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Understanding competing instabilities in systems with correlated fermions remains one of the holy grails
of modern condensed matter physics. Among the fermionic lattice models used to this effect, the extended
Hubbard model occupies a prime place due to the potential relevance of its repulsive and attractive versions
for both electronic materials and artificial systems. Using the recently introduced multichannel fluctuating field
approach, we address the interplay of fluctuations in the charge density wave, s-wave superconducting, and
phase separation channels in the attractive extended Hubbard model. Despite the fact that this model has been
intensively studied for decades, our approach allows us to identify a phase that has not been analyzed before and
which is characterized by the coexistence of collective s-wave superconducting and phase separation fluctuations.
Our findings resonate with previous observations of interplaying phase separation and superconducting phases
in electronic systems, most importantly in high-temperature superconductors.
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I. INTRODUCTION

Materials with strong electronic correlations exhibit so-
phisticated phase diagrams incorporating a complex selection
of collective ordering phenomena. The latter are associated
with a variety of interplaying instabilities, e.g., charge, spin,
or pairing fluctuations. They may appear either in a mutually
exclusive form [1,2] or with a stabilization of additional inter-
mediate phases [2–5], e.g., when different fluctuations coexist
[6]. An interplay between collective charge, spin, and pair-
ing fluctuations occurs already in the single-band extended
Hubbard model [6–11]. Their competition is determined by
two parameters: the local U and nonlocal V interactions be-
tween electrons. Thus, the model is a suitable framework for
a well-controlled investigation of competing instabilities in
correlated electronic systems. The local interaction stabilizes
collective spin and pseudospin fluctuations in the repulsive
[12–15] and attractive [6,15–17] regimes, respectively. Here,
pseudospin fluctuations are associated with η-pairing, com-
bining the charge density and s-wave pairing degrees of
freedom [18,19]. The spin and pseudospin fluctuations may
compete with charge fluctuations that are driven by the nonlo-
cal interaction [11,20,21]. Attractive nonlocal interaction may
further promote p- and d-wave superconductivity [22–24].
Strong charge fluctuations may result in the development of
the charge density wave (CDW) and phase separation (PS)
phases in the repulsive and attractive V cases, respectively.

Significant insights into the collective electronic behavior
in the repulsive U,V regime of the extended Hubbard model
exist due to extensive research conducted since the 1970’s
(see, e.g., Refs. [1–6,11,21,25–48]). In contrast, less atten-
tion has been paid to the regime of attractive U , dominated

by charge fluctuations and s-wave superconductivity (s-SC)
[6,15,16,21,23,24,49–66]. The reason is that by its very na-
ture the Coulomb interaction between electrons is repulsive.
Nevertheless, it is known that coupling electrons to external
degrees of freedom, e.g., phonons, may lead to an effective
electronic system with attractive interactions. Specific exam-
ples are doped fullerenes [67] and one-dimensional copper
oxide chains [68], Ba1−xKxBiO3 [69,70], LaAlO3/SrTiO3 in-
terfaces [71–74], and selected d- and f - transition metals
[75,76]. In addition, fermionic systems with attractive local
interactions are realizable in cold atom experiments [77].

In this work, we focus on the leading collective fluctu-
ations in the half-filled fermionic extended Hubbard model
with an attractive local interaction U . We consider both the
repulsive and attractive cases for the nonlocal interaction V
between neighboring sites on a square lattice. This allows
us to investigate the interplay between the CDW, PS, and
s-SC instabilities that appear in the system. To this aim, we
employ the multichannel fluctuating field (MCFF) approach
[47], based on the recently introduced fluctuating local field
method [78–82]. Within this approach, a trial system incorpo-
rating the main leading collective fluctuations is constructed
based on a variational optimization with respect to a refer-
ence system. The construction allows us to treat competing
fluctuations without any explicit symmetry breaking. Note, a
“phase” will in the current work refer to a broader definition
including short-range ordering, i.e., transforming into a true
phase within a quasi-two-dimensional system. We find that
the emergence of a phase combining CDW and s-SC fluctua-
tions is correctly captured at vanishing nonlocal V , signaling
the emergent pseudospin SU(2) symmetry of the model. In
addition, we discover a coexistence phase composed of PS
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and s-SC fluctuations spanning a relatively broad region of
the attractive U -V phase diagram. Our results obtained within
a simple quantum lattice system call for further investigations
of novel collective phenomena due to interplaying fluctuations
in realistic materials.

II. MODEL AND METHOD

We consider the single-band extended Hubbard model at
half-filling on a square lattice, defined by the Hamiltonian

Ĥ = −t
∑

〈i, j〉,σ
ĉ†

iσ ĉ jσ + U
∑

i

n̂i↑n̂i↓ + V

2

∑

〈i, j〉,σσ ′
n̂iσ n̂ jσ ′ ,

(1)

where the ĉ(†)
iσ operators correspond to annihilation (creation)

of electrons and n̂iσ = ĉ†
iσ ĉiσ are the electronic densities, with

the subscripts denoting the position i and spin projection
σ ∈ {↑,↓}. The kinetics is modeled by a nearest-neighbor
hopping amplitude t , with t = 1 setting the energy unit. The
interaction is modeled by the on-site U and the nearest-
neighbor V interactions. Our calculations are for attractive U ,
while V may be both repulsive and attractive.

The attractive U regime is dominated by charge and s-
wave pairing fluctuations. A natural description combining
the two channels is the pseudospin, conveniently written
using the Nambu basis: ψ̂k,ν,↑ = ĉkν↑, ψ̂k,ν,↓ = ĉ†

−k+M,ν↓,

ψ̂
†
k,ν,↑ = ĉ†

kν↑, and ψ̂
†
k,ν,↓ = ĉ−k+M,ν↓, with M ≡ (π, π ). The

pseudospin density operator is then defined as

n̂ς

Q ≡ 1

βN

∑

k,ν,σσ ′
ψ̂

†
k+Q,νσ σ

ς

σσ ′ψ̂kνσ ′ , (2)

with the inverse temperature β and number of sites N . The
subscripts denote the momentum k and the fermionic Matsub-
ara frequency ν. Here, the mode is specified by the channel
ς ∈ {x, y, z}, where Q is the ordering vector and σς are the
Pauli spin matrices. Hence, n̂ς

Q refers to the s-wave pairing
(ς ∈ {x, y}) and the charge fluctuations (ς ∈ {z}). The Nambu
basis allows for a clear exhibition of the emergence of the
SU(2) pseudo-spin symmetry at half-filling in the absence
of the nonlocal interaction V [18,19]. In fact, the staggered
particle-hole symmetry of the Hubbard model (V = 0) relates
the spin and pseudospin degrees of freedom [18,19]. Within
the charge and s-wave pairing channels, our work focuses on
the leading instabilities: the CDW, PS, and s-SC orderings.
All three orderings are determined by their respective order
parameters, given by the expectation value of the (static) oper-
ator n̂ς

Q. Here, s-SC and CDW are associated with the ordering
vector Q = M, and PS with Q → � ≡ (0, 0) (see the Supple-
mental Material (SM) [83] for details of the implementation).
Within certain regions of the attractive V phase diagram p-
and d-wave superconducting phases have also been discussed
in the literature [22–24]. In this work, we focus, however, on
CDW, PS, and s-SC, excluding other superconducting sym-
metries. We will come back to this point later.

To study the competing instabilities, we employ the mul-
tichannel fluctuating field (MCFF) method [47]. The decisive
advantage of this numerical method is the ability to account
for the leading fluctuations and their interplay exactly. This

FIG. 1. Phase diagram of the half-filled extended Hubbard model
for attractive U . It is obtained from the MCFF method for a
128 × 128 square lattice with periodic boundary conditions at in-
verse temperature β = 10. This shows the existence of a phase “PS
+ s-SC” where PS and s-SC coexist, in addition to the conventional
CDW (red), s-SC (purple), and PS (blue) phases. The yellow line
specifies the CDW and s-SC coexistence in the attractive Hubbard
model (V = 0).

approach is based on the construction of an effective action
S∗, where the fluctuations in the charge (CDW, PS) and super-
conducting channels (s-SC) are incorporated via the associate
classical fields φ

ς

Q coupled to the respective components of n̂ς

Q
[83]. This construction is determined by the Peierls-Feynman-
Bogoliubov variational principle [84–86], with the extended
Hubbard model as a reference system. Within the MCFF
approach, the interplay between different fluctuations may be
determined by a single-channel free energy F (φς

Q). The func-
tional F (φς

Q) is constructed with respect to a classical field
φ

ς

Q, after integrating out analytically the fermionic degrees of
freedom and numerically the remaining classical fields. Phase
transitions are then identified by the development of global
minima of the single-channel free energy at φ

ς

Q �= 0, akin to a
Mexican hat potential. In contrast, a local minimum at φ

ς

Q �= 0
signals metastable collective fluctuations. To obtain further
insight into the interplay between collective fluctuations, it
is also useful to calculate the corresponding order parameters
〈n̂ς

Q〉. This can be done by substituting the F (φς

Q) saddle-point
value of the classical field φ

ς

Q in the effective action S∗ [83].

III. RESULTS

We perform calculations at β = 10 for the half-filled ex-
tended Hubbard model close to the thermodynamic limit for a
square lattice of N = 128 × 128 sites with periodic boundary
conditions. Figure 1 shows the resulting U -V phase diagram.
It consists of six phases: normal metal (white), CDW (red),
s-SC (purple), PS (blue), and two phases where s-SC coex-
ists with either CDW (yellow line) or PS (labeled “PS +
s-SC”) orderings. At weak coupling (|U | � 1.5), the CDW
and PS phase boundaries follow the V = 0.185 + U/8 and
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V = −0.475 − U/8 lines, respectively. These asymptotics are
identical to the perturbative estimates for the phase boundaries
obtained using the random phase approximation (RPA) in
the U → 0 limit. We note that the MCFF approach correctly
captures the exact U → 0 limit for the CDW phase bound-
ary, as observed previously in Ref. [47]. In contrast, the PS
boundary is slightly overestimated, as an extrapolated
U → 0 dual boson result for the PS transition point gives
V PS

U=0 � −0.54 [63]. In agreement with the fluctuating ex-
change (FLEX) result obtained for V = 0, the MCFF s-SC
phase boundary in the weak coupling regime follows the
U s−SC

V =0 = −1.478 line. FLEX is known to overestimate the
strength of antiferromagnetic (AFM) fluctuations at V = 0.
Therefore, by the staggered particle-hole symmetry of the
Hubbard model relating the spin and pseudospin degrees
of freedom [18,19], FLEX is also expected to overestimate
the strength of the coexisting CDW and s-SC fluctuations
at V = 0. Exploiting this symmetry, in the thermodynamic
limit the exact diagrammatic Monte Carlo solution gives
U DiagMC

V =0 � −2.5 value at β = 10 for this transition point [87].

A. Interplay between charge density wave fluctuations and
s-wave superconductivity

Turning to the intermediate coupling regime, the CDW
and s-SC fluctuations develop a coexisting phase along the
V = 0 line displayed in yellow in Fig. 1. This coexistence is
associated with the emergent pseudospin symmetry between
CDW and s-SC order parameters. Beyond this line the finite
nonlocal interaction V favors the formation of either the CDW
(V > 0) or s-SC (V < 0) phase. Remarkably, we find that
at V �= 0 the CDW and s-SC phases are mutually exclusive
only in the thermodynamic limit. For small-size plaquettes of
4 × 4, 6 × 6, and 8 × 8 lattice sites we find that the CDW and
s-SC orderings can coexist also in the vicinity of V = 0, and
the coexistence region decreases with increasing the size of
the system [Fig. 2(a)]. This convergence check allows us to
identify that the coexistence region in the vicinity of V = 0
converges towards a single transition line occurring along
V = 0 for U � −1.447 in the thermodynamic limit. Thus,
the transition between the CDW and s-SC phases appearing
as a direct first-order phase transition is composed of two
first-order phase transitions passing through the intermediate
coexistence phase constrained by the pseudo-spin SU(2) sym-
metry [6].

Another interesting effect can be found in the region of the
phase diagram depicted in Fig. 2(b) by green. It displays a
region where CDW or s-SC orderings are separately stable
without interplay between the modes. The dark green area de-
notes the overlap region of the noncompeting CDW and s-SC
orderings. In the MCFF method, the CDW phase transition in
the presence of the s-SC fluctuations is studied by integrating
out the s-SC modes and investigating the behavior of the free
energy F (φς

Q) for the remaining CDW mode, and vice versa.
In the region where the integrated s-SC mode is ordered,
the MCFF analysis of the CDW transition corresponds to the
investigation of the stability of the CDW ordering in the pres-
ence of the s-SC phase. In this regard, the integration of an
ordered mode can be seen as an observation or measurement
of this ordering in the system. We note that green regions in

FIG. 2. CDW (red) and s-SC (purple) ordering boundaries pre-
dicted by the MCFF approach for the half-filled extended Hubbard
model obtained for β = 10: (a) for 4 × 4, 6 × 6, 8 × 8, and
128 × 128 plaquettes; and (b) for a 4 × 4 plaquette with the green
region enclosed by the thin black dashed lines that depict asymptotics
for the noninterplaying CDW and s-SC instabilities, displaying the
region where the CDW and s-SC orderings stabilize without inter-
play. Dark green denotes the region where stabilization of either the
CDW or s-SC phase destroys the other ordering.

Fig. 2(b) lie outside the CDW and s-SC phases that are ob-
tained considering the interplay between the two fluctuations.
Therefore, our results suggest that stabilizing one of the two
orderings in the dark green region immediately destroys the
other one, which can be seen as a destruction of a quantum
superposition of the two orderings by an observer. Remark-
ably, we find that no such nontrivial “green” phases exist in the
thermodynamic limit, where quantum effects are suppressed.

B. Coexistence of s-wave superconductivity and phase
separation fluctuations

Further, we observe the emergence of a phase that com-
prises coexisting PS and s-SC orderings, sketched in Fig. 3.
This PS+s-SC phase can be found in the regime of inter-
mediate couplings of the attractive U,V extended Hubbard
model (Fig. 1). In contrast to the previously considered coex-
isting CDW and s-SC orderings, this coexistence phase does

FIG. 3. Cartoon picture of the phase characterized by the coexis-
tence of PS and s-SC fluctuations. Within the phase, the collective
s-SC fluctuations (Cooper pairs depicted by black dots) are suffi-
ciently strong to stabilize the superconducting ordering within the
PS puddles with uniform filling larger (left) or smaller (right) than
half-filling. The shaded areas represent such regions of higher and
lower filling.
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FIG. 4. Normalized order parameters 〈nς

Q〉 computed for the half-
filled 128 × 128 system using the MCFF approach. (a) CDW (red), s-
SC (purple), and PS (blue) order parameters are calculated at β = 10
for U ∈ {−2,−3, −4} for a range of V . (b) s-SC (purple) and PS
(blue) order parameters calculated at β ∈ {5, 10, 20, 40} at U = −2
for a range of V .

not collapse to a single transition line in the thermodynamic
limit, thus acquiring a finite width in V for a given U . We
observe the width to be a nonmonotonic function of U , with a
maximal width occurring near U = −3. To obtain insight into
the interplay between PS and s-SC ordering, in Fig. 4(a) we
show the normalized CDW, s-SC, and PS order parameters
〈nς

Q〉 that are computed for U ∈ {−2,−3,−4} over a range
of V . We observe a suppression of PS fluctuations in the
weak coupling regime V � −0.3 due to s-SC fluctuations,
and vice versa at strong V . The competition between these
two modes originates from the fact that the PS ordering on
a lattice corresponds to the formation of broad puddles with
uniform filling larger or smaller than the average filling of
the system. Instead, the pairing process of s-SC fluctuations
is energetically most favorable at half-filling. Due to the sta-
bility of the s-SC fluctuations for a relatively large range of
fillings [50,65], the s-SC ordering can be formed inside the
PS puddles, which results in the emergence of the coexistence
phase. Within the phase, the weights of the PS and s-SC
modes vary with U,V . Thus, the phase is characterized by
the PS and s-SC orderings being mutually compatible, i.e.,
collective s-SC fluctuations are stable in the environment of
PS ordering and vice versa. As U increases, the region of s-SC
fluctuations becomes more stable with respect to stronger PS
fluctuations, leading to an increasing width of the coexistence
region. However, the opposite trend occurs above a critical
U as strong PS fluctuations leave the system effectively in
an empty or fully-filled sites configuration with 〈nPS〉 = 1,
completely suppressing any s-SC fluctuations. Note that the
CDW ordering on a square lattice corresponds to a checker-
board pattern of alternating lattice sites with higher and lower
electronic densities. This does not allow for the formation of
the s-SC ordering inside the CDW phase due to the strong in-
homogeneity of the filling, except along the degenerate V = 0
line due to symmetry constraints.

A recent determinant quantum Monte Carlo (DQMC)
study of the zero-temperature U -V phase diagram of the half-
filled extended Hubbard model [23] displays a few points of
coexisting PS and s-SC orderings, evidencing our observa-
tions. However, due to the sparsity of the grid in the U -V
space, the DQMC results do not allow one to make a state-
ment on the nature of the coexistence phase in the system. In
fact, the authors of this work interpret this coexistence as a
signature of a first-order transition between the s-SC and PS
phases. Indeed, first-order transitions are usually accompanied
by regions of metastable collective fluctuations appearing as
coexistence regions [47]. However, in our work we do not
observe metastable collective fluctuations associated with any
first-order transition, although the MCFF method allows for
their detection in other contexts [47]. This fact allows us to ar-
gue for a true coexistence phase stable in the thermodynamic
limit enclosed by two apparent second-order transition lines.
An order parameter for this phase may be defined as the prod-
uct of the s-SC and PS order parameters. To further connect
our finite-temperature calculations to the zero-temperature
DQMC results, we compute the s-SC and PS order parame-
ters 〈nς

Q〉 for U = −2 over a range of V at different inverse
temperatures β ∈ {5, 10, 20, 40}. Figure 4(b) shows that the
stability of the s-SC fluctuations increases with decreasing
temperature, as PS fluctuations remain nearly temperature
independent. Thus, we expect the phase of coexisting PS and
s-SC ordering to remain stable at zero temperature and to
connect to the results observed in Ref. [23]. The formation
of this phase occurs in a region of the U -V phase diagram that
is not expected to have contributions from p- and d-wave su-
perconducting fluctuations [23,24]. This comforts our choice
in the present work of not including those fluctuations here.

Exploring the predicted phase diagram experimentally and
switching between the different phases in realistic materials
could be performed, e.g., by applying an external laser field.
In the high-frequency regime of the driving, the applied laser
field effectively decreases the hopping amplitude t of elec-
trons [88–94], which effectively enhances the interactions U
and V . In the low-frequency regime, driving phonon degrees
of freedom may enhance the electron-phonon coupling [95],
which would increase the strength of effective attractive elec-
tronic interactions [96–98]. This can potentially allow one to
propagate within the U -V phase diagram and access the phase
characterized by the coexistence of s-SC and PS fluctuations.

IV. CONCLUSION

Interplay between SC and PS fluctuations has been ob-
served in high-temperature superconducting materials, such
as copper oxides [99–110] and iron-based superconductors
[111–116], but the microscopic mechanisms of the observed
phenomena remain elusive. In doped copper oxides, it has
been argued early on [102,104] that dilute holes in an an-
tiferromagnet have a strong tendency to phase separate.
Experimentally, interfaces of La2−xSrxCuO4-La2CuO4 [109]
display an intriguing insensitivity of the critical temperature
of the SC phase over an extended range of doping. These
findings have been rationalized by invoking interlayer phase
separation [110]. Our findings of coexisting SC and PS at
half-filling give yet another indication hinting at the possibly

205156-4



COEXISTENCE OF s-WAVE SUPERCONDUCTIVITY AND … PHYSICAL REVIEW B 108, 205156 (2023)

very fundamental role of phase separation in the physics of
superconducting correlated fermionic systems.
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