as shown in Fig. 2. The mode evolution with parameter
ω and gap δ can be quantitatively described by the dispersion
relation, written as

ω = ωsp

√
1 − e−2π |n| w

h , ω < ωsp

ω = ωsp

√
1 + e−2π |n| w

h , ω > ωsp

(8)
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FIG. 2. The effective surface conductivity for the NPoM metasurface. The dependence of the real part (a) and imaginary part (b) of effective
electric surface conductivity on frequency and gap for plasmonic metasurface. The dependence of the real part (c) and imaginary part (d) of
effective magnetic surface conductivity on frequency and gap for plasmonic metasurface. The parameters setting of the NPoM system are
T = 10 nm, D = 2 nm, and θin = π/4. The σe0 = Z−1

0 and σm0 = Z0 are the free-space electric and magnetic conductivities, where Z0 is the
impedance of free space.

where n (1,2,...) is the index discretizing the plasmonic mode,
and ωsp = ωp/

√
2 is the surface-plasmon frequency that sep-

arates the mode into lower band (ω < ωsp) and upper band
(ω > ωsp). The leftmost and rightmost modes in Fig. 2 corre-
spond to n = 1 mode for the lower and upper bands.

The real part of the calculated effective electric sur-
face conductivity is illustrated in Fig. 2(a). The excitation
of surface-plasmon-polaritons (SPPs) modes results in reso-
nance for σer , where the number of resonance peaks increases
as the δ decreases. Decreasing the gap makes the NPoM
structure more singular, giving broadband and continuous
spectrum in the singular limit. This explains why the plas-
monic modes distribute into a broader frequency range when
decreasing δ. Mathematically, decreasing the gap size δ re-
duces w/h, decreasing (increasing) the value of ω for the
lower (upper) band according to Eq. (8). In the large-gap limit,
all the resonance peaks merge into the surface-plasmon fre-
quency ωsp, a signature of the plasmonic resonance of a single
nanowire. This is consistent with the analysis of the dispersion
relation in Eq. (8), as the δ increases (enlarging w/h), the
mode ωn → ωsp. Figure 2(b) shows the imaginary part of the

effective electric surface conductivity, where a sharp phase
transition can be observed at the resonance. In Fig. 2(c), the
calculated results of the real part of effective magnetic surface
conductivity are similar to those of effective electric surface
conductivity, except that the stronger resonance appears at the
rightmost mode (upper band with mode index 1). The corre-
sponding imaginary part σmi is shown in Fig. 2(d). Therefore,
Fig. 2 summarizes the effective medium for the linear optical
response of NPoM-type metasurface, applicable in the inverse
design of a metasurface with the desired surface conductivity.

Based on these two effective surface conductivities, we
can evaluate the reflection coefficient straightforwardly (see
Supplemental Material [50]). We calculate the reflectivity
|r|2 and reflection phase change φ = Arg(r) as a function of
pump frequency ω1 and gap size δ at θin = π/4 for meta-
surface, shown in Figs. 3(a) and 3(b). Since the reflectivity
is contributed by electric and magnetic surface conductiv-
ities, the reflectivity spectrum has a similar profile as the
conductivity spectrum. When the gap gradually decreases,
the structure becomes more singular, and the spectrum will
change from a few discrete peaks to broadband resonance
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FIG. 3. Linear optical response. (a) Reflectivity |r|2 and (b) phase φ of reflection as a function of fundamental frequency ω1 and gap δ for
an NPoM system metasurface. (c) Excited near field at the first resonance peak ω1 = 0.53ωp, where T = 10 nm, D = 2 nm, and δ = 0.3 nm.
The parameters for (a)–(d) are the same as in Fig. 2.

and field enhancement [see Fig. S2(d) in the Supplemental
Material [50]]. Moreover, the NPoM metasurface provides a
phase shift up to π , efficiently tuning the wavefront in the
nanoscale. Furthermore, the variation of incident angle only
changes the intensity but not the spectral peak position of the
metasurface’s effective surface conductivity and reflectivity,
as illustrated in Figs. S2(a)–S2(c) of Supplemental Material
[50]. This is expected because the field variation does not
change the eigenfrequency of the NPoM structure.

Furthermore, we calculate the excited near-field distribu-
tion of the first peak at different incident angles, as shown
in Fig. 3(c). In the case of normal incidence (θin = 0◦), the x
component E ′

x of the excited near field is odd-symmetric mode
regarding y′ = 0, while the y component E ′

y has the opposite
symmetry. At oblique incidence (θin = 45◦), the symmetry
of the excited field is broken. Near grazing incidence (θin ≈
90◦), E ′

x (E ′
y) becomes approximately even- (odd-) symmetric

mode. Although the metasurface we study is symmetric, the
symmetry of the field concerning the metasurface is broken at
the oblique incidence, providing the conditions for SHG.

IV. INDUCED NONLINEAR SURFACE AND BULK
POLARIZATION

The above section discusses the linear response of the
NPoM metasurface, and next, we turn to its nonlinear op-
tical response. A complete formulation for the nonlinear
optical response requires the information of linear optical
response. This paper considers the SHG from an NPoM meta-
surface, one of the most representative nonlinear processes.
The second-order nonlinear response cannot arise inside a
centrosymmetric medium [56]. For a plasmonic material,
the second-order response mainly comes from the surface
where the centrosymmetry is broken [57], which is modeled
by a nonlinear surface susceptibility. According to the hy-
drodynamic model, the two second-order nonlinear surface
susceptibilities read as [51,58]

χ
(2)′
⊥⊥⊥ = ε0

4n0e

3ω1 + iγ

2ω1 + iγ
[ε(ω1) − 1]2,

χ
(2)′
‖⊥‖ = ε0

2n0e
[ε(ω1) − 1]2, (9)
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FIG. 4. Nonlinear surface susceptibility and polarization. (a) The nonlinear surface susceptibility in the MIM frame. (b) The normal and
parallel components of the nonlinear surface polarization in the metasurface frame. (c) Excited bulk polarization field at the second-harmonic
frequency ω2 = 2 × 0.53ωp. The geometric parameters of the NPoM metasurface are T = 10 nm, D = 2 nm, and δ = 0.3 nm.

where n0 = 5.7 × 1028 m−3 (a typical value for the gold) is
the equilibrium charge density, and −e is the electron charge.
Then, the two nonlinear surface polarizations in the metasur-
face frame can be computed as

P′
2⊥(ω2 = ω1 + ω1) = ε0χ

(2)′
⊥⊥⊥E ′

1⊥E ′
1⊥,

P′
2‖(ω2 = ω1 + ω1) = ε0χ

(2)′
‖⊥‖E ′

1⊥E ′
1‖,

(10)

where E ′
1⊥ and E ′

1‖ are the normal and parallel components of
the electric field evaluated immediately inside the metal inter-
face at fundamental frequency ω1, respectively. The direction
of P′

2⊥ and P′
2‖ is defined as shown in Fig. 1(a).

Similar to the linear optical response calculation, the
evaluation of the nonlinear optical response from NPoM is
converted to the MIM frame [Fig. 1(b)]. According to the
transformation rule, the nonlinear surface susceptibility in the
MIM frame follows [51,59]:

χ
(2)
⊥⊥⊥,‖⊥‖ =

∣∣∣∣ dz

dz′

∣∣∣∣
2

χ
(2)′
⊥⊥⊥,‖⊥‖

=
∣∣∣∣∣
h
(
1 + α2 − 2α Cosh

[
π (w+2z)

h

])
T (α2 − 1)

∣∣∣∣∣
2

χ
(2)′
⊥⊥⊥,‖⊥‖.

(11)

This mapping preserves the physics of the second-order non-
linear process in Eq. (10), thus allowing us to compute the
nonlinear optical response in the simple MIM frame. The
nonlinear surface susceptibility in the MIM frame is a periodic
function of y with period h as shown in Fig. 4(a), where the
blue (red) line shows the variation of the nonlinear surface
susceptibility along the interface x = −w/2 (x = w/2) con-
cerning the y coordinate. With the profile of the nonlinear
susceptibility and electric field of linear response in the MIM

frame, we can evaluate the nonlinear surface polarization in
the virtual space (MIM frame) by

P2⊥(ω2 = ω1 + ω1) = ε0χ
(2)
⊥⊥⊥E1⊥E1⊥,

P2‖(ω2 = ω1 + ω1) = ε0χ
(2)
‖⊥‖E1⊥E1‖, (12)

where the physical law of SHG is maintained in the trans-
formed space.

Since the nonlinear surface polarization is conserved under
the conformal mapping [51], the P′

⊥,‖ profile in the metasur-
face frame can be obtained directly by coordinate mapping.
In Fig. 4(b), the profile of nonlinear surface polarization for
normal (left column), oblique (middle column), and grazing
(right column) incidences are illustrated. Under normal inci-
dence, E ′

1⊥ (E ′
1‖) possesses an odd (even) symmetry, resulting

in an even P′
2⊥ and an odd P′

2‖. In contrast, E ′
1⊥ (E ′

1‖) in the
case of glancing incidence possesses an even (odd) symmetry,
but the nonlinear polarization gives the same symmetry as that
of the normal incidence. In the case of oblique incidence, this
symmetry is broken, as illustrated in the middle column of
Fig. 4(b).

As a new source excitation, the induced nonlinear surface
polarization generates an excited field at the second-harmonic
frequency. Fourier series is employed to expand the non-
uniform nonlinear surface polarization at the metal-dielectric
interface in the MIM frame, formulated as

P2⊥,2‖ =
∞∑

n=−∞
Pn

2⊥,2‖eikny, (13)

where the coefficient can be extracted by

Pn
2⊥,2‖ = 1

h

∫ h/2

−h/2
P2⊥,2‖e−iknydy. (14)
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FIG. 5. Effective medium of the NPoM metasurface for the nonlinear far-field response. The dependence of effective nonlinear susceptibil-
ity on pump frequency and gap size for (a) χ

(2)′eff
⊥⊥⊥ and (b) χ

(2)′eff
‖⊥‖ . (c) The dependence of SHG on frequency and gap for singular metasurface.

(d) The dependence of SHG on the incident angle for NPoM metasurface and metallic plane, where the parameters are T = 10 nm, D = 2 nm,
and δ = 0.3 nm. The parameters for (a)–(c) are the same as in Fig. 2.

Similarly, the excited field at ω2 in the MIM frame can also
be expanded as H2z = ∑

n Hn
2ze

ikny. By matching the tangential
fields with boundary conditions at two interfaces x = −w/2
and w/2, the near field excited by nonlinear surface polar-
ization at ω2 can be obtained. The specific expression of the
excitation field and the detailed derivation procedure are pro-
vided in Supplemental Material [50]. The x component of the
excited nonlinear near polarization field at ω2 = 2 × 0.53ωp,
P′

2x, is shown in Fig. 4(c). At normal and glancing incidence,
P′

2x is an even-symmetric mode because the nonlinear source
excitation has the same symmetry for these two cases. At
θin = π/4, surface polarization’s symmetry is broken, result-
ing in an asymmetric near field.

V. EFFECTIVE MEDIUM FOR NONLINEAR
OPTICAL RESPONSE

In the previous section, we have established an effective
medium theory for the linear optical response with a pair of
effective surface conductivities. This motivates us to further

explore the effective medium description for the nonlinear
optical response from the NPoM structure. In Fig. 4, the
near field and surface polarization at the second-harmonic fre-
quency are illustrated. This near-field profile can be averaged
in one period to give a pair of effective surface polarization
(P′eff

2⊥ , P′eff
2‖ ), which is composed by two parts [surface polar-

ization in Fig. 4(b) and bulk polarization in Fig. 4(c)] [51].
The detailed averaging procedure can be found in the Supple-
mental Material [50]. These two polarizations can be linked
with two effective surface nonlinear susceptibilities χ

(2)′eff
⊥⊥⊥,‖⊥‖

shown in Fig. 1(c) by

χ
(2)′eff
⊥⊥⊥ = P′eff

2⊥
ε0E ′

1⊥E ′
1⊥

= ω2
1ε0ε(ω1)2

t2H2
0

(
kω1

0y

)2 P′eff
2⊥ ,

χ
(2)′eff
‖⊥‖ = P′eff

2‖
ε0E ′

1⊥E ′
1‖

= ω2
1ε0ε(ω1)2

t2H2
0 k′ω1

0x kω1
0y

P′eff
2‖ . (15)

In the effective flat surface geometry shown in Fig. 1(c), E ′
2⊥

and E ′
2‖ are evaluated at the point immediately inside the metal
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region. Note that P′eff
2⊥,2‖ is proportional to the square of pump

field magnitude H0, so the χ
(2)′eff
⊥⊥⊥,‖⊥‖ is independent of pump

field intensity.
The ratio of the effective susceptibility of NPoM

metasurface [Eq. (15)] to the flat metal surface susceptibility
[Eq. (9)] for ⊥⊥⊥ component and ‖⊥‖ component are shown
in Figs. 5(a) and Fig. 5(b), respectively. The two components
of the effective susceptibility have been enhanced by around
six or seven orders of magnitude, resulting from the strong
field enhancement by plasmonic resonances. Moreover, two
branches of modes can be observed, where one originates
from plasmonic resonance at ω1 while the other at ω2. These
two branches of modes can also be characterized by the
dispersion relation by Eq. (8), where ω = ω1 (ω = ω2) for

mode at higher (lower) frequency. When increasing the gap
size δ, these two branches of modes merge into ω1 = ωsp

and ω2 = ωsp, respectively, degenerating into the spectrum
of a single nanowire. Similarly, as the gap decreases, the
resonance is redshift for ω1 < ωsp and ω2 < ωsp, while
blueshift for ω1 > ωsp and ω2 > ωsp. Furthermore, when the
gap size shrinks, both branches broaden and overlap to form
a double-resonant state near 0.4ωp, further enhancing the
effective susceptibilities.

The effective surface polarization (P′eff
2⊥ , P′eff

2‖ ), as a field
excitation, generates second-harmonic fields in the far field.
The conversion efficiency of SHG, ηSHG, can be solved by
applying boundary conditions to the electromagnetic field in
Fig. 1(c), which gives

ηSHG =

∣∣∣∣∣∣∣
k

ω2
0y (k

ω1
0y )2

ω2
1ε

2
0ε(ω1 )2ε(ω2 )

t2[4 + 2Zm(ω2)σe(ω2)]χ (2)′eff
⊥⊥⊥ − ω2k

′ω1
0x k

ω1
0y

ω2
1ε0ε(ω1 )2 t2[4Zm(ω2) + 2σm(ω2)]χ (2)′eff

‖⊥‖
4[Za(ω2) + Zm(ω2) + Za(ω2)Zm(ω2)σe(ω2)] + {4 + [Za(ω2) + Zm(ω2)]σe(ω2)}σm(ω2)

∣∣∣∣∣∣∣

2

, (16)

where kω2
0y = 2kω1

0y . Note that the transmission coefficient t for
linear optical response is only determined by (σe, σm) at pump
frequency ω1. The detailed derivation of ηSHG can be found in
the Supplemental Material [50]. In Fig. 5(c), we calculate the
SHG efficiency as a function of the frequency ω1 and gap size
δ. As expected, the profile of SHG is similar to that of effective
susceptibility, where the large SHG results from the plasmonic
mode excitation. In addition, the modes at the pump and
second-harmonic frequencies overlap to further enhance the
SHG efficiency. Furthermore, a dispersionless mode appears
at ω1 = 0.5ωp or ω2 = ωp, shown in Figs. 5(a)–5(c). The con-
dition for this mode follows ε(ω2) → 0, making the induced
surface magnetic current diverge according to Eq. (S28) in the
Supplemental Material [50].

In Fig. 5(d), we compare the SHG as a function of the inci-
dent angle for the NPoM metasurface and a flat metal surface,
where the frequencies of the incident light are ω1 = 0.53ωp

and 0.635ωp, corresponding to the first and second resonance
peaks at δ = 0.3 nm in Fig. 3(a), respectively. The results
show that the SHG from the metasurface (blue and red lines) is
significantly higher than that from the flat metal surface (green
and purple lines) in the angular scanning range. The SHG
is larger for the oblique incidence than the near-normal and
grazing incidence. This is a direct consequence of symmetry
breaking, which results in a more efficient SHG. In addition,
the validity of our theoretical calculations has been numeri-
cally verified by using the COMSOL simulation based on the
finite-element method (see Supplemental Material [50]).

VI. FROM TWO DIMENSIONAL TO THREE
DIMENSIONAL

All the previous theories in this paper are for the two-
dimensional case of an NPoM system. To further check the
theory’s applicability in analyzing three-dimensional NPoM
systems, we simulate the SHG of an NPoM system composed
of a gold nanoparticle array on top of a gold surface.
Figure 6(a) shows a schematic of the structure of the NPoM

system. Figure 6(b) shows the SHG calculated using COMSOL

simulations. Similar to the two-dimensional calculation, when
shrinking the gap size from 1 to 0.1 nm, the modes near

FIG. 6. Numerical calculation of three-dimensional NPoM sys-
tem. (a) Schematic of the NPoM system composed of gold
nanoparticles on top of gold film surface. (b) The SHG of the three-
dimensional NPoM system obtained by the finite-element method,
where period T = 10 nm, diameter D = 2 nm, incident angle θin =
π/4, gap δ = 0.1 nm (red line), δ = 0.3 nm (green line), and δ = 1.0
nm (blue line). The inset shows the x component of the nonlinear near
field at ω1 = 0.4ωp for δ = 0.1 nm case.
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ω1 = ωp/
√

3 (plasmonic resonance of a plasmonic
nanosphere) and the modes near ω2 = ωp/

√
3 (equivalently,

ω1 = ωp/2
√

3) get broadened. This makes these two branches
of modes eventually overlap and form double-resonant states,
resulting in a much higher SHG efficiency near ω1 = 0.4ωp,
which is similar to the two-dimensional case shown in
Fig. 5(c).

VII. CONCLUSION

In conclusion, we have theoretically investigated the linear
and second-order nonlinear responses of an NPoM metasur-
face. The introduction of transformation optics provides a
simple method for obtaining analytical solutions by convert-
ing the complex metasurface into a simple MIM structure.
Moreover, an effective medium theory has been proposed
for the NPoM metasurface, characterized by effective sur-
face conductivity and nonlinear surface susceptibility. These
effective parameters can serve as a guideline for the NPoM
metasurface design for both linear and nonlinear optics. Fur-
thermore, the plasmonic mode excitation in the NPoM system
also enhances the SHG, which can be further enhanced by
overlapping the pump and second-harmonic resonance. Fi-
nally, despite our analytical framework being established on a
periodic NPoM system, it also applies to nonperiodic NPoM
structures because the gap mode, rather than the lattice mode,
dominates the optical response (numerically demonstrated in
the Supplemental Material [50]).

Some future perspectives should be remarked in the end.
On the one hand, nonclassical effects [60] due to the quan-
tum nature of electrons have been ignored in our analytical
calculation for simplicity. These nonclassical effects, such as
nonlocality, electron spillout, and tunneling, have been shown
to strongly affect the linear and nonlinear optical response
on the mesoscopic scale [61]. These nonclassical effects can
be potentially incorporated into our theoretical framework
by the semiclassical model [62–64]. On the other hand, our
theoretical framework can be further extended to investigate
other nonlinear effects, such as Kerr nonlinearity. The Kerr
effect modifies the material properties when a high-intense
laser beam impinges on the NPoM structure, making it an
excellent candidate to explore the time-varying medium and
Floquet physics, which mainly focus on the optically induced
material dynamics [65–69].
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