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Effective medium theory is an integral part of the area of metamaterials providing insights into the physics
behind their interaction with light. In this paper, we develop the operator effective medium approximation for
spherical and cylindrical multilayer systems. Equating evolution operators (wave propagators) for the actual
multilayer and homogenized medium, we establish the effective material parameters, which differ for planar and
curvilinear cases. We supplement the criterion for applicability of the effective medium approximation with the
assertion that the radii of curvilinear layers must be about or greater than the radiation wavelength. The operator
effective medium approximation provides a clear way to approach nonlocal corrections, as well as characterize
structures with balanced loss and gain. We envisage that the operator effective medium approximation will be
useful for the characterization of metamaterials and other nanophotonic systems of complex shapes.
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I. INTRODUCTION

Microstructure of a substance can be disregarded, if a wave
cannot recognize a single atom in a material. In this case,
the wavelength embraces many atoms validating the contin-
uous medium approximation. The latter can be also applied
for man-made composite materials — metamaterials [1–3]
with the building blocks (meta-atoms) much bigger than the
natural atoms. Therefore the spectral range of metamaterial
operation shifts to longer wavelengths. Materials and shapes
of meta-atoms as well as specific lattice symmetries of their
arrangement specify the featuring response of metamaterials.

There are different techniques to approach effective mate-
rial parameters within the continuous medium approximation,
if one starts from the microstructure of a metamaterial [4,5].
Homogenization is essential, for example, to understand how
artificial magnetism arises in a structure composed of non-
magnetic materials. For homogenization, one can exploit just
a mixing rule, when several types of particles are available.
If the amount of one sort of particles is much greater than
that of the others, then the Maxwell Garnett approximation
is applicable [6–9]. However, if the amounts of particles are
comparable, the Bruggeman approach should be employed.
Maxwell-Garnett-like approximation as a mixing rule is also
used for homogenization of planar layered systems [10–15].
It is surprising that such an intuitive technique assumed to
be always valid in the long wavelength regime can be mis-
leading in specific conditions such as under the critical angle
of total internal reflection resulting in the effective medium
approximation (EMA) breakdown. Effective medium of a
multilayer system is commonly treated as a homogeneous
anisotropic one, the information on the actual distribution of
materials being ignored. The latter assertion means that the
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system is described by local effective material tensors. If the
distribution of materials is involved in the description, then it
becomes more accurate at the price of nonlocal effective mate-
rial tensors depending on the radiation wave vector [16]. One
can expect a similar EMA for cylindrically and spherically
symmetric multilayer systems, but the curvature of layers
might dramatically change the conditions for EMA. Effective
material parameters of a spherical nanoparticle can be also
determined using the so called internal homogenization ap-
proach based on averaging polarizabilities of particle’s core
and shell [17].

In order to find the adequate effective material tensors
of the metamaterial composed of rods or spheres, the co-
herent potential approximation was proposed [18–23]. This
approach is based on the idea that when placing the meta-
atoms to the medium with the required effective parameters,
they do not scatter light. The effective parameters can be
retrieved from such no-scattering conditions. This approach
describes a metamaterial as a nonlocal medium as well. In
general, the first-principle approaches might be used based on
the multipole expansion of periodic metamaterial’s response
[24–26]. In the particular case of meta-atoms as electric dipo-
lar scatterers, it was proved that the nonlocal effective material
parameters are better suited for describing metamaterials with
the unit cells comparable to the radiation wavelength [27].
Taking into account contributions of multipolar meta-atoms in
a lattice, it is possible to get effective dielectric permittivity,
magnetic permeability, magnetoelectric coefficients, as well
as nonlinear susceptibilities [28–31]. Recent progress in the
study of low-dimensional materials allows engineering elec-
tric and magnetic surface conductivities and metamaterials
with arbitrary effective material parameters [32,33]. Effec-
tive material parameters can be also retrieved from either
experimental or numerical data [34–39]. The relations of the
reflection and transmission coefficients make possible to de-
termine the effective material parameters, the adequacy of
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FIG. 1. [(a)–(c)] Three basic geometries in question: planar, cylindrical, and spherical, respectively. Comparison of scattered characteristics
for (d) planar (ε1 = 5 and ε2 = 1), (e) cylindrical (ε1 = 1 and ε2 = 5), and (f) spherical (ε1 = 1 and ε2 = 5) bilayer structures versus the
corresponding effective media. Parameters: εa = 1, εb = 5, thicknesses of layers d1 = d2 = 10 nm, inner radius of the cylindrical and spherical
systems a = λ/2π , and wavelength λ = 500 nm.

which depends on the a priori knowledge of the supposed ef-
fective medium properties, whether it is magnetic, anisotropic,
chiral, etc.

In this paper, we develop the effective medium approach
beyond the ordinary planar multilayer systems sketched in
Fig. 1(a). We achieve this using the general operator technique
to find the scattered electromagnetic fields for cylindrical
and spherical multilayered systems [see Figs. 1(b) and 1(c)].
The generic operator approach allows reducing the Maxwell
equations to the set of ordinary differential equations due to
symmetry of the fields. Fundamental solution of this set of
equations can be represented as the spatial evolution opera-
tor. With the concept of evolution operators, it is possible to
expand the operator effective medium approximation beyond
homogenization of planar multilayers reported earlier [16,40].
In particular, we extend the operator effective medium the-
ory to cylindrically and spherically symmetric multilayers.
In Figs. 1(d)–1(f), one can see that the scattering efficiency
for curvilinear EMA noticeably departures from that of the
multilayer even for deeply subwavelength layers. This poses
a problem of closer investigation of the curvilinear EMA and
the limits of its applicability.

The paper is organized as follows. Section II introduces
a reader to the operator EMA for systems of planar layers.
The homogenization theory developed in Ref. [16] is gen-
eralized to continuously distributed inhomogeneous media.
In Secs. III and IV, this idea is employed to determine the
effective permittivity tensors of homogenized spherical and

cylindrical multilayers. In Sec. V, we demonstrate how the
corrections to the effective material parameters can be found.
We extract material parameters of a bilayer with balanced loss
and gain in Sec. VI. Section VII concludes the paper.

II. OPERATOR EFFECTIVE MEDIUM APPROXIMATION
FOR INHOMOGENEOUS PLANAR LAYERS

First, we remind the operator EMA developed in Ref. [16]
for a stack of planar layers. To this end, we consider propaga-
tion of a monochromatic plane wave in a layer, the angular
frequency being equal to ω. Incident angle α specifies the
wavevector projection on the interface between the layer and
the outer medium of refractive index na = √

εa as k|| = k0b,
where k0 = ω/c is the vacuum wave number, c is the speed
of light in vacuum, and |b| = na sin α. The incidence is il-
lustrated in Fig. 1(a). Due to the translation symmetry in the
plane perpendicular to the stratification axis z, the plane-wave
solution for the electric field (and similarly for the magnetic
field) reads as E = E0 exp(ik0br + ik0ηz − iωt ), where r is
the radius vector and η = kz/k0 = na cos α.

The material parameters are involved into the constitutive
equations for the generally bianisotropic and inhomogeneous
(stratified) slab:

D(ω, r) = ε̂(ω, z)E(ω, r) + α̂(ω, z)H(ω, r),

B(ω, r) = κ̂ (ω, z)E(ω, r) + μ̂(ω, z)H(ω, r). (1)
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Here D, B, E, and H are the electric displacement vector,
magnetic induction, electric strength, and magnetic strength,
respectively, ε̂ is the dielectric permittivity tensor, μ̂ is the
magnetic permeability tensor, and α̂ and κ̂ are the gyration
pseudotensors.

The approach of homogenization is based on the idea
that wave propagation through the stack of layers is equiv-
alent to the wave propagation through a homogeneous
effective medium. The effective material parameters are gen-
erally more complex than those of the individual slabs and
can be both bianisotropic and nonlocal even if the slabs
are not.

Plane waves are fully described by the tangential magnetic
Ht and electric Et fields lying in the plane (x, y). Further,
we discuss the wave solutions of the governing system of
equations [41,42], which can be obtained from the Maxwell
equations as follows:

dW
dz

= ik0M̂W, (2)

where W(z) = (Ht (z), Et (z))T is a multidimensional vector
composed of tangential electric and magnetic fields (super-
script T stands for transpose). The matrix M̂ depends on
the material parameters and can be presented as a block
matrix

M̂ =
(

A B
C D

)
, (3)

where the matrices A, B, C, and D can be written for arbitrary
bianisotropic stratified medium. Since the operator effective
medium theory for a stack of planar layers was introduced
earlier, we do not show the explicit expressions for these
values here, but refer a reader to Ref. [16]. Here, we just
outline the fundamentals standing behind the homogenization
approach.

It is important that for a homogeneous planar layer, the
block matrix M̂ is constant. Hence, solution of the differential
equation (2) is the product of the matrix exponential 	z

z0
=

exp[ik0(z − z0)M̂] and “initial” tangential fields W(z0) at the
plane z = z0:

W(z) = exp[ik0(z − z0)M̂]W(z0) = 	z
z0

W(z0). (4)

The propagator 	z
z0

describing spatial field propagation
is called an evolution operator and is a fundamental so-
lution of the field equations (4). It should be stressed
that owing to the electrodynamic boundary conditions
the tangential fields W(z) are continuous across the in-
terfaces between the slabs. That is why for the two
slabs of thicknesses d1 and d2, one can write W(d1) =
exp[ik0d1M̂1]W(0) and W(d1 + d2) = exp[ik0d2M̂2]W(d1)
arriving at

W(d1 + d2) = exp[ik0d2M̂2] exp[ik0d1M̂1]W(0). (5)

The evolution operator 	
d1+d2
0 = 	

d1+d2
d1

	
d1
0 of the two-slab

system is the product of evolution operators of the individual
slabs.

The effective medium is a homogeneous slab with effective
material parameters equivalent to the actual inhomogeneous
system, e.g., a bilayer. Such a homogeneous slab characterized

by the matrix M̂eff is equivalent to the two-slab system, if
evolution operators are indistinguishable, that is,

exp[ik0(d1 + d2)M̂eff ] = exp[ik0d2M̂2] exp[ik0d1M̂1]. (6)

Solution of this equation with respect to M̂eff is known as the
Baker-Campbell-Hausdorff series

M̂eff = ρ1M̂1 + ρ2M̂2 + ik0d

2
ρ1ρ2[M̂2, M̂1]

− (k0d )2

12
ρ1ρ2(ρ1[[M̂2, M̂1], M̂1]

+ ρ2[[M̂1, M̂2], M̂2]) + · · · , (7)

where ρ1 = d1/d and ρ2 = d2/d = 1 − ρ1 are the volume
filling fractions of the materials in the unit cell of thickness
d = d1 + d2 and [M̂1, M̂2] is the commutator.

In the limit k0d � 1, we can keep only the frequency-
independent terms. It is the zeroth-order approximation of
the theory allowing us to get the well-known local effective
medium parameters

ε|| = ρ1ε1 + ρ2ε2, ε⊥ =
(

ρ1

ε1
+ ρ2

ε2

)−1

(8)

defining the effective permittivity tensor ε̂ = diag(ε||, ε||, ε⊥),
where ε1 and ε2 are the permittivities of the slabs. A higher-
order approximation means that one should take into account
more terms in the Baker-Campbell-Hausdorff series. These
terms depend on the wavevector k|| introducing nonlocality
in effective material parameters. This nonlocality implies the
importance of the order of layers within a unit cell ignored in
the local material parameters Eq. (8).

In Fig. 1(d), we show transmittance of the bilayer and
corresponding homogenized system using the local effective
medium parameters (8). Due to asymmetry of the system
(incident εa and exit εb media are different), there is a percep-
tible difference in transmittance through the effective medium
compared to that through the bilayer. The difference becomes
more pronounced, when the number of layers increases even
though the layers are deeply subwavelength [11].

In general, when a medium is continuously inhomoge-
neous, the matrix M̂(z) is not constant and the evolution
operator cannot be presented in the exponential form, but only
as a Born series

	z
a = Ê + ik0

∫ z

a
dz1M̂(z1)

+ (ik0)2
∫ z

a
dz1M̂(z1)

∫ z1

a
dz2M̂(z2) + . . . , (9)

where Ê is an identity operator. Both the vector of tangen-
tial components W and matrix M̂ can be represented in the
four-dimensional space. Then, Ê is the four-dimensional unit
matrix.

To derive the effective material parameters of a contin-
uously inhomogeneous layer of thickness b − a, we should
equate its evolution operator 	b

a given by Eq. (9) at z = b to
the evolution operator exp[ik0(b − a)M̂eff ] of the effectively
homogeneous layer. Writing the exponential as a series, we
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obtain

Ê + ik0(b − a)M̂eff + 1

2
(ik0)2(b − a)2M̂2

eff + · · ·

= Ê + ik0

∫ b

a
dz1M̂(z1) + (ik0)2

∫ b

a
dz1M̂(z1)

×
∫ z1

a
dz2M(z2) + . . .

Keeping only the terms up to ik0 (zeroth-order approxima-
tion), we arrive at the effective characteristic matrix

M̂eff = 1

b − a

∫ b

a
dz1M̂(z1), (10)

providing two components of the effective material tensor as

ε
(0)
|| = 1

b − a

∫ b

a
dz1ε(z1), ε

(0)
⊥ =

(
1

b − a

∫ b

a

dz1

ε(z1)

)−1

.

(11)

For a piecewise-continuous function M̂(z) describing a
stack of N slabs, the generalization of the two-slab results is
valid,

M̂eff =
N∑

j=1

ρ jM̂ j, (12)

where ρ j is the filling fraction of the jth medium. The effec-
tive material parameters can be written as follows,

ε
(0)
|| =

N∑
j=1

ρ jε j, ε
(0)
⊥ =

⎛
⎝ N∑

j=1

ρ j

ε j

⎞
⎠

−1

. (13)

As we will see below, spherically and cylindrically symmetric
media can be also treated by the operator EMA outlined in
this section.

III. OPERATOR EFFECTIVE MEDIUM APPROXIMATION
FOR MULTILAYER SPHERICALLY

SYMMETRIC SYSTEMS

According to Ref. [43] the spherical coordinates (radial
r and angular θ and ϕ) can be separated for electric and
magnetic fields in spherically symmetric bianisotropic media
as follows: E(r) = F̂lm(θ, ϕ)E(r) and H(r) = F̂lm(θ, ϕ)H(r),
where F̂lm(θ, ϕ) is the tensor function of polar θ and azimuthal
ϕ angles, l = 1, 2, . . ., and −l � m � l . By substituting the
fields into the Maxwell equations, we obtain the system of
ordinary differential equations

dW
dr

= ik0M̂(r)W (14)

for the tangential fields combined to the vector W(r) =
(Ht (r), Et (r))T . The tangential fields are orthogonal to the
basis vector of spherical coordinates er = r/r. It is important
that in contrast to the planar layers, the matrix M̂(r) depends
on the coordinates even for homogeneous spherical layers.
The matrix M̂ for a rotationally symmetric bianisotropic

spherical layer is a block matrix with the components [43]

A = i

k0r
Î + e×

r α̂Î − κrrδr
l (l + 1)

k2
0r2

eϕ ⊗ eθ ,

B = e×
r ε̂Î − εrrδr

l (l + 1)

k2
0r2

eϕ ⊗ eθ ,

(15)
C = −e×

r μ̂Î + μrrδr
l (l + 1)

k2
0r2

eϕ ⊗ eθ ,

D = i

k0r
Î − e×

r κ̂ Î + αrrδr
l (l + 1)

k2
0r2

eϕ ⊗ eθ ,

where δr = (εrrμrr − αrrκrr )−1 and eϕ and eθ are the basis
vectors of the spherical coordinates. We have introduced here
a dyad a ⊗ b and a dual tensor a× [41,42,44] with elements
aib j and εi jka j , respectively, where εi jk is the Levi-Civita
tensor with indices i, j, and k spanning from 1 to 3. In
Eq. (15), we use the dual tensor e×

r = eϕ ⊗ eθ − eθ ⊗ eϕ and
the projector Î = eθ ⊗ eθ + eϕ ⊗ eϕ on the plane orthogonal
to er .

In general, the rotationally symmetric material tensors ε̂,
μ̂, α̂, and κ̂ can be presented as a sum of three irreducible
tensors or, equivalently, as a nondiagonal matrix in the basis
(er , eθ , eϕ):

ξ̂ = ξ1er ⊗ er + ξ2 Î + iχξ e×
r =

⎛
⎜⎝ ξ1 −iχξ 0

iχξ ξ2 0
0 0 ξ2

⎞
⎟⎠, (16)

where ξ̂ stands for one of the material tensors, while ξ1 and
ξ2, and χξ are the scalar coefficients.

Solution to the system of differential equations (14) for W
can be formally written by means of the evolution operator 	r

a
as follows:

W(r) = 	r
aW(a). (17)

Since the matrix M̂(r) depends on the radial coordinate r, the
evolution operator is not an exponential. But we can use again
the Born series expansion as

	r
a = Ê + ik0

∫ r

a
dr1M̂(r1)

+ (ik0)2
∫ r

a
dr1M̂(r1)

∫ r1

a
dr2M(r2) + . . . (18)

Here, the identity operator Ê = diag(Î, Î ) is a block matrix
(unit matrix in four-dimensional space). This series is rapidly
converging, if k0(r − a) � 1, i.e., for subwavelength layers
with thicknesses much smaller than radiation wavelength.

Homogenization procedure for a couple of spherical layers
stems from the same condition for identity of the bilayer and
homogenized layer evolution operators as in the case of planar
system: (

	b
a

)
eff = 	b

c	
c
a. (19)

Introducing the Born series into this equation, we can write
the expressions of different orders, the lowest of which (zeroth
order) reads∫ b

a
drM̂eff (r) =

∫ c

a
drM̂1(r) +

∫ b

c
drM̂2(r). (20)

205401-4



OPERATOR EFFECTIVE MEDIUM APPROXIMATION FOR … PHYSICAL REVIEW B 108, 205401 (2023)

Assuming that the layers to be homogenized are nonmagnetic
and isotropic, we can write their A, B, C, and D matrices
as

A1,2 = i

k0r
Î, B1,2 = ε1,2e×

r − l (l + 1)

k2
0r2

eϕ ⊗ eθ ,

C1,2 = −e×
r + l (l + 1)

ε1,2k2
0r2

eϕ ⊗ eθ , D1,2 = i

k0r
Î. (21)

The effective medium of the couple of isotropic spherical
layers can be treated as a nonmagnetic anisotropic layer
with ε̂eff = diag(εr, εt , εt ), the blocks of the matrix M̂eff

being

Aeff = i

k0r
Î, Beff = εt e×

r − l (l + 1)

k2
0r2

eϕ ⊗ eθ ,

Ceff = −e×
r + l (l + 1)

εrk2
0r2

eϕ ⊗ eθ , Deff = i

k0r
Î. (22)

Substituting them into the zeroth-order equation (20), we ar-
rive at the pair of equations:∫ b

a
εt dr =

∫ c

a
ε1dr +

∫ b

c
ε2dr,

∫ b

a

dr

εrr2
=

∫ c

a

dr

ε1r2
+

∫ b

c

dr

ε2r2
. (23)

Thus the tangential εt and radial εr components of the effec-
tive permittivity tensor read as

εt = ρ1ε1 + ρ2ε2, εr =
(

ρ ′
1

ε1
+ ρ ′

2

ε2

)−1

, (24)

where ρ1 = (c − a)/(b − a) and ρ2 = (b − c)/(b − a) are the
radius filling fractions, while ρ ′

1 = (c−1 − a−1)/(b−1 − a−1)
and ρ ′

2 = (b−1 − c−1)/(b−1 − a−1) are the curvature filling
fractions. The filling fractions obey the equalities ρ1 + ρ2 =
1 and ρ ′

1 + ρ ′
2 = 1, being linked through ρ ′

1 = (b/c)ρ1 and
ρ ′

2 = (a/c)ρ2. In the case of planar layers, the linear filling
fractions ρ1 and ρ2 coincide with the volume ones, but it is not
the case for spherical layers. The curvature filling fractions
ρ ′

1 and ρ ′
2 use the curvatures 1/R of interfaces instead of

their radii R, so that they approach ρ1 and ρ2, respectively,
only when the spherical layers are thin, that is, a ≈ c ≈ b or
(b − a) � c.

Availability of the curvature filling fractions is a drastic
dissimilarity to the planar case resulting in the difference of
definitions for the effective permittivity component across
the stratification direction. The difference is caused by the
curvature of spherical layers, but this fact does not influence
locality of the effective permittivity tensor (no dependence
on the wave vector). In Fig. 1(f), the scattering efficiency
σ−1

g dσ/do as a differential scattering cross-section normal-
ized by the geometrical cross-section of the particle σg = πb2

is demonstrated, where o denotes the solid angle. We use the
scattering theory developed in Ref. [43]. Despite the spherical
layers are deeply subwavelength, there is a noticeable gap
between the curves for two-shell and homogenized solutions
in the range of small scattering angles (forward scattering).
This breakdown of the EMA is caused by the total internal

reflection due to the great difference between the permittivi-
ties of layers.

Except for the scattering diagrams showing how the
scattered electromagnetic energy is distributed across the
scattering angles θ , the total scattering cross-section σ is
a convenient characteristic to estimate efficiency of the ho-
mogenization. If the total scattering cross-section of the
homogenized system σH equals to the total cross-section of
the multilayer system, then we can expect good or even perfect
homogenization. In Fig. 2(a), we demonstrate the total scat-
tering cross-section of a homogenized system σH with respect
to the total scattering cross-section of the actual multilayer
σ . The plot reveal the importance of the sequence of layers.
With the permittivities of the spherical layers ε1 = 2.25 and
ε2 = 4 the homogenized system is less scattering than the
actual mutilayer, whereas for the opposite sequence of layers,
ε1 = 4 and ε2 = 2.25, the relative scattering σH/σ is greater
than the unity. Despite the thicknesses of spherical layers
are subwavelength (d � λ), the EMA does not work well
exhibiting significant deviations of σH/σ from 1 for small
radii of the core a, i.e., for great curvatures a−1. Thus there
is one more criterion for the EMA to be valid: the radii of the
layers must not be subwavelength. From Fig. 2(a), we can esti-
mate the minimum core radius as am ≈ 100 nm or, generally,
k0a = 2πa/λ ∼ 1. We can roughly explain such a behavior
as follows. When the radius of the core is small (k0a � 1),
the inaccuracies of homogenization are well noticed, because
the core c2k0a and layer c1k0d terms in evolution operator
expansion 	̂b

a ≈ Ê + c1k0d + c2k0a are comparable (here c1,2

are constant coefficients). Otherwise, when the core is thick,
the effect of subwavelength layers above it can be treated as a
small perturbation.

The effective medium approximation can be also validated
in the near-field zone, that is, comparing the fields in vicin-
ity of the multilayer and homogenized nanoparticles. Indeed,
since the optical force exerting on a particle can be calculated
as an integration of the Maxwell stress tensor over any surface
embracing the particle, the usage of far fields for EMA vali-
dation (through optical force calculation) is equivalent to the
usage of near fields. This assumption is confirmed by Fig. 3. In
this figure, we can see the far-field (on the left) vs. near-field
(on the right) calculations. The ratio of scattering efficiencies
across the scattering angles well corresponds to ratio of the
near-field intensities.

The components of effective permittivity tensor are shown
in Fig. 2(b). Any considered sequence of layers provides the
same tangential component εt , because it is defined by the
thicknesses of layers, i.e., the difference between the layers
radii. The situation is fundamentally different for the radial
component εr which depends on the core radius a itself,
see Eq. (24). Dependence on the radius disappears for εr

calculated in the framework of the planar effective medium
theory with Eq. (8), see the dash-dotted line in Fig. 2(b). In
this case, as we observe in Fig. 2(a), the ratio of scattering
cross-sections follows the curve for spherical EMA starting
from about 100 nm. Thus one can exploit the planar effective
medium theory as a proxy for the spherical EMA in the range
of its validity.

Now turn to the metal-dielectric spherical nanoparticles.
When the magnitude of metal permittivity is large, |ε2| > ε1
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(a) (b)

FIG. 2. (a) Ratio of total scattering cross-sections of homogenized σH and actual σ multilayer dielectric systems in the case of two
sequences of layers. The planar effective medium parameters are shown for comparison as well. (b) Permittivities of the effective medium
tensor components εt and εr . Parameters for calculation: εa = 1, εb = 2, thicknesses of layers are d1 = d2 = 20 nm, and wavelength
λ = 500 nm.

as in Fig. 4(a), the dependence on the core radius a becomes
intricate. The range of validity of the spherical EMA shifts to
larger radii and the estimation k0a ∼ 1 is not valid anymore.
So, we need to have core radii of around a wavelength or
greater or, in other words, the curvature of the core should
be confined within the inverse wavelength as

a−1 < λ−1. (25)

As shown in Fig. 4(b), the permittivity component εr has
a pole associated with vanishing of its denominator at
a ≈ 50 nm where ε1ρ

′
2 + ε2ρ

′
1 = 0. So, we can distinguish

the range of anisotropic metallic and hyperbolic regimes be-
low and above the pole. Notice that poles in permittivities
in Figs. 4(b) and (d) do not guarantee existence of a scat-
tering zero. Applying the planar EMA for calculation of the

effective material parameters, we arrive at an effective hyper-
bolic medium with no dependence on the radius a.

If |ε2| < ε1, then the ratio of total scattering cross-
sections is mostly a monotonic function, as shown in Fig. 4(c).
The total scattering cross-section ratio for planar and spher-
ical EMA are quite close from about a = 100 nm. All in
all, the EMA operates worse for metal-containing than for
all-dielectric systems.

The effective medium theory does not put restrictions on
the imaginary part of the permittivity. In Fig. 5, we vary
the imaginary part in a wide range of values including both
positive (loss) and negative (gain) ones. We do not observe
noticeable change in the ratio of total cross-sections of ho-
mogenized and multilayer systems.

As another option, we can try to include a core to
the proposed homogenization procedure. To this end, we

FIG. 3. Ratio of scattering efficiencies for homogenized SEH and multilayer SE systems. The ratio of the scattered field intensities in the
near field is shown on the right. Parameters for calculation: εa = 1, εb = 2, ε1 = 4, ε2 = 2.25, thicknesses of layers are d1 = d2 = 20 nm, and
wavelength λ = 500 nm.
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(a) (b)

(c) (d)

FIG. 4. [(a) and (c)] Ratio of total scattering cross-sections of homogenized σH and actual σ multilayer metal-dielectric systems.
Homogenization is performed both using spherical and planar effective medium parameters. [(b) and (d)] Dielectric permittivities of the
effective medium tensor components εt and εr . Parameters for calculation: εa = 1, εb = 2, thicknesses of layers are d1 = d2 = 20 nm, and
wavelength λ = 500 nm.

formally divide the inner region with refractive index εb

into a small core of radius a0 � a and a thick layer
a0 < r < a, both of the same permittivity εb. Then, we
are able to homogenize three layers assuming that the
contribution of the small core is negligible. As a result,

FIG. 5. Ratio of total scattering cross-sections for homogenized
σH and multilayer σ systems vs. imaginary part of the dielec-
tric permittivity Im(ε2). Parameters for calculation: εa = 1, εb = 2,
Re(ε1) = 4, ε2 = 2.25, radius of the core a = 50 nm, thicknesses of
layers are d1 = d2 = 20 nm, and wavelength λ = 500 nm.

we get the effective medium parameters of the spherical
nanoparticle

εt = ρ1ε1 + ρ2ε2 + ρbεb, εr =
(

ρ ′
1

ε1
+ ρ ′

2

ε2
+ ρ ′

b

εb

)−1

,

(26)

where ρ1 = (c − a)/(b − a0), ρ2 = (b − c)/(b − a0), ρb =
(a − a0)/(b − a0), ρ ′

1 = (c−1 − a−1)/(b−1 − a−1
0 ), ρ ′

2 =
(b−1 − c−1)/(b−1 − a−1

0 ), and ρ ′
b = (a−1 − a−1

0 )/(b−1 −
a−1

0 ). Since a0 � a, the radius and curvature filling fractions
can be recast as ρ1 ≈ (c − a)/b, ρ2 ≈ (b − c)/b, ρb ≈ a/b,
ρ ′

1 ≈ 0, ρ ′
2 ≈ 0, and ρ ′

b ≈ 1, so that the material parameters
of the homogenized anisotropic particle corresponding to the
whole spherical multilayer read as

εt = c − a

b
ε1 + b − c

b
ε2 + a

b
εb, εr = εb. (27)

The tangential effective permittivity εt represents just a
mixing rule, while the radial permittivity εr is defined solely
by the core permittivity. As clearly seen from Fig. 6(a) in
comparison to Fig. 1(f), the inclusion of the core to the ho-
mogenization procedure does not improve accuracy of the
effective-medium theory, but only worsen it. The reason is the
high curvature of the inner boundary of the core layer a−1

0 . We
can obtain the better scattering pattern for some radii a. As
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(a) (b) (c)

FIG. 6. Homogenization of the whole particle including both core and shell for core radii (a) a = λ/2π and (b) a = 5 and 10 nm. (c) Ratio
of total scattering cross-sections of homogenized σH and multilayer σ systems. Parameters: ε1 = 1, ε2 = 5, εa = 1, εb = 5, thicknesses of
layers are d1 = d2 = 10 nm, and wavelength λ = 500 nm.

demonstrated in Fig. 6(b), the scattering efficiency curves for
homogenized and actual structures get closer for a = 10 nm
and may even almost coincide for a = 5 nm. We explain such
a behavior by the compromise between the two criteria for
EMA validity. On the one hand, the smaller thickness of the
layer, the better. On the other hand, the small radius (great
curvature) brings us to the breakdown of the homogenization.
When these two effects are compensated, the homogenization
is perfect. According to Fig. 6(c) the value a ≈ 5 nm is an
optimal value for the EMA. Optimal values can be found for
greater radii a as well representing a set of discrete accidental
values. Nevertheless, optimization of the total scattering does
not mean that the distributions across the scattering angles
coincide for multilayer and homogenized particles. The dis-
tribution may be the same for electric dipole particles, but
the scattering patterns for bigger particles are defined by the
interplay of multipoles causing their ambiguity. Thus the core
cannot be reliably included into our homogenization scheme.

IV. OPERATOR EFFECTIVE MEDIUM APPROXIMATION
FOR MULTILAYER CYLINDRICALLY

SYMMETRIC SYSTEMS

In this section, we consider propagation of electromag-
netic waves in cylindrically symmetric bianisotropic media
described by the material tensors ξ̂ = {ε̂, μ̂, α̂, κ̂} given by

ξ̂ =
3∑

i, j=1

ξi j (r)ei ⊗ e j, (28)

where e1 = er , e2 = eϕ , and e3 = ez are the basis vectors of
the cylindrical coordinates (r, ϕ, z). Due to the azimuthal and
translational symmetries available for waves in cylindrically
symmetric media, we can write the magnetic and electric
fields as (

H(r)
E(r)

)
= exp(iβz + iνϕ)

(
H(r)
E(r)

)
, (29)

where β = kz is the z projection of the wave vector and ν is
an integer number. Both β and ν describe the wave vector in
the plane orthogonal to the stratification direction r.

As well as for spherically symmetric stratified media, the
cylindrical waves satisfy the system of ordinary differen-
tial equations (14) for tangential electric and magnetic fields

W = (Ht , Et )T with the blocks of the matrix M̂ given below
[45]:

A = i

k0r
eϕ ⊗ eϕ + e×

r α̂Î + e×
r ε̂er ⊗ v3 + e×

r (u + α̂er ) ⊗ v1,

B = e×
r ε̂Î + e×

r ε̂er ⊗ v4 + e×
r (u + α̂er ) ⊗ v2,

C = −e×
r μ̂Î − e×

r μ̂er ⊗ v1 + e×
r (u − κ̂er ) ⊗ v3,

D = i

k0r
eϕ ⊗ eϕ − e×

r κ̂ Î − e×
r μ̂er ⊗ v2 + e×

r (u − κ̂er ) ⊗ v4,

where Î = eϕ ⊗ eϕ + ez ⊗ ez is the projection operator on the
surface orthogonal to er ,

v1 = δr (κrrer α̂Î − εrrerμ̂Î − κrru),

v2 = δr (κrrer ε̂Î − εrrer κ̂ Î − εrru)

v3 = δr (αrrerμ̂Î − μrrer α̂Î + μrru),

v4 = δr (αrrer κ̂ Î − μrer ε̂Î + αrru),

u = β

k0
eϕ − ν

k0r
ez, δr = (εrrμrr − αrrκrr )−1.

Similar to the case of spherical symmetry, the matrix M̂
depends on r even for homogeneous media. That is why the
evolution operator 	r

a can be again presented in the form of
the Born series Eq. (18). Looking for the effective medium
as a nonmagnetic anisotropic one with the permittivity tensor
ε̂eff = diag(εr, εt , εt ) and introducing the corresponding ma-
trices A, B, C, and D for isotropic and effective anisotropic
cylindrical layers into Eq. (20), one obtains a system of equa-
tions for two constant components εt and εr of the effective
permittivity tensor as∫ b

a
εt dr =

∫ c

a
ε1dr +

∫ b

c
ε2dr,

∫ b

a

e×
r u ⊗ u

εr
dr =

∫ c

a

e×
r u ⊗ u

ε1
dr +

∫ b

c

e×
r u ⊗ u

ε2
dr. (30)

The second of these equations is generally a system of four
equations, whereas we have only two variables εt and εr .
Therefore the initial ansatz of the nonmagnetic uniaxial ef-
fective medium with the z-oriented optical axis exploited
for spherically symmetric and planar cases is not applicable
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(a) (b) (c)

FIG. 7. Scattering efficiency of the periodic multilayer and homogenized systems for the number of periods (a) Np = 1, (b) 5, and (c) 10
between the core of radius k0a = 4 and the outer radius k0b = 5.25. Parameters: permittivities of materials in a unit cell ε1 = 2.25 and
ε2 = 12.25, εa = 1, εb = −2.

here. Five equations (30) can be consistently solved for five
effective material parameters. Since the effective material ten-
sors are not unique, we can assume a specific form for them,
for example,

ε̂eff = er ⊗ er + εt Î,

μ̂eff = er ⊗ er + μϕϕeϕ ⊗ eϕ

+ μϕzeϕ ⊗ ez + μzϕez ⊗ eϕ + μzzez ⊗ ez, (31)

implying that the effective medium is magnetic and
anisotropic. Then, the effective parameters sought for can be
determined from equations similar to Eq. (30):∫ b

a
εt dr =

∫ c

a
ε1dr +

∫ b

c
ε2dr,

(32)∫ b

a
Ceff (r)dr =

∫ c

a
C1(r)dr +

∫ b

c
C2(r)dr,

where we have introduced the corresponding block of matrix
M̂eff ,

Ceff (r) = −e×
r μ̂eff Î + e×

r u ⊗ u. (33)

Substituting μ̂eff and u into Ceff and using C1,2 = −e×
r +

ε−1
1,2e×

r u ⊗ u, we arrive at the effective-medium parameters

εt = ε1ρ1 + ε2ρ2, μϕϕ = 1 + η1
β2

k2
0

,

μzz = 1 + η2
ν2

k2
0ab

, μϕz = μzϕ = η3
βν

k2
0 (b − a)

, (34)

where

η1 = 1 − ρ1

ε1
− ρ2

ε2
, η2 = 1 − ρ ′

1

ε1
− ρ ′

2

ε2
,

η3 = 1

ε1
ln

( c

a

)
+ 1

ε2
ln

(
b

c

)
− ln

(
b

a

)
. (35)

The derived effective material parameters exhibit depen-
dence on the wavevector through β and ν, i.e., this material is
nonlocal. For β = 0 and any ν, there is no wave propagation
along the z-axis and the effective permeability is reduced
to μ̂eff = er ⊗ er + eϕ ⊗ eϕ + μzzez ⊗ ez. The diagonal per-
meability μ̂eff = er ⊗ er + μϕϕeϕ ⊗ eϕ + ez ⊗ ez occurs for
ν = 0 and β 	= 0.

Some specific situations can be revealed in terms of ef-
fective permittivity tensor ε̂eff at μeff = 1. When ν = 0, the

vector u = (β/k0)eϕ and only two effective parameters εt

and εr determined from Eq. (30) are needed. In this case,
we obtain the parameters coinciding with those for the ho-
mogenized planar slabs given by Eq. (8). These effective
parameters correspond to fiber’s fundamental modes. When
β = 0 (wave scattering in cylinder’s cross-section), the vector
u = −(ν/k0r)ez depends on the radial coordinate bringing us
to the effective medium parameters coinciding with those for
the spherically symmetric layers given by Eq. (24). Curiously,
the effective material parameters for β = 0 and for ν = 0
are local, when we exploit anisotropic nonmagnetic medium
ansatz, and nonlocal for anisotropic magnetic effective media.

Further, we consider some numerical examples related to
the EMA in the cross-section of the cylindrical particle, i.e.,
for β = 0. We use the scattering theory described in Ref. [46].
Figure 7 deals with the nonmagnetic ansatz for the effective
medium described by the dielectric permittivity tensor ε̂eff =
εrer ⊗ er + εt Î . We explore the effect of layer number on the
performance of homogenization approach. To this end, we
divide the region between the fixed core radius a and fixed
outer radius b into different numbers of equal-thickness lay-
ers. We assume that Np periods can be placed within the range
a � r � b, a period being composed of two materials ε1 and
ε2 and having the thickness (b − a)/Np. In our example, the
core is metallic with εb = −2. If permittivities of layers are εi

and their radial and curvature filling fractions are respectively
ρi and ρ ′

i , then the effective permittivities read

εt =
2Np∑
i=1

ρiεi, εr =
⎛
⎝ 2Np∑

i=1

ρ ′
i

εi

⎞
⎠

−1

. (36)

When the shell is divided only into two homogeneous regions,
there is a rough similarity between the scattering efficiency
lines for the multilayer and cylindrical effective medium as
seen in Fig. 7(a). The lines get closer for the greater number of
periods [see Fig. 7(b)] resulting in the perfect correspondence
in Fig. 7(c). This behavior can be understood as follows. If
we divide the shell into the larger number of periods, then
each of the layers becomes thinner (more subwavelength) im-
proving accuracy of the effective medium description. When
we decrease the core radius a, the curvature effect cannot be
neglected and the scattering efficiency using the cylindrical
EMA departures from that for actual multilayer.

205401-9



NOVITSKY, RAMANOVICH, AND NOVITSKY PHYSICAL REVIEW B 108, 205401 (2023)

FIG. 8. Scattering efficiency of the homogenized ten-period mul-
tilayer system when νm partial cylindrical waves are accounted for.
Parameters: k0a = 4, k0b = 5.25, ε1 = 0.54, ε2 = 7.46, εa = 1, and
εb = −2.

To have a similar scattering pattern, the multilayer and ho-
mogenized system should possess the same set of multipoles
contributing with Tν to the scattering efficiency. In Fig. 8, one
can see the scattering efficiencies σ−1

g dσ/do = ∑νm
ν=−νm

Tν ,
when we truncate the multipole series with number νm. Only
for νm = 3 we get the curve resembling the actual scattering
efficiency (solid curve).

According to the discussion above, the second set of effec-
tive material parameters to homogenize a cylindrical shell for
β = 0 corresponds to a magnetic nonlocal effective medium
described with

ε̂eff = er ⊗ er + (ε1ρ1 + ε2ρ2)Î,

μ̂eff = er ⊗ er + eϕ ⊗ eϕ

+
[

1 +
(

1 − ρ ′
1

ε1
− ρ ′

2

ε2

)]
ν2

k2
0ab

ez ⊗ ez. (37)

Here we pose a question: whether nonmagnetic and magnetic
EMAs are equivalent? If not, then which one better describes
a multilayer? Figure 7 helps us to answer these questions.
We clearly see that the two EMAs are not equivalent. It is
possible that there is an optimal EMA or each EMA has a cer-
tain region of parameters where it operates better. To explore
these possibilities, a separate investigation is needed. Here,

we just compare the two sets of effective medium parameters
depending on the core radius a. For deeply subwavelength
cores as in Fig. 9(a), the difference between the scattering
cross-sections for magnetic and nonmagnetic EMAs is great
in the whole range of scattering angles θ , the nonmagnetic
EMA describes the multilayer much better. At a = 50 nm
[Fig. 9(b)], the scattering efficiency curve for magnetic EMA
is closer to the curve for actual multilayer for small scattering
angles, but overall the two approximations have roughly the
same performance. For even bigger particles as in Fig. 9(c),
the nonmagnetic EMA again outperforms the magnetic one.
In general, the nonmagnetic EMA (with the vacuum magnetic
permeability and local dielectric permittivity) operates better
than its magnetic counterpart. Nonlocality could further help
to improve the homogenization theory by adding more correc-
tions beyond the available local EMA [31].

V. FIRST-ORDER EFFECTIVE MEDIUM
APPROXIMATION FOR CYLINDRICALLY

SYMMETRIC MEDIA

In this section, we reveal a technique for determining
higher-order approximations of effective medium theory
considering a cylindrically symmetric system as an example.
Similar approach is applicable for spherically symmetric
systems as well. In order to find the first-order approximation,
we should account for the terms up to (ik0)2 in the Born
expansions for effective medium and individual layers.
Then, the equality of evolution operators in the first-order
approximation reads∫ b

a
dr1M̂eff (r1) + ik0

∫ b

a
dr1M̂eff (r1)

∫ r1

a
dr2M̂eff (r2)

=
∫ c

a
dr1M̂1(r1) + ik0

∫ c

a
dr1M̂1(r1)

∫ r1

a
dr2M̂1(r2)

+
∫ b

c
dr1M̂2(r1) + ik0

∫ b

c
dr1M̂2(r1)

∫ r1

c
dr2M̂2(r2)

+ ik0

∫ b

c
dr1M̂2(r1)

∫ c

a
dr1M̂1(r1). (38)

The block matrix of the effective medium can be
also expanded with respect to the powers of ik0 as
M̂eff = M̂ (0)

eff + ik0M̂ (1)
eff , where M̂ (0)

eff is the zeroth-order

(b)
(c)

(a)

FIG. 9. Scattering efficiency of the two-shell cylindrical particle and corresponding nonmagnetic and magnetic homogenized systems for
core radii (a) a = 20, (b) 50, and (c) 400 nm. Parameters: thicknesses of layers d1 = d2 = 20 nm, λ = 500 nm, ε1 = 2.25, ε2 = 4, εa = 1, and
εb = 2.
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approximation discussed earlier and defined in Eq. (20).
Since the second term on the left-hand side of Eq. (38) is
the first-order term, as a first iteration, we can substitute the
zeroth-order matrix M̂ (0)

eff in the integrands there. Thus the
effective-medium parameters with contributions of both
the zeroth- and first-order terms can be extracted from the
matrix M̂eff defined as∫ b

a
dr1M̂eff (r1) = − ik0

∫ b

a
dr1M̂ (0)

eff (r1)
∫ r1

a
dr2M̂ (0)

eff (r2)

+
∫ c

a
dr1M̂1(r1) + ik0

∫ c

a
dr1M̂1(r1)

×
∫ r1

a
dr2M̂1(r2)

+
∫ b

c
dr1M̂2(r1) + ik0

∫ b

c
dr1M̂2(r1)

×
∫ r1

c
dr2M̂2(r2)

+ ik0

∫ b

c
dr1M̂2(r1)

∫ c

a
dr1M̂1(r1). (39)

For isotropic nonmagnetic cylindrical layers, we know the
matrices M̂1, M̂2, and M̂ (0)

eff involved in the right-hand side
of Eq. (39). Introducing them to Eq. (39), we can find the
effective permittivity and permeability tensors (and gyration
tensors α̂eff and κ̂eff , if necessary). In the specific case of
β = 0, the effective-medium tensors can be chosen as

ε̂eff = er ⊗ er + εrϕer ⊗ eϕ + εϕreϕ ⊗ er + εϕϕeϕ ⊗ eϕ

+ εzzez ⊗ ez,

μ̂eff = er ⊗ er + μrϕer ⊗ eϕ + μϕreϕ ⊗ er + μϕϕeϕ ⊗ eϕ

+ μzzez ⊗ ez, (40)

The material parameters in the first-order approximation
are spatially dispersive and cumbersome. Moreover, the ef-
fective tensors contain nondiagonal terms and, thus, it is not a
simple task to find the solution of the Maxwell equations with
these material parameters. So, as long as it is possible, it is
reasonable in practice to limit analysis to the zeroth-order
approximation.

VI. BALANCING LOSS AND GAIN

In this section, we show how to leverage effective material
parameters for balancing loss and gain in multilayer systems
of different geometries. We assume two layers with complex
permittivities ε1 = ε′

1 + iε′′
1 and ε2 = ε′

2 + iε′′
2 and suppose

that loss and gain are balanced, when the effective material
parameters are real-valued, i.e., there is no net amplification
or attenuation of waves propagating through such an effective
medium. For the spherical bilayers, for example, this condi-
tion means

εt = ε∗
t , εr = ε∗

r . (41)

or

Im(εt ) = 0, Im(εr ) = 0. (42)

Using Eq. (24), we can rewrite these equations as

ρ1ε
′′
1 + ρ2ε

′′
2 = 0,

ρ ′
1ε

′′
1 |ε2|2 + ρ ′

2ε
′′
2 |ε1|2 = 0. (43)

It is seen that the imaginary parts of permittivities should
have different signs to compensate absorption in the passive
medium (ε′′ > 0) with amplification in the active medium
(ε′′ < 0).

Planar bilayer. In this case, since the layers are not curved,
we should exploit ρ1 and ρ2 instead of ρ ′

1 and ρ ′
2, respec-

tively, in Eq. (43) [compare Eqs. (24) and (8)]. This means
that the absolute values of permittivities should be equal,
|ε1|2 = |ε2|2, while the imaginary parts should be related as
ε′′

2 = −ρ1ε
′′
1/ρ2. The former condition provides the relation-

ship between the real and imaginary parts of permittivities
strongly restricting fabrication capabilities of such structures.
Therefore it is reasonable to assume that ε′ and ε′′ are in-
dependent and write the conditions for them separately as
ε′2

1 = ε′2
2 and ε′′2

1 = ε′′2
2 instead of |ε1|2 = |ε2|2. Since ε′′

1 and
ε′′

2 have opposite signs, we have ε′′
1 = −ε′′

2 . The real parts
are generally ε′

1 = ±ε′
2. Moreover, we get a condition on the

thickness of slabs as ρ1 = ρ2. Thus balancing loss and gain
for the planar bilayer requires permittivities ε1 = ε′

1 + iε′′
1 and

ε2 = ±ε′
1 − iε′′

1 of the layers of the same thickness d1 = d2. In
the case ε′

1 = ε′
2, we approach a famous result used in a plenty

of works on PT -symmetric multilayers, e.g., in Refs. [47,48].
In Ref. [49], we went beyond the local EMA to adequately
describe exceptional points in such systems. Notice that for
the layers a � z � c and c < z � b, the condition ρ1 = ρ2

allows us to determine the position c of the interface as c =
(a + b)/2.

The case ε′
1 = −ε′

2 can be realized for two layers, one
of which is attenuating metal (ε1 = −|ε′

1| + i|ε′′
1 |), while the

other slab is amplifying dielectric (ε1 = |ε′
1| − i|ε′′

1 |).
Spherical bilayer. From Eq. (43), we readily derive

ρ ′
2

ρ2
|ε1|2 = ρ ′

1

ρ1
|ε2|2 (44)

or

ρ ′
2

ρ2

(
ε′2

1 + ε′′2
1

) = ρ ′
1

ρ1

(
ε′2

2 + ρ2
1

ρ2
2

ε′′2
1

)
. (45)

In order to disentangle the real and imaginary parts of permit-
tivities, we demand

ρ1ρ
′
1 = ρ2ρ

′
2. (46)

This equation can be solved with respect to the radius c of the
interface between two spherical layers. Indeed, we get

(c − a)(a−1 − c−1) = (b − c)(c−1 − b−1) (47)

that results in

c =
√

ab. (48)

So, the value c should be the geometric mean of the inner and
outer radii, in contrast to the arithmetic mean for planar layers.
The ratio of filling fractions then equals ρ1/ρ2 = √

a/b. From
Eq. (45), we also find the connection between the real parts of
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permittivity,

ε′
2 = ±ε′

1
ρ1

ρ2
= ±ε′

1

√
a

b
. (49)

Taking the sign “+,” we obtain the permittivities of unequal
spherical layers needed to balance loss and gain as ε1 = ε′

1 +
iε′′

1 for a � r � c and ε2 = (ρ1/ρ2)(ε′
1 − iε′′

1 ) = √
a/b(ε′

1 −
iε′′

1 ) for c < r � b.
The material parameters and position of the interface for

spherical layers reduce to those for planar layers in the limit of
thin layers compared to their radii, (b − c), (c − a) � c. For
waves propagating in the cylinder cross-section, the material
parameters of balanced layers can be calculated similarly to
those of spherical layers.

VII. CONCLUSION

We propose the operator effective medium approximation
for spherically and cylindrically symmetric multilayer sys-
tems. In contrast to the operator EMA developed earlier for
planar multilayers, here we use the Born series expansion
for the evolution operator giving the fundamental solution of
the Maxwell equations in spherical or cylindrical coordinates.
Effective material parameters are derived from the equality of

the evolution operators of the multilayer system and effective
medium. Doing so, we have derived the local effective dielec-
tric permittivity tensor of a nonmagnetic nonchiral multilayer.
To verify the operator EMA, we have calculated the scatter-
ing efficiencies for dielectric and metallic structures. For the
cylindrical system, we have determined two sets of effective
material parameters, the first of which includes only the local
permittivity tensor, while the second set provides permittivity
and wavenumber-dependent permeability tensors. Compari-
son of these two sets of effective material parameters unveils
the benefits of exploitation of local material parameters. We
have clarified the criterion of EMA validity supplementing
the requirement of subwavelength layers with the condition
on the curvature of the layers that should be about or smaller
than the inverse wavelength. Finally, requiring reality of the
effective material parameters, we have found the parameters
of spherical bilayer with balanced loss and gain.
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