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Under time-reversal symmetry, quantum spin Hall edge channels are protected against elastic backscattering.
However, even for samples which exhibit conductance quantization due to the quantum spin Hall effect,
reproducible fluctuations shape the quantization plateau when the chemical potential is tuned through the
bulk gap. Here, we examine those fluctuations in micron-sized HgTe quantum well devices. By performing
temperature- and gate-dependent measurements, we conclude that “charge puddles” in the narrow-gap material
have a Kondo-type interaction with the edge channels resulting in the observed conductance fluctuations. Our
results provide insight into the underlying mechanisms of scattering in quantum spin Hall edge channels.
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I. INTRODUCTION

After the first experimental observation of the quantum
spin Hall effect in HgTe quantum wells, the robustness of
the conductance quantization in the presence of impurities
has been vigorously investigated. Although theory predicts
that the helical edge channels are protected against elastic
backscattering under time-reversal symmetry, all experimen-
tal demonstrations of the quantum spin Hall effect, including
the first report in 2007, show gate voltage-dependent repro-
ducible fluctuations in the quantum spin Hall conductance
[1–4]. These fluctuations have been attributed to inelastic scat-
tering off of charge puddles, which are common in narrow-gap
semiconductors and are formed due to an inhomogeneous
potential landscape [2,5–8]. In Ref. [7], Väyrynen et al. con-
sider interactions of helical edge channels with charge puddles
small enough to show single electron charging effects: chang-
ing the gate voltage leads to charging of the puddle in single
electron steps, which results in fluctuations in the quantum
spin Hall conductance due to resonant backscattering. They
further predict that Kondo effects in the puddle (depending
on odd or even occupancy) lead to a distinct temperature
dependence of these conductance fluctuations.

We recently have been able to demonstrate Kondo ef-
fects on topological edge channels in magnetically doped
(Hg,Mn)Te quantum wells [9], which exhibit Kondo temper-
atures up to ∼3 K. However, for the Kondo effects of charge
puddles one expects a much lower Kondo temperature (plau-
sibly � 100 mK, as explained later) and up until now, it has
not been possible to verify the above predictions because con-
ventional dry etching, routinely used to fabricate HgTe-based
quantum spin Hall microstructures, causes significant damage
to the edges and consequently creates a large number of

*These authors contributed equally to this work.

scatterers in these devices [3,5,10], making mechanistic
studies problematic. We recently showed that a wet-etch fab-
rication process results in high-quality microstructures with
mobilities similar to macroscopic devices [3]. In this paper, we
investigate the conductance fluctuations of quantum spin Hall
edge channels at different temperatures between 20 mK and
2 K in micron-sized devices fabricated from HgTe quantum
wells using the wet-etch process. The fluctuations in con-
ductance in the regime of edge channel transport exhibit a
characteristic temperature dependence which can be related to
interactions of the helical edge channels with a charge puddle
acting as a Kondo-correlated quantum dot.

II. MATERIAL GROWTH AND DEVICE FABRICATION

We use molecular beam epitaxy to grow a 7.5-nm-thick
HgTe quantum well sandwiched between (Hg,Cd)Te barriers
on a lattice-matched (Cd,Zn)Te substrate. A schematic of the
corresponding layer stack is shown in the inset of Fig. 1(b).
For a carrier density of n ∼ 6 × 1011 cm−2, the mobility is
μ ∼ 2 × 105 cm2 V−1 s−1 (which corresponds to a mean free
path of l ∼ 2.5 µm). We fabricated a four-terminal (Device
1) and a three-terminal (Device 2) device as shown in the
schematic of Figs. 1(a) and 1(b), respectively, using e-beam
lithography and chemical wet etching. Details of the device
fabrication can be found in Refs. [3,11]. All electrical trans-
port measurements are performed in dilution refrigerators
using low-frequency (∼13 Hz) lock-in techniques.

III. FLUCTUATIONS OF THE QUANTUM SPIN HALL
CONDUCTANCE IN MICRON-SIZED DEVICE

The gate-voltage characteristics of Device 1 and Device 2
are shown in Figs. 1(a) and 1(b), respectively. A gate elec-
trode can be used to tune the carrier density from n-type to
p-type conductance which ensures that the entire regime of
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FIG. 1. Conductance fluctuations in the quantum spin Hall regime. (a) The four-terminal conductance G4t = IA,D/VB,C of Device 1 is plotted
as a function of gate voltage VG at 17 mK. The dashed line indicates the expected quantization conductance (4 e2/h) for a four-terminal device.
The inset shows a schematic of the device. The letters A, B, C, and D indicate Ohmic contacts. The distance between the contacts B and C is
∼1.7 μm. (b) The two-terminal conductance G2t = IA,C/VA,C of Device 2 is plotted as a function of VG at 27 mK. The dashed line indicates the
expected quantization conductance (3/2 e2/h) for a three-terminal device. The inset shows a schematic of the device along with the molecular
beam epitaxy grown layer stack. The distance between the contacts A and C is ∼3 µm. The width is ∼2 µm for both devices. The CdTe,
(Hg,Cd)Te bottom and top barriers have a thickness of 50, 150, and 15 nm, respectively. The green boxes indicate the regions of interest for
the study of fluctuations in these devices.

topological edge channel transport is accessible. Since Device
2 employs a thick dielectric layer (85-nm-thick HfO2) com-
pared to Device 1 (14-nm-thick HfO2), the gate efficiency
of Device 1 is larger than in Device 2. When the chemical
potential is tuned through the bulk band gap, the conduc-
tance shows a minimum for both devices, which corresponds
to the quantum spin Hall regime. While for Device 2, the
conductance is close to the value expected from the Landauer-
Büttiker model [denoted by dashed lines in Figs. 1(a) and
1(b)] for the given measurement geometry, for Device 1, the
conductance is lower than the expected value by 50%. Such
deviation in conductance from the expected quantized value
has been observed before and has been attributed to scattering
from charge puddles [5]. Even though the conductance is
close to quantization, we observe fluctuations in the quantum
spin Hall conductance for both devices. These conductance
fluctuations are reproducible for various gate sweeps at a
fixed temperature. Even though the absolute magnitudes of the
conductance fluctuations are different in Device 1 and Device
2 (see Fig. 1), the relative conductance fluctuations �G/G and
the temperature dependence of the fluctuations are similar for
both devices, as elaborated in the following.

IV. TEMPERATURE DEPENDENCE OF THE
CONDUCTANCE FLUCTUATIONS

A very distinct temperature dependence of the conduc-
tance fluctuations is observed for the gate-voltage regions
indicated by the green boxes (see Fig. 1), which is displayed
in Figs. 2(a) and 2(b) for Device 1 and Device 2, respec-
tively. The temperature dependence of the conductance in
extended gate-voltage regions is shown in Figs. 1 and 2 of the
Supplemental Material [12], along with similar observations
in an additional device. As shown in Fig. 2, the amplitude
of the conductance fluctuations increases monotonically as
the temperature decreases. In the high-temperature limit (red

curve), the conductance traces exhibit alternating conductance
peaks and valleys, which are indicated by vertical lines. In
the temperature evolution of the peaks, we observe the fol-
lowing main features: the conductance value at peaks labeled
as Pev—referred to as even peaks for reasons that will be-
come obvious below—remains essentially constant for all
temperatures. However, for the neighboring peaks labeled as
Podd—referred to as odd peaks—the conductance decreases
with decreasing temperature. To quantify the difference be-
tween odd and even peaks, the temperature-dependent change
in conductance �G(T ) = G(T ) − G(T ≈ 2 K) is shown in
Figs. 3(a) and 3(b) for Device 1 and Device 2, respectively.
In contrast, the conductance at all valleys shows a similar
temperature dependence: �G(T ) decreases with decreasing
temperature [right panels in Figs. 3(a) and 3(b)]. The distinct
temperature dependence of the conductance fluctuations at
odd and even peaks evidently is strongly reminiscent of the
conductance GQD of a Kondo-correlated quantum dot, that
alternates between even and odd electron occupancy as the
gate voltage is varied [13,14]. Hence the peak labeling we
have chosen.

V. INTERACTIONS BETWEEN HELICAL EDGE
CHANNELS AND A CHARGE PUDDLE ACTING
AS A KONDO-CORRELATED QUANTUM DOT

To qualitatively explain various features of the conductance
versus gate-voltage traces at different temperatures, we as-
sume that a charge puddle, acting as a quantum dot, is in
close proximity to the helical edge channels, thus allowing
for significant wave function overlap [Fig. 4(a)]. When the
gate voltage is used to tune the electrochemical potential, we
simultaneously change the potential for the edge channels
as well as for the dot, which leads to Coulomb oscillations
of the edge-dot transmission amplitude (and conductance)
[Fig. 4(b)].
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(a) (b)

FIG. 2. Odd-even patterns in the temperature dependence of the conductance fluctuations. (a) G4t as a function of VG from 17 mK (blue) to
1.7 K (red) for Device 1. (b) G2t as a function of VG from 27 mK (blue) to 2 K (red) for Device 2. The various conductance peaks are labeled
as Pev and Podd (indicated by vertical lines) while the valleys are labeled as V .

Figures 4(b) and 4(c) show schematically the temperature
dependence of the conductance of a quantum dot and quantum
spin Hall edge channels interacting with a dot, respectively.
For T > TK and at gate voltages where the dot is Coulomb
blockaded (i.e., T < Ec, the charging energy of the dot), any
interactions of the dot with electrons outside are cut off.
In this situation, the conductance of the helical edge chan-
nels remains close to the expected quantized value. For gate

(a)

(b)

FIG. 3. Temperature evolution of odd and even peaks. The
temperature-dependent change in conductance �G(T ) = G(T ) −
G(THigh) of the peaks marked in Fig. 2 for (a) Device 1 (THigh =
1.7 K) and (b) Device 2 (THigh = 2.0 K). The color code corresponds
to the color map of the labels for P and V introduced in Fig. 2. The
dashed lines indicate fits to Eq. (1). In Device 2, the temperature
dependence saturates at ∼200 mK, which we attribute to higher
electron temperature during the measurement compared to Device 1
(∼50 mK). The error bars are based on a maximum error estimation
in 0.2 mV (Device 1) and 0.6 mV (Device 2) windows around the
vertical lines in Fig. 2.

voltages where the edge-dot transmission is high, the dot can
interact with the carriers in the helical edge channels. Spin-flip
scattering of edge channel electrons with those on the dot
[7] results in backscattering, leading to a decrease in chan-
nel conductance. Thus, valleys (peaks) in the conductance of
the edge-dot connection correspond to peaks (valleys) in the
quantum spin Hall conductance. On lowering the temperature,
the reduced thermal smearing causes the conductance of the
edge-dot junction to increase for all peaks, hence bringing
about a decrease in the quantum spin Hall conductance for all
valleys. For T ∼ TK, the edge-dot transmission in odd valleys
(occupancy with an odd number of electrons, resulting in a net
spin) increases strongly due to the Kondo effect [13,14]. The
dot now can interact with edge channel electrons for all gate
voltages where the dot occupation number is odd, resulting in
backscattering and hence a decrease in the quantum spin Hall
conductance for odd peaks. Thus, odd peaks in the quantum
spin Hall conductance show a strong temperature dependence.
For an even occupancy the dot remains blockaded at low
temperatures, hence even peaks in the quantum spin Hall
conductance show a weak temperature dependence, remaining
close to the quantized value. This model qualitatively repro-
duces the features of conductance versus gate-voltage curves
at different temperatures shown in Fig. 2.

The voltage spacing between neighboring peaks Vpp, about
4 mV for Device 1 and 10 mV for Device 2 (see Fig. 2),
implies a charging energy of 2 and 5 meV, respectively.
The Coulomb blockade requirement EC > T is thus obeyed
for both devices. A simple capacitor model reveals charge
puddle diameters of approximately 100 nm for both devices.
Details of these calculations are given in the Supplemental
Material [12].

Additional charge puddles, further away from the edge
channels and weaker in interactions, may give rise to further
conductance features that arise in the low-temperature limit,
(cf. Fig. 2). The applied gate voltage tunes the chemical
potential through all band edge and puddle states simultane-
ously, all with their own energetic substructure, which slightly
modulates the observed periodicity of peaks and valleys. In
extended gate-voltage regions (that are shown in the Supple-
mental Material [12]) more charge puddles will be able to
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FIG. 4. Fluctuations based on the interaction between edge channels and a charge puddle. (a) A schematic of the helical edge channels
and the Kondo quantum dot formed by a charge puddle in the vicinity of the edge channels. The inset indicates the wave function overlap
of edge channels and quantum dot states. The out-of-plane arrows indicate the orientation of the spin eigenstates of helical edge electrons
(spin momentum locked) and the quantum dot system which are not necessarily parallel to each other, as further discussed in the Appendix.
(b) Temperature dependence of the conductance of a Kondo-correlated quantum dot as a function of occupation number, where red indicates
high (T > TK ) and blue low (T ∼ TK ) temperatures. (c) An illustration of the corresponding quantum spin Hall conductance due to the
interaction between helical edge channels and a Kondo quantum dot as described in the main text.

interact with the edge channel, leading to an averaging out of
the odd-even signal in the conductance trace. Thus, the odd-
even effect is observed only if the sample is in the quantum
spin Hall transport regime and a charge puddle (that is in the
Coulomb blockade regime and overlaps the edge channels) is
charged/depleted simultaneously. This limits the observation
to (a) a high-quality sample with only few charge puddles as
well as (b) a limited voltage range where a single dominant
charge puddle fulfills the backscattering requirements.

A comparison of our observations with the predictions of
Ref. [7] reveals a major difference: while we observe that
the quantum spin Hall conductance decreases away from
the expected quantized value with decreasing temperature,
Ref. [7] predicts that the conductance increases monotonically
with decreasing temperature. This is because of the exchange
mechanism that is being considered in [7]. Kondo scattering
of helical edge channels has previously been investigated by
multiple works, starting with the study by Maciejko et al.
based on “isotropic” exchange, i.e., terms that conserve the
z component of the total spin in the exchange Hamiltonian
(z is the helical edge quantization axis), between edge chan-
nel carriers and magnetic impurities in vicinity to the edge
[15]. The theory described in the paper tacitly assumes the
spin of the magnetic impurities is allowed to relax, leading
to a nonzero net backscattering rate. In a later paper [16],
Tanaka et al. show that in a strictly spin-conserving system
the backscattering rate vanishes in the dc limit. In such a
picture, that assumes zero spin relaxation, only “anisotropic”
(spin-z-nonconserving) exchange would lead to a net devia-
tion of the edge channel conductance in the according model.
Later works (e.g., [7,17]) use such higher order anisotropic
exchange models to describe the Kondo interaction between
the edge channels and magnetic impurities, such as quantum
dots. In Ref. [7], anisotropic exchange scattering arises from
the breaking of spin-rotation symmetry within the dot, while

Ref. [17] shows that the effect can also arise from symmetry
breaking on the edge.

However, we have recently shown experimentally that
isotropic Kondo interactions actually do describe scattering
with paramagnetic impurities in (Hg,Mn)Te quantum wells
[9], clearly indicating that the modeling of Ref. [15] is ap-
propriate for our material system. At the same time, this
implies that the impurity spin should be allowed to relax when
modeling Kondo interactions in HgTe. We show below theo-
retically that by including the possibility of spin relaxation of
the Kondo quantum dot, implicit in the qualitative model we
discussed above, the isotropic exchange model does become
consistent with our experimental observations.

To calculate the expected temperature-dependent correc-
tions to the quantized conductance due to isotropic exchange
scattering and spin relaxation, we assume that the spin of
an edge channel electron s is coupled to a magnetic impu-
rity which models the spin of the dot S. The corresponding
Kondo Hamiltonian takes the form HK = J0s · S where J0 is
the exchange coupling. This Hamiltonian leads to a Korringa
spin-flip rate τ−1

K = πT (ρJ0)2 f (T ) of the dot spin due to its
coupling to the helical edge state. Here f (T ) is a temperature-
dependent factor that accounts for Kondo and/or Luttinger
liquid renormalizations. At low temperature (but above the
bias voltage, eV � kBT ), we have f (T ) ∝ T 2(1−K ), where K
is the Luttinger liquid interaction parameter. Crucially, 1/τK

also determines the rate of backscattering of the edge elec-
trons. However, since HK conserves the total spin projection
along the z axis sz + Sz, it alone would not give rise to a
conductance correction [7,16] as both left- and right-moving
electrons would be backscattered at equal rates. This balance
will be broken when the spin S has an independent relax-
ation channel. Denoting the corresponding relaxation rate
τ−1

bath, we show that the correction to the helical edge current
is δI ∝ eV

kBT (τK +τbath ) .
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When the spin relaxation of the magnetic impurity is faster
than consecutive backscattering events (τbath � τK ), the cor-
rection to the quantized conductance �G is fully determined
by the spin-flip rate due to isotropic exchange interaction,

�G = e2

4kBT τK
∝ T −2(1−K ). (1)

The details of the calculation can be found in the Appendix.
Following Refs. [9,18], and using the applicable device pa-
rameters, we calculate K ∼ 0.55 and 0.41 for Device 1 and
Device 2, respectively. Using these values for K , we fit the
experimental data in the left panels of Fig. 3 to Eq. (1) (dashed
curves are the fit). The fitting parameters are the amplitude
and a constant offset (which corrects that T ∼ 2 K is only
estimating the high-temperature limit). The theoretical curve
matches the experimental data well for Device 1. Plotting
the data of Device 1 in a double logarithmic scale (see [12])
further indicates that the temperature dependence is indeed
described by the power law of Eq. (1). This confirms that the
observed temperature-dependent correction to the quantum
spin Hall conductance can indeed be described by isotropic
exchange interactions with a charge puddle acting as a few
electron quantum dot that exhibits Kondo effects. For Device
2 the model also reproduces the general trend of �G, though
the fit is not as good as for Device 1. We attribute this to
the elevated base electron temperature during the experiment
on Device 2 (a saturation below ∼200 mK can be seen in
Fig. 3(b), while Fig. 3(a) only saturates below ∼50 mK). This
difference is because two different dilution refrigerators have
been used for the two devices.

Within the scope of this work, the microscopic origin of the
relaxation channel giving rise to τbath cannot be exactly iden-
tified, but a list of candidates includes spin exchange via (1)
hyperfine interactions (contact hyperfine [19,20] or mean-field
[21]), (2) interactions with a network of (bulk) charge puddles
[5,10], or (3) interactions with Hg+ acceptorlike vacancies
[22]. Out of the list of candidates, direct-exchange contact hy-
perfine interaction seems most plausible because of the strong
contribution from 6s electrons of Hg to the electronic wave
function of HgTe. Future investigation is needed to understand
the spin relaxation in detail.

VI. DISCUSSION

In a recent work, we showed that the isotropic Kondo
effect, discussed by Maciejko et al. [15], appropriately de-
scribes scattering of helical edge electrons with paramagnetic
Mn dopants in (Hg,Mn)Te quantum wells [9]. Both Ref. [9]
and the present work describe scattering of quantum spin
Hall edge channels at impurity states due to the same under-
lying mechanism, which is the isotropic Kondo effect. The
two experiments deviate from each other in representing the
two opposite Kondo limits that were presented in Ref. [15]:
Below the Kondo temperature—which is around 3 K for the
strongly paramagnetic Mn dopants—quantized conductance
is observed in the very low-temperature Kondo limit, as the
Kondo effect there becomes suppressed by Kondo shielding
(Kondo cloud) [9]. The high-temperature Kondo limit could
not be accessed in Ref. [9], because of thermal carrier excita-
tion at temperatures above ∼10 K. In contrast, in the present

work, we observe no signs of saturation of the Kondo effect
at low temperatures before the electron temperature limit is
reached [see Fig. 2(a)]. We attribute the small Kondo temper-
ature, significantly below 100 mK, to the weaker interaction
between edge channels and charge puddles. The conductance
approaches quantized conductance in the high-temperature
limit. The range of temperatures that we investigated is similar
for both Ref. [9] and this work, as this is the temperature
range in which narrow-gap semiconductors can be probed
without significant thermal excitations above the bulk gap.
Combining the findings of Ref. [9] and this work, the exper-
imental evidence of both temperature limits of the isotropic
Kondo exchange mechanism indicates that the early work by
Maciejko et al. [15] reliably describes Kondo-based backscat-
tering mechanisms of quantum spin Hall edge channels over
a broad temperature range.

Almost 15 years after the first observation of the quantum
spin Hall effect, this work finally provides experimental in-
sights into the mechanism that causes gate voltage-dependent
fluctuations in otherwise quantized samples. Charge puddles
are identified as the dominant source of backscattering in
the helical edge channels. The microscopic mechanism of
backscattering involves an isotropic exchange between the
helical edge channels and charge puddles acting as Kondo
quantum dots with spin relaxation. Puddles are present in any
narrow-gap material, and it is very likely similar mechanisms
as shown here are at play in other two-dimensional topological
materials. This study lays the groundwork for further efforts
to reduce backscattering in quantum spin Hall devices leading
to more efficient applications in spintronics.
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APPENDIX: HELICAL EDGE COUPLED
TO A MAGNETIC IMPURITY

WITH A RELAXATION CHANNEL

We consider a helical edge (spin s) isotropically coupled to
a magnetic impurity S at some position x0 along the edge. The
corresponding exchange interaction Hamiltonian is

HK = J0s(x0) · S. (A1)

Additionally, we assume that the impurity spin S is coupled
to an additional relaxation channel, such as due to an environ-
mental spin bath. We trace out the environment, giving rise to
a decay of S with a rate τ−1

bath [see Eq. (A3) below].
We can write the backscattering current operator δI as

the rate of change of the difference between the number of
right and left movers on the edge, δI = −ed (δN )/dt where
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δN = (NR − NL )/2 [23]. On the helical edge, the operator
δN is related to the z component of the total helical electron
spin, δN = h̄−1

∫
dx sz(x). The Hamiltonian HK conserves the

z component of the total spin of the combined edge-impurity
system, [HK, h̄δN + Sz] = 0. For a magnetic impurity formed
by a quantum dot, any spin projection is generally not con-
served. Nevertheless, one can choose a basis where the spin
projection at the tunneling point is quantized along the z axis
[7], which is what we have done here.

We take advantage of the conservation law by noting that
d〈Sz〉/dt vanishes in the steady state [7]. Thus, we can add
this term to 〈δI〉 so that

〈δI〉 = −e
d

dt
〈δN + h̄−1Sz〉. (A2)

For d〈Sz〉/dt , we include the unitary time evolution due to
HK and the nonunitary time evolution that models the spin
relaxation due to an environment,

d

dt
〈Sz〉 = i

h̄
〈[HK, Sz]〉 − τ−1

bath〈Sz〉. (A3)

The unitary piece cancels out due to the aforementioned con-
servation law [16], so that

〈δI〉 = eτ−1
bath〈Sz〉/h̄. (A4)

We are now left with the task of evaluating the steady-state
spin polarization 〈Sz〉. For this, we use the Bloch equation,
which is obtained by tracing out both the spin bath as well as
the itinerant electrons of the helical edge [7,23]. We find

d

dt
〈Sz(t )〉 = −τ−1

K

[〈Sz(t )〉 − S f
z

] − τ−1
bath〈Sz(t )〉. (A5)

Here τ−1
K = πT (ρJ0)2 f (T,V ) is the Korringa spin-flip rate

[24] due to the coupling to the helical edge (density of
states ρ). The function f contains the renormalization of the

exchange coupling,

f (T,V ) = K2

(
v/a

2πkBT

)2−2K

B

(
K+ i

eV

2πkBT
, K − i

eV

2πkBT

)

× cosh

(
eV

2kBT

)
, (A6)

and K < 1 is the Luttinger liquid parameter repulsive inter-
actions, a is the short-distance cutoff, v is the helical edge
velocity, and B is the beta function.

In the Bloch equation (A5), S f
z = (h̄/2) tanh(eV/2kBT )

would be the steady-state polarization of the magnetic im-
purity if there we no spin relaxation due to the spin bath.
The polarization is caused by the coupling to the helical
edge which obtains a magnetization 〈sz〉 ∝ eV when a bias
voltage V is applied. The additional spin-relaxation channel
(relaxation rate τ−1

bath) due to, e.g., a spin bath will lead to a
somewhat smaller steady-state spin polarization,

〈Sz〉 = h̄

2

τ−1
K

τ−1
K + τ−1

bath

tanh
eV

2kBT
, (A7)

obtained by solving d
dt 〈Sz(t )〉 = 0 in Eq. (A5). Using the

steady state 〈Sz〉 in Eq. (A4) yields the steady-state backscat-
tering current,

〈δI〉 = e
1

2

τ−1
bathτ

−1
K

τ−1
K + τ−1

bath

tanh
eV

2kBT
. (A8)

The linear response limit eV � kBT was used in the main text.
The prefactor 〈δI〉 has a simple interpretation: it takes a total
time τK + τbath for a helical edge electron to backscatter (τK

to backscatter and then τbath for the impurity spin to “reset,”
allowing the next electron to backscatter).
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