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Ordering in the SU(4)-symmetric model of AA bilayer graphene
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We examine possible ordered states of AA-stacked bilayer graphene arising due to electron-electron coupling.
We show that under certain assumptions the Hamiltonian of the system possesses an SU(4) symmetry. The
multicomponent order parameter is described by a 4×4 matrix Q̂, for which a mean-field self-consistency
equation is derived. This equation allows Hermitian and non-Hermitian solutions. Hermitian solutions can be
grouped into three topologically distinct classes. First class corresponds to the charge density wave. Second
class includes spin density wave, valley density wave, and spin-valley density wave. An ordered state in the third
class is a combination of all the aforementioned density-wave types. For anti-Hermitian Q̂ the ordered states
are characterized by spontaneous interlayer loop currents flowing in the bilayer. Depending on the topological
class of the solution these currents can carry charge, spin, valley, and spin-valley quanta. We also discuss the
special case when matrix Q̂ is not Hermitian and not anti-Hermitian. Utility and weak points of the proposed
SU(4)-based classification scheme of the ordered states are analyzed.
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I. INTRODUCTION

Discovery of series of alternating Mott insulating, metal-
lic, and superconducting states in the magic-angle twisted
graphene bilayer [1–3] was the first experimental evidence
of the diversity of possible ordered states in bilayer graphene
systems caused by electron-electron coupling. Recently, a cas-
cade of transitions between different nonsuperconducting and
superconducting states was observed in the well-researched
[4–6] AB- (or Bernal) stacked bilayer graphene (AB-BLG).
This feature is not limited to AB-BLG: the current studies
(theoretical [7,8], numerical [9,10], and experimental [11])
indicate that even quite simple electronic systems may have
several ordered states competing against each other to become
the true ground state. The analysis of the cited above works
shows that different ordered states of a specific model are
close to each other in terms of their (free) energy. As a result,
the true ground state of a system depends crucially on the ex-
perimental conditions (temperature, magnetic field, pressure,
sample doping, substrates, etc.). Even a small change in any
of these factors can induce switching of the ground state. In
such a situation, when a wide class of the materials exhibit
multiple transitions under weak variation of the parameters, a
convenient classification scheme of the possible ground states
is of significant help.

This paper is dedicated to theoretical study of an electronic
liquid of AA bilayer graphene (AA-BLG), a topic that at-
tracted attention in recent years [12–20]. A specific question
we would like to address here is the problem of classifying
low-temperature nonsuperconducting ordered states of AA-
BLG. The investigation of this relatively simple system can
help us to extend the proposed approach to other types of
orders (superconducting, in particular) and other types of sys-
tems, such as twisted and AB-BLG.

The present discussion is built on the approach previously
used in Ref. [21] to study multiple possible order parameters

in the AB-BLG. Adopting that technique for the AA-BLG
electronic liquid, we will formulate an approximate Hamil-
tonian that possesses an SU(4) symmetry in the spin-valley
index space at zero doping. Following Ref. [21], we as-
sume that the main interaction in the system is a long-range
Coulomb electron-electron coupling and neglect any addi-
tional interactions (e.g., electron-lattice). Mean field (matrix)
self-consistency equation for such an AA-BLG model reveals
several competing nonsuperconducting ordered states charac-
terized by a matrix order parameter.

Studying the self-consistency equation, one finds that its
solutions could be both Hermitian and non-Hermitian ma-
trices. The former case was considered in Ref. [21]. It has
been shown that the signature of the order-parameter ma-
trix can be used for exhaustive classification of the ordered
states. Here we analyze also the non-Hermitian solutions to
the self-consistency equation. These solutions are character-
ized by finite interlayer currents that can carry, not only
electric charge, but also spin-related and/or valley-related
quanta, depending on the specific details. A broad array
of the ordered states compatible with our self-consistency
equation suggests that the true ground state of the AA-
BLG may depend on variety of details, some of which
could be purposefully tailored to stabilize a desired order
parameter.

The paper is organized as follows. In Sec. II we formu-
late an SU(4)-symmetric model of the AA-BLG. In Sec. III
we derive the self-consistency mean field equation for the
multicomponent order parameter described by 4×4 matrix
Q̂. In Sec. IV we describe the solutions of this mean field
equations. Three different cases are considered: Hermitian
Q̂, anti-Hermitian Q̂, and matrix Q̂ that is neither Hermitian
nor anti-Hermitian (non-Hermitian and non-anti-Hermitian
Q̂). Section V is devoted to discussion. Some details of
derivation of the mean field equation are placed in the
Appendix.
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II. MODEL

A. Tight-binding kinetic energy for AA-BLG

A sample of the AA-BLG consists of two graphene layers
and every carbon atom of the top layer is directly above one of
the carbon atoms in the bottom layer. Single-electron hopping
Hamiltonian for the AA-BLG can be written as [15]

Ĥ0 = −t
∑

〈mn〉lσ
(d̂†

mlAσ
d̂nlBσ + H.c.)

− t0
∑
naσ

(d̂†
n1aσ d̂n2aσ + H.c.). (1)

Here d̂ †
nlaσ

and d̂nlaσ are the creation and annihilation op-
erators of an electron with spin projection σ in the layer
l = 1, 2 on the sublattice a = A, B at the unit cell n; and 〈. . . 〉
denotes a nearest-neighbor pair. The amplitude t = 2.7 eV
(t0 = 0.35 eV) in Eq. (1) describes the in-plane (interplane)
nearest-neighbor hopping.

To diagonalize the hopping Hamiltonian it is convenient to
switch to momentum representation. For a sample with Nc unit
cells in a single graphene layer this is achieved by the Fourier
transformation

d̂klaσ = e−iaϕk

√
Nc

∑
n

eik·nd̂nlaσ . (2)

Here the numerical values of the sublattice index a are a = 0
for sublattice A, and a = 1 for sublattice B. The phase factor
in Eq. (2) is exp(iϕk ) = fk/| fk|, the function fk being

fk = 1 + 2 exp

(
3ikxa0

2

)
cos

(√
3kya0

2

)
, (3)

and a0 is the in-plane carbon-carbon distance. Quasimomen-
tum vectors are confined to the graphene Brillouin zone,
which has a shape of a regular hexagon with two independent
Dirac points in two corners [22]:

K1,2 = 2π

3
√

3a0

(
√

3,±1). (4)

Four more corners of the Brillouin zone can be found by two
60◦ rotations of K1,2 (see Fig. 1).

In the momentum representation, the hopping Hamiltonian
becomes

Ĥ0 =
∑
kσ

�̂
†
kσ Ĥk�̂kσ

, (5)

where the matrix Ĥk and the bispinor �̂
†
kσ are

Ĥk = −

⎛
⎜⎜⎝

0 t0 t | fk| 0
t0 0 0 t | fk|

t | fk| 0 0 t0
0 t | fk| t0 0

⎞
⎟⎟⎠, (6)

�̂
†
kσ = (d̂†

k1Aσ , d̂†
k2Aσ , d̂†

k1Bσ , d̂†
k2Bσ ). (7)

Thus, the Hamiltonian (1) can be diagonalized as

Ĥ0 =
∑
ksσ

ε
(s)
k γ̂

†
ksσ γ̂ksσ , (8)

FIG. 1. (a) The single-particle band structure of the AA-BLG.
The spectrum consists of four bands ε

(s)
k [see Eqs. (9) and (10)].

(b) The spectrum near the Dirac points can be approximately lin-
earized [see Eqs. (22) and (23)]. The intersection of the bands s = 2
and 3 occurs exactly at zero energy, which corresponds to the Fermi
level of the undoped system. (c) The first Brillouin zone (hexagon)
of the AA-BLG. The circles around the Dirac points correspond to
Fermi surfaces.

where the band eigenenergies ε
(s)
k are

ε
(1)
k = −t0 − t | fk|, ε

(2)
k = −t0 + t | fk|, (9)

ε
(3)
k = +t0 − t | fk|, ε

(4)
k = +t0 + t | fk|. (10)

This energy spectrum is plotted in Fig. 1(a).
The band operators γ̂ksσ are connected to d̂klaσ as follows:

d̂klaσ = 1
2 [γ̂k1σ + (−1)aγ̂k2σ + (−1)l γ̂k3σ + (−1)a+l γ̂k4σ ],

(11)

where l = 0 for layer 1 and l = 1 for layer 2. The latter
relation is easy to invert and we find that

γ̂k1σ = 1

2

∑
la

d̂klaσ , γ̂k2σ = 1

2

∑
la

(−1)ad̂klaσ , (12)

γ̂k3σ = 1

2

∑
la

(−1)l d̂klaσ , γ̂k4σ = 1

2

∑
la

(−1)l+ad̂klaσ .

(13)

Analyzing spectra (9) and (10) one notices that the bands
s = 2, 3 cross the Fermi level ε = 0. The corresponding
Fermi surfaces can be approximated by circles of radius kF =
2t0/(3ta0) centered around the Brillouin zone corners (the
Dirac points), as shown in Fig. 1(c). At the same time, the
bands s = 1, 4 do not reach the Fermi level, and have no Fermi
surface.

B. Valley quantum number

For graphene-based systems it is often useful to intro-
duce a binary-valued valley index ξ = 1, 2: an electronic state
with the quasimomentum k is assumed to be in valley Kξ if
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|k − Kξ | < q0, where the valley radius q0 = |K1 − K2|/2
equals q0 = 2π/3

√
3a0. The states whose momenta lie out-

side either valley K1 or valley K2 are high-energy states.
Such states will be discarded since their contribution to the
low-energy physics is insignificant. Further, we will count
the quasimomentum k relative to the valley centers K1,2. We
expand the function fKξ +k near each Dirac point and in the
linear approximation obtain

fKξ +k = 3a0

2
[ky + (−1)ξ ikx]. (14)

Since we are interested here only in the low-energy states, we
will use linear approximation (14) within the valleys.

We define new single-electron operators in a specific valley
as

γ̂ksξσ =
{

γ̂K1+ksσ , if ξ = 1

(−1)s+1eiφk γ̂K2+ksσ , if ξ = 2
(15)

where the phase factor exp(iφk ) is equal to

eiφk = − ikx + ky

|k| . (16)

As it follows from Eq. (14), it is connected with the complex
phases near the valley centers K1,2:

eiϕK1+k = −e−iφk , eiϕK2+k = eiφk . (17)

Using Eqs. (11) and (15), one can write d̂nlaσ in terms of
γ̂ksξσ . To this purpose, it is convenient to introduce the valley-
specific operator d̂klaξσ = d̂Kξ +klaσ , and write

d̂klaξσ =
{
ĝklaξσ , if ξ = 1

e−iφk ĝkl āξσ , if ξ = 2.
(18)

In this definition, the operators ĝklaξσ are linear combinations
of the band operators

ĝklaξσ = 1
2 [γ̂k1ξσ + (−1)aγ̂k2ξσ + (−1)l γ̂k3ξσ

+ (−1)a+l γ̂k4ξσ ], (19)

and we adhere to the convention that a bar over a binary-
valued index inverts its value (i.e., if a = A, then ā = B, and
vice versa).

There is an obvious disparity between the valleys in defini-
tions (15) and (18). Note that the sublattice index in Eq. (18)
is inverted for ξ = 2. In addition, the phase factors in (15) are
not identical in different valleys. The same is true for Eq. (18).
We will see below that such a phase factor choice is needed to
make explicit the SU(4) symmetry of the interaction term.

Inverting relation (2) and using the valley-specific opera-
tors in k space, we can approximate the real-space operators
as follows:

d̂nlaσ ≈ 1√
Nc

∑
|k|<q0

[e−iaφk−iK1·n(−1)aĝklaK1σ

+ e−iāφk−iK2·nĝkl āK2σ ]e−ik·n. (20)

This expression disregards all high-energy states that lie out-
side the valleys.

C. SU(4)-symmetric single-electron Hamiltonian

Within the developed formalism the Hamiltonian (8) can
be approximated as

Ĥ0 ≈
∑

s,|k|<q0

ε
(s)
k

∑
ξσ

γ̂
†
ksξσ γ̂ksξσ

, (21)

where ε
(s)
k are linear approximations to the exact eigenenergies

ε
(s)
k near the Dirac points

ε
(1)
k = −t0 − vF|k|, ε

(2)
k = −t0 + vF|k|, (22)

ε
(3)
k = +t0 − vF|k|, ε

(4)
k = +t0 + vF|k|. (23)

The Fermi velocity in these expressions is equal to vF =
3a0t/2 (h̄ = 1).

The significance of formula (21) is that it explicitly demon-
strates the valley degeneracy of the single-electron spectrum
of AA-BLG, and, additionally, it reveals the SU(4) symmetry
of the model. To illustrate this important point we introduce
the spin-valley muti-index m = (ξ, σ ), which takes four pos-
sible values. This allows us to abbreviate the notation as
follows γ̂ksξσ = γ̂ksm. Any 4×4 unitary matrix Û ∈ SU(4),
with matrix elements umm′ , defines a Bogolyubov transform

γ̂ksm →
∑

m′
umm′ γ̂ksm′ . (24)

It is easy to check that this transformation leaves Hamiltonian
(21) unchanged.

D. Interaction term

The most general form of the interaction term for AA-BLG
is

Ĥint = 1

2Nc

∑
kll ′aa′

V ll ′
kaa′ ρ̂klaρ̂−kl ′a′ . (25)

Vector k here is the transferred momentum, parameters V ll ′
kaa′

are the Fourier components of the potential energy V ll ′
aa′ (R)

describing the interaction between an electron in layer l , sub-
lattice a and another electron in layer l ′, sublattice a′. Finally,
ρ̂kla is the Fourier component of a single-site particle-density
operator ρ̂nla = ∑

σ d̂†
nlaσ

d̂nlaσ
.

For small transferred momentum k one has ρ̂kla = ρ̂
K1
kla +

ρ̂
K2
kla, where two chiral density components can be expressed

as

ρ̂
ξ

kla =
∑
qσ

eia(ϕKξ +k+q−ϕKξ +q )d̂†
qlaξσ

d̂k+qlaξσ
(26)

or, equivalently, in terms of the band operators as

ρ̂
K1
kla =

∑
qσ

e−ia(φk+q−φq )ĝ
†
qlaK1σ

ĝk+qlaK1σ
, (27)

ρ̂
K2
kla =

∑
qσ

e−iā(φk+q−φq )ĝ
†
ql āK2σ

ĝk+ql āK2σ
. (28)

Both ρ̂
ξ

kla vary smoothly in space for small k. Aside from ρ̂
ξ

kla,
there is an oscillating contribution to the density

ρ̂
ξ ξ̄

kla =
∑
qσ

e
ia(ϕKξ +k+q−ϕK

ξ̄
+q )

d̂†
qlaξ̄σ

d̂k+qlaξσ
. (29)
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The wave vector corresponding to the spatial modulation of
ρ̂

ξ ξ̄

kla is never small: it is of order of K1 − K2 even for small k.
Since the density operator has smooth as well as oscillating

contributions, the interaction can be split into the forward
scattering Ĥf and back scattering Ĥb:

Ĥint = Ĥf + Ĥb, (30)

Ĥf = 1

2Nc

∑
kξξ ′
ll′aa′

V ll ′
kaa′ ρ̂

ξ

klaρ̂
ξ ′
−kl ′a′ , (31)

Ĥb = 1

2Nc

∑
kξ ll ′aa′

V ll ′
K1−K2aa′ ρ̂

ξ ξ̄

klaρ̂
ξ̄ ξ

−kl ′a′ . (32)

As one can see, Ĥf describes scattering in which both partici-
pating electrons maintain their valley indices after scattering,
while Ĥb represents large-momentum scattering, when partic-
ipating electrons from different valleys exchange their valley
indices.

We assume here that the electron-electron interaction is
sufficiently long range. In this case V ll ′

K1−K2aa′ < V ll ′
kaa′ since

|k| < |K1 − K2|. For this reason we neglect below the back
scattering (this issue will be discussed in Sec. V in more
detail). Since the considered interaction is a long-range one,
we can assume that the coupling is approximately independent
of the sublattice indices:

V ll ′
kaa′ ≈ V ll ′

k . (33)

Under these approximations, the interaction (25) reads as

Ĥint = 1

2Nc

∑
kll ′

V ll ′
k ρ̂kl ρ̂−kl ′ , (34)

where the smooth density component in layer l is

ρ̂kl =
∑
aξ

ρ̂
ξ

kla =
∑
qam

eia(φq−φk+q )ĝ
†
qlamĝk+qlam. (35)

In the latter formula we used the multi-index notation m =
(ξ, σ ). This serves a twofold purpose. For one, it makes the
expression more concise. Additionally, it explicitly reveals the
invariance of ρ̂kl under the action of the SU(4) Bogolyubov
transformation (24). At this point one can appreciate the mo-
tivation behind the complexity of formulas (15) and (18). If
multiple phase factors were not absorbed in the definitions
of the valley-specific operators, these phase factors would
emerge in Eq. (35), obscuring the invariance. Finally, we
observe that, since the operator ρ̂kl possesses the SU(4) in-
variance, the same is true for the interaction (34).

E. Effective model

As it was stated above, only two of the four single-
electron bands form the Fermi surface at zero doping
(see Fig. 1). Therefore, the high-energy bands s = 1, 4 can not
modify significantly the low-energy physics of the AA-BLG.
We discarded these bands from the model, which simpli-
fies considerably further analysis. In this approximation the
single-electron Hamiltonian becomes

Ĥ eff
0 =

∑
kξσ

(vF|k| − t0)(γ̂ †
k2ξσ γ̂k2ξσ − γ̂

†
k3ξσ γ̂k3ξσ ). (36)

The density operator ρ̂kl reduces to

ρ̂kl ≈ 1

4

∑
qam

eia(φq−φq+k )[γ̂ †
q2m + (−1)l+aγ̂

†
q3m]

×[γ̂q+k2m + (−1)l+aγ̂q+k3m]. (37)

Substituting this expression in Eq. (34) one derives

Ĥ eff
int = Ĥ eff

dir + Ĥ eff
ex + Ĥ eff

u , (38)

where the direct term is defined as

Ĥ eff
dir = 1

16Nc

∑
qq′kmm′

V+(k)[1 + ei(φq−φq+k )]

× [1 + ei(φq′ −φq′−k )](γ̂ †
q2mγ̂q+k2m + γ̂

†
q3mγ̂q+k3m)

×(γ̂ †
q′2m′ γ̂q′−k2m′ + γ̂

†
q′3m′ γ̂q′−k3m′ ), (39)

the exchange term is

Ĥ eff
ex = 1

16Nc

∑
qq′kmm′

V−(k)[1 − ei(φq−φq+k )]

× [1 − ei(φq′−φq′−k )](γ̂ †
q2mγ̂q+k3mγ̂

†
q′3m′ γ̂q′−k2m′

+ γ̂
†
q3mγ̂q+k2mγ̂

†
q′2m′ γ̂q′−k3m′ ), (40)

and the umklapp term is

Ĥ eff
u = 1

16Nc

∑
qq′kmm′

V−(k)[1 − ei(φq−φq+k )]

× [1 − ei(φq′−φq′−k )](γ̂ †
q2mγ̂q+k3mγ̂

†
q′2m′ γ̂q′−k3m′

+ γ̂
†
q3mγ̂q+k2mγ̂

†
q′3m′ γ̂q′−k2m′ ). (41)

In these approximate expressions we introduced layer-
symmetric and layer-antisymmetric interactions V±(k) =
(V 11

k ± V 12
k ). We also used the relation

∑
ll ′ (−1)lV ll ′

k ≡ 0,
which can be trivially checked.

F. Symmetry group of the effective model

Observe that the operators Ĥ eff
0 , Ĥ eff

dir , Ĥ eff
ex , and Ĥ eff

u , which
constitute the effective model Hamiltonian, are individually
SU(4) invariant. Indeed, each of these operators are explicitly
composed of the bilinears Isr

qp defined as

Isr
qp =

∑
m

γ̂ †
qsmγ̂prm, s, r = 2, 3 (42)

that are invariants of the SU(4) Bogolyubov transformation
(24). Besides, the effective Hamiltonian evidently remains
unchanged upon the substitution

γ̂psm → (−1)sγ̂psm. (43)

This allows us to change the relative sign between γ̂p3m and
γ̂p2m, without changing the Hamiltonian.

From the standpoint of the AA-BLG lattice structure, the
substitution (43) corresponds to either switching the layers

(top layer) ↔ (bottom layer), (44)

or switching the sublattices

(sublattice A) ↔ (sublattice B), (45)
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as it follows from relation (11). Consequently, the symmetry
(43) can be viewed as a manifestation of the layer equivalence,
or manifestation of the sublattice equivalence (at the level of
our effective model these two equivalences cannot be distin-
guished).

Transformation (43), together with the identity transfor-
mation, constitutes the Z2 group. Since the transformations
(24) and (43) commute with each other, we conclude that the
symmetry group of the effective Hamiltonian is

G ∼= SU(4) × Z2. (46)

However, the symmetry group of Ĥ eff
0 and Ĥ eff

dir is broader than
G: one can check directly that both Ĥ eff

0 and Ĥ eff
dir are com-

posed of the bilinears Isr
qp with identical band indices s = r.

Thus, Ĥ eff
0 and Ĥ eff

dir remain invariant even when a Bogolyubov
rotation for s = 2 band is nonidentical to the rotation for s = 3
band. In other words, when V− ≡ 0, the model’s symmetry
group expands to

G0
∼= SU(4) × SU(4). (47)

We will see below that the broader symmetry group cor-
responds to broader set of solutions for a self-consistency
equation.

III. MEAN FIELD APPROXIMATION

We apply the mean field approach to the effective Hamil-
tonian

Ĥ eff = Ĥ eff
0 + Ĥ eff

int (48)

with the aim of exploring (nonsuperconducting) symmetry-
breaking ordered phases of our model. Implementing the
mean field decoupling for Ĥ eff

dir , we obtain

ĤMF
dir = − 1

8Nc

∑
qp

mm′

V+(p − q)
∣∣1 + ei(φq−φp )

∣∣2

× (〈γ̂ †
p3m′ γ̂p2m〉γ̂ †

q2mγ̂q3m′ + γ̂
†
p3m′ γ̂p2m〈γ̂ †

q2mγ̂q3m′ 〉),

(49)

where 〈. . . 〉 stands for the ground-state average.
It is convenient to introduce the 4×4 operator-valued ma-

trix �̂q whose elements are

�qmm′ = γ̂
†
q3mγ̂q2m′ . (50)

Assuming that the average 〈�̂q〉 depends only on the absolute
value of the vector q, we write the following compact expres-
sion:

ĤMF
dir = − 1

Nc

∑
qp

V̄+Tr(〈�̂p〉�̂†
q + 〈�̂†

p〉�̂q). (51)

Deriving this formula we replace the interaction function
V+(p − q) by its average value at the Fermi surface. The
constant V̄+ is equal to

V̄+ = 1

4

∫ 2π

0

dχ

2π
(1 + cos χ )V+(kF

√
2 − 2 cos χ ). (52)

Likewise, the mean field form of the umklapp interaction is

ĤMF
u = − 1

Nc

∑
qp

V̄−Tr (〈�̂p〉�̂q + 〈�̂†
p〉�̂†

q), (53)

V̄− = 1

4

∫ 2π

0

dχ

2π
(1 − cos χ )V−(kF

√
2 − 2 cos χ ). (54)

As for Ĥex, it does not contribute to the mean field Hamilto-
nian. Indeed, one can check that nonzero expectation value
〈γ̂ †

q3mγ̂q2m′ 〉 in Eq. (40) is possible only at zero transferred
momentum k = 0. Contributions with vanishing transferred
momentum in Ĥ eff

ex vanish due to

1 − ei(φq−φq+k ) = 1 − ei(φq′−φq′−k ) = 0 (55)

at k = 0.
The resultant mean field Hamiltonian reads as

ĤMF = Ĥ eff
0 + ĤMF

int , (56)

where the mean field interaction is

ĤMF
int = −

∑
q

Tr(Q̂†�̂q + �̂†
qQ̂). (57)

In this expression the 4×4 matrix Q̂ is the order parameter

Q̂ = 1

Nc

∑
p

(V̄+〈�̂p〉 + V̄−〈�̂†
p〉). (58)

To derive a self-consistency equation, it is convenient to
invert this definition

1

Nc

∑
p

〈�̂p〉 = 1

V̄ 2+ − V̄ 2−
(V̄+Q̂ − V̄−Q̂†). (59)

We prove in the Appendix that for our mean field Hamiltonian
ĤMF the symmetry-breaking average 〈�̂p〉 satisfies

1

Nc

∑
p

〈�̂p〉 = 1

2Nc

∑
k

Q̂
(
ε2

k + Q̂†Q̂
)− 1

2 . (60)

We consider only the undoped system, where the Fermi level
is near Dirac points and the energy spectrum has a rotational
symmetry in the momentum space. Therefore, it is reasonable
to assume that the average 〈�̂p〉 is independent of the direction
of p. Now, comparing the latter two equations and changing
the summation over momentum by integration over energy,
we derive the self-consistency equation in the form

(V̄ 2
+ − V̄ 2

− )Q̂h(Q̂†Q̂) = V̄+Q̂ − V̄−Q̂†, (61)

in which the function h is defined as

h(Q̂†Q̂) = 1

2

∫ 3t

0

ν(ε)dε√
(ε − t0)2 + Q̂†Q̂

, (62)

where ν(ε) ≈ ε/(
√

3πt2) is the graphene density of states
(per spin projection per valley) and integration is performed
up to maximum electron energy in the AA-BLG [22].

Now we briefly discuss certain mathematical points that
must be settled before analysis of the derived equations. Note
a property of Eq. (61): if Q̂0 is a solution of this equation, then
Ẑ†Q̂0Ẑ , where Ẑ is a unitary matrix, is also a solution. Observe
that the radical of the matrix-valued polynomial in Eqs. (60)
and (62) is defined completely unambiguously. Indeed, the
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matrix Q̂†Q̂ is Hermitian positive semidefinite (that is, its
eigenvalues are real and non-negative). Such a matrix allows
the following representation:

Q̂†Q̂ = V̂ D̂2V̂ †, D̂ = diag(d1, . . . , d4), di � 0 (63)

where V̂ is a unitary matrix, V̂ ∈ U(4). Consequently,(
ε2

k + Q̂†Q̂
)− 1

2 = V̂
(
ε2

k + D̂2
)− 1

2 V̂ †. (64)

An arbitrary function f of a diagonal matrix is defined accord-
ing to the convention

f (diag[a1, . . . , an]) = diag[ f (a1), . . . , f (an)], (65)

assuming, of course, that f (ai ) are defined for all i’s. Applying
this construction to Eq. (64) we can write(
ε2

k + D̂2
)− 1

2 = diag
[(

ε2
k + d2

1

)− 1
2 , . . . ,

(
ε2

k + d2
4

)− 1
2
]
, (66)

where the square-root extraction is performed on real non-
negative quantities only.

The self-consistency equation (61) can be simplified, if we
implement the singular-value decomposition on Q̂ and Q̂†:

Q̂ = Û D̂V̂ †, Q̂† = V̂ D̂Û †, (67)

with matrices V̂ and D̂ being introduced in Eq. (63). As for
Û ∈ U(4), it diagonalizes the product Q̂Q̂†, that is, Q̂Q̂† =
Û D̂2Û †. We substitute Eqs. (67) in Eq. (61) and derive a
diagonal form of the self-consistency equation

[V̄+ − (V̄ 2
+ − V̄ 2

− )h(D̂2)]D̂ = V̄−Ŵ D̂Ŵ , (68)

where Ŵ = Û †V̂ ∈ U(4).
Let us assume that we solve the diagonalized self-

consistency Eq. (68), that is, we obtain all possible pairs of
the matrices D̂n and Ŵn satisfying Eq. (68). Then, we define

Q̂n = Ŵ †
n D̂n, Q̂†

n = D̂nŴn. (69)

Direct substitution of Eqs. (69) in Eq. (61) shows that Q̂n

is its solution. As it was stated above, all other solutions to
the general self-consistency Eq. (61) are unitary equivalent to
matrices Q̂n defined by Eq. (69).

IV. SOLUTIONS OF THE SELF-CONSISTENCY EQUATION

A. The case of vanishing V̄−

First, we consider a simplest case when V̄− = 0. This
condition is not realistic but allows one to easily obtain an
analytical result. In so doing, Eq. (68) can be rewritten in the
BCS-like form

1 = ν0V̄+ ln

(
2E∗

D̂

)
, (70)

where ν0 ≈ t0/(
√

3πt2) is the AA-BLG density of states at the
Fermi level (per spin projection, per valley, per single band),
the energy scale is E∗ = √

t0(3t − t0). The solution to this
equation reads as

D̂ = �0I4, where �0 = 2E∗ exp

[
− 1

ν0V̄+

]
, (71)

and I4 is the 4×4 identity matrix. At the same time, when V̄−
vanishes, the matrix Ŵ is not limited by the self-consistency

equation. Lack of any restrictions on Ŵ is the manifestation of
the extended symmetry group G0 of the model Hamiltonian in
the case V̄− = 0. As a result, the order-parameter matrix is
Q̂ = �0Ŷ , where Ŷ is an arbitrary unitary matrix. Note that
four eigenvalues of Q̂ are equal to �0 exp(iα1,...,4), where αi

are arbitrary phases.

B. Hermitian order parameters

In a general case V± �= 0, the equation system (68) be-
comes much more complex. Now Ŵ explicitly enters the
self-consistency condition, drastically increasing the number
of unknown variables. In this paper we do not attempt to find
exhaustive solution to the problem. Instead, we will discuss
three specific classes of the solutions of Eq. (68) to illustrate
the richness of the system under study.

It is natural to expect that in the ground state of our model
the single-electron gaps in the four fermionic sectors are iden-
tical to each other. This situation can be represented by the
ansatz

D̂ = �I4. (72)

Substituting this into Eq. (68), one establishes that

Ŵ 2 = aI4, where a = ±1. (73)

Let us consider first a = +1. Then

(V̄+ + V̄−)h(�2) = 1, Ŵ 2 = I4. (74)

The solution for � is

� = 2E∗ exp

[
− 1

ν0(V̄+ + V̄−)

]
. (75)

A unitary matrix Ŵ , whose square is I4, can be expressed as
Ŵ = Ŝ�̂Ŝ†, where Ŝ is a unitary matrix, and �̂ is a diagonal
matrix whose elements are ±1. In such a case, the order-
parameter matrix is Hermitian and satisfies

Q̂ = Q̂† = �Ẑ�̂Ẑ†, (76)

where Ẑ ∈ SU(4). In other words, the order parameter is equal
to ��̂ up to a unitary transformation.

To classify all types of Q̂ consistent with Eq. (76), we split
all possible solutions into three topologically distinct classes
labeled by α ∈ {I, II, III}. These classes are defined by the
structure of �̂:

Class I: �̂κ
I = diag (κ, κ, κ, κ ), κ = ±1, (77)

Class II: �̂II = diag (1, 1,−1,−1), (78)

Class III: �̂κ
III = diag (κ, κ, κ,−κ ), κ = ±1. (79)

Any Q̂ satisfying condition (76) belongs to one and only one
class among these three.

Class-I order parameter is a charge-density wave state
(CDW). To demonstrate this let us first observe that �̂κ

I ∝ I4

and the order parameter is independent of Ẑ . Thus, it always
satisfies Q̂ = Q̂† = κ�I4 and Q̂ is diagonal in the multi-
index m = (ξ, σ ) space. Consequently, when calculating local
occupation numbers nla = ∑

σ 〈d̂†
nlaσ

d̂nlaσ
〉, only “diagonal”
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symmetry-breaking averages 〈γ̂ †
q3ξσ γ̂q2ξσ 〉 are nonzero. Keep-

ing this in mind and using Eqs. (19) and (20), we derive

nla = 1 +
∑

m

δnlam, (80)

where the anomalous contributions to nla are

δnlam = (−1)a+l

2Nc

∑
q

Re 〈γ̂ †
q3mγ̂q2m〉. (81)

These two relations can be compactly written as

nla = 1 + (−1)a+l

2Nc
Tr

∑
q

Re 〈�̂q〉. (82)

Equation (59) allows us to connect
∑

q〈�̂q〉 with Q̂, and
finally we obtain

nla = 1 + κ (−1)a+l 2�

V̄+ + V̄−
. (83)

Thus, the electric charge distribution is inhomogeneous within
a single unit cell, the strength of the inhomogeneity is propor-
tional to �. This corresponds to a commensurate CDW state.

The commensurate order parameter does not violate the
translation symmetry of the underlying honeycomb lattice.
However, the symmetry between the sublattices is broken, and
the same is true for the symmetry between the layers. Analyz-
ing Eq. (83) we note that switching layers or sublattices is
equivalent to switching the sign of κ . Thus, the inversion of κ

is associated with the Z2 subgroup of the symmetry group G.
Class II contains six mutually unitary-equivalent diagonal

matrices Q̂. These are ±�̂II and

±diag (1,−1, 1,−1) and ± diag (1,−1,−1, 1). (84)

Any such matrix can be obtained from �̂II by a suitable
permutation of its diagonal elements.

If the matrix order parameter Q̂ of the class II is diagonal,
then, we derive similar to Eq. (81)

|δnlam| = �

2(V̄+ + V̄−)
. (85)

For fixed l and a, two of δnlam are positive, while two are
negative. Thus, unlike the class-I CDW, electronic phases of
class II have a homogeneous charge distribution within a unit
cell since

∑
m δnlam ≡ 0 for any l and a. Depending on which

δnlam’s are positive, and which are negative, three distinct
types of the order can be distinguished: spin-density wave
(SDW), valley-density wave (VDW), and spin-valley-density
wave (SVDW). For example, the choice

δnlaξσ = ±σ (−1)a+l |δnlaξσ | (86)

corresponds to the SDW phase in which the expectation value
of the spin operator Ŝz

la is finite

〈
Ŝz

la

〉 =
∑
ξσ

σ δnlaξσ = ±(−1)a+l 2�

V̄+ + V̄−
. (87)

When δnlaξσ ∝ (−1)ξ , the system is in the VDW phase, with
finite staggered valley polarization

〈
Ŝv

la

〉 =
∑
ξσ

(−1)ξ δnlaξσ = ±(−1)a+l 2�

V̄+ + V̄−
. (88)

Finally, the SVDW order corresponds to δnlaξσ ∝ (−1)ξ σ .
This phase has finite staggered spin-valley polarization
〈Ŝsv

la 〉 = ∑
ξσ (−1)ξ σ δnlaξσ .

While the class-I order parameter is always the same for
any Ẑ , the class-II matrix Q̂ changes when Ẑ in Eq. (76) is
changed. For example, a suitably chosen Ẑ connects all three
class-II phases to each other.

Furthermore, in class II, matrix Q̂ does not have to be
diagonal: for a generic choice of Ẑ , nonzero elements con-
necting different spin projections and different valleys are
possible. Recall that, if an order parameter is nondiagonal in
spin indices, it represents spin polarization deviating from the
z axis. Additionally, Q̂ can be nondiagonal in valley indices.
In real space, these intervalley matrix elements correspond to
spatially oscillating contributions, with K1 − K2 being their
wave vector. When such an intervalley coherence is realized,
the elementary translation vectors are tripled in length.

In class III, the diagonal order parameter Q̂ ∝ �̂κ
III repre-

sents a state with finite polarizations with respect to all four
types of density waves (CDW, SDW, VDW, and SVDW).
Unitary matrix Ẑ affects the SDW, VDW, and SVDW po-
larizations. The sign of the CDW order parameter can be
changed only by the inversion of κ . The intervalley coherence
is also possible in this class.

Finally, we would like to note that in the considered case
the order-parameter eigenvalues are always real and equal to
±� since any Hermitian solution Q̂ discussed above is unitary
equivalent to ��̂.

C. Anti-Hermitian order parameters

The order-parameter matrix Q̂ does not always have to be
Hermitian. To illustrate this point, let us choose a = −1 in
Eq. (73). In this case we have

Ŵ = iŜ�̂Ŝ†, (89)

where the structures of the matrices Ŝ and �̂ are defined in the
previous subsection. Assuming that D̂ ∝ I4 as in Eq. (72), we
substitute this Ŵ in Eq. (68) and obtain four identical mutually
decoupled equations. Solving these equations, we derive

D̂ = �̃I4, where �̃ = 2E∗ exp

[
− 1

ν0(V̄+ − V̄−)

]
. (90)

The sign before V̄− is the only difference between � and �̃.
The order-parameter matrix now reads as

Q̂ = −Q̂† = −i�̃Ẑ�̂Ẑ†, (91)

where Ẑ ∈ SU(4). Thus, the matrix Q̂ is anti-Hermitian.
Following the logic of Sec. IV B, let us consider a special

case of �̂ = χI4, where χ = ±1. From Eqs. (59) and (91) we
obtain that

1

Nc

∑
p

〈�̂p〉 = − 1

Nc

∑
p

〈�̂†
p〉 = − iχ�̃

V̄+ − V̄−
. (92)
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Since 1
Nc

∑
p〈�̂p〉 is purely imaginary, then δnlam = 0. On the

other hand, “interlayer” current operator

Î⊥
na = i

∑
σ

d̂†
n1aσ d̂n2aσ + H.c. (93)

has a finite expectation value. Let us prove it.
The expectation value 〈Î⊥

na〉 can be presented as a sum over
the multi-index m

〈Î⊥
na〉 =

∑
m

〈Î⊥
am〉, (94)

where we assumed that the average 〈Î⊥
na〉 is independent of n

due to ground-state translation invariance. The partial current
〈Î⊥

am〉 is equal to

〈Î⊥
am〉 = 1

2Nc

∑
k

Im〈[γ̂ †
k2m + (−1)aγ̂

†
k3m]

×[γ̂k2m − (−1)aγ̂k3m]〉.
Combining the latter equation and Eq. (92), one derives

〈Î⊥
am〉 = (−1)a

Nc

∑
k

Im〈γ̂ †
k3mγ̂k2m〉 = χ (−1)a�̃

V̄+ − V̄−
. (95)

Consequently,

〈Î⊥
na〉 = χ (−1)a 4�̃

V̄+ − V̄−
. (96)

We see that such a state is characterized by spontaneously
generated interlayer currents. Factor (−1)a in the expression
for 〈Î⊥

na〉 indicates that the flow along the interlayer links on
sublattice A exactly cancels the flow along the interlayer links
on sublattice B. Therefore, the overall interlayer charge flow is
zero, as it must be in an eigenstate. Note also, a detailed distri-
bution of the current flow is impossible to calculate within the
current formalism since we neglect the existence of the bands
1 and 4.

One can adopt the reasoning of Sec. IV B and introduce a
topological classification of the anti-Hermitian order parame-
ters: there are three distinct classes, whose order parameters
are identical, up to multiplication on complex unity i, to the
order parameters in classes I, II, and III discussed above.
Instead of the spontaneous local densities, the ordered states
corresponding to the anti-Hermitian Q̂ are characterized by
spontaneous interlayer currents. Depending on the topological
class, these currents may carry charge, spin, valley, spin-valley
quanta, or combinations of the above.

D. Non-Hermitian non-anti-Hermitian order parameters

In this section we demonstrate that the order parameter Q̂
satisfying the self-consistency equation (61) may be neither
Hermitian nor anti-Hermitian. To prove this point, let us con-
sider the matrix set M that contains 44 diagonal matrices of
the following structure:

Ŵ = diag (w1, . . . ,w4), where wm = ±1,±i. (97)

Any diagonal matrix that satisfies condition (73) unavoid-
ably satisfies Eq. (97). Therefore, all matrices Ŵ discussed
in Secs. IV B and IV C belong to the set M. The inverse
statement is obviously not true.

The matrices that belong to M but violate condition (73)
can be described in terms of their diagonal elements (up to a

TABLE I. Classification of non-Hermitian non-anti-Hermitian
order parameters. All matrices Q̂† described by Eq. (100) can be
split into three types according to the number of real eigenvalues.
Each column of the table represents one of these types. We use the
following notations: ±1 stands for a real eigenvalue, ±i stands for an
imaginary eigenvalue, and the binary indices κ = ±1 and χ = ±1
are the same as in Secs. IV B and IV C. Within each type, additional
subtypes can be defined, according to the number of minus signs
in front of real and imaginary eigenvalues (up to a permutation of
eigenvalues). Any diagonal order-parameter matrix set by Eq. (100)
belongs to one and only one subtype defined in this table.

1 real eigenvalue 2 real eigenvalues 3 real eigenvalues
(±1, ±i, ±i,±i) (±1,±1, ±i, ±i) (±1, ±1, ±1, ±i)

(κ, iχ, iχ, iχ ) (κ, κ, iχ, iχ ) (κ, κ, κ, iχ )
(κ, iχ, i,−i) (κ, κ, i, −i) (κ, 1, −1, iχ )

(1,−1, iχ, iχ )
(1,−1, i, −i)

permutation) as follows:

w1 = ±1, w2 = ±1,±i, w3 = ±1,±i, w4 = ±i.

(98)

For matrices Ŵ of this type the self-consistency condition
splits into four decoupled equations. However, not all of these
equations are identical. It is easy to demonstrate that the
diagonal elements of D̂ satisfy

dm =
{
�, if wm = ±1
�̃, if wm = ±i.

(99)

Diagonal order parameter Q̂† equals

Q̂† = diag(w1d1, . . . ,w4d4). (100)

Nondiagonal Q̂† can be obtained by application of a unitary
transformation. We clearly see that all such order parameters
are neither Hermitian nor anti-Hermitian.

The order parameter (100) represents a state that includes
the features of both the Hermitian and the anti-Hermitian
order-parameter states. If wm is real, the nonvanishing
symmetry-breaking observable for this multi-index m is the
local density 〈δnlam〉 �= 0, as in Sec. IV B, otherwise, it is the
interlayer current 〈I⊥

am〉 �= 0, as in Sec. IV C. Table I presents
a classification scheme for these ordered phases.

V. DISCUSSION

Due to peculiar features of the honeycomb lattice, the
single-electron dispersion in graphene and graphene-based
systems is characterized by an additional quantum number,
valley index. Although, in many respects, the valley index
differs from the spin projection, it is possible to formulate a
theory that incorporates these two quantum numbers on an
equal footing. Our paper presents such a theory for the specific
case of AA-BLG.

An SU(4)-symmetric [SU(4)S] theory of a graphene-based
system cannot serve as an ultimate model describing elec-
tronic properties in detail. Yet, it is a helpful theoretical
tool. Let us recall that the presence of the valley degener-
acy in graphene-based materials opens new possibilities for

205153-8



ORDERING IN THE SU(4)-SYMMETRIC MODEL OF AA … PHYSICAL REVIEW B 108, 205153 (2023)

electron-electron scattering and electron low-temperature or-
dering. In such a situation, an accurate “bookkeeping” of all
scattering and ordering channels may be quite challenging. A
study of an SU(4)S model should be viewed as a physically
motivated approach aiming at developing a concise classifica-
tion scheme of the ordered states in graphene-based materials.

The discussion presented above attests both to difficulties
that one faces when trying to itemize all allowed ordered
phases in AA-BLG, and to usefulness of an SU(4)S model for
such an endeavor. Our main result here is the derivation of the
self-consistency Eq. (68) and the list (possibly, incomplete) of
ordered phases satisfying this equation. One should appreciate
the length of this list, as well as the fact that all these dissimilar
many-body states have been identified within a single unifying
approach, as solutions to Eq. (68).

At the same time, the proposed method suffers from several
limitations that require additional research. One must remem-
ber that a single state with lowest energy inevitably becomes
the true ground state. Trying to use the SU(4)S model to de-
termine which state is the ground state, we discover that quite
dissimilar phases aggregate into broad multiplicities, with all
phases in a multiplicity being degenerate and connected to
each other by suitable SU(4) Bogolyubov transformations.
For example, class II of the Hermitian ordered phases unites
SDW, VDW, and SVDW into a single group of degenerate
states. This “blindness” of the classification is a consequence
of consideration of the spin and valley indices on an equal
footing.

Clearly, a more realistic theory must distinguish the valley
quantum, of purely orbital origin, and spin, a consequence of
the relativistic Dirac-equation physics. In a general situation
one expects that non-SU(4)S terms in the Hamiltonian destroy
the spin-valley symmetry, and lift multiple degeneracies of the
SU(4)S model. In this respect, we already identified the back-
scattering interaction as a non-SU(4)S term. Other possible
non-SU(4)S contributions may emerge when electron-lattice
coupling is taken into account. The short-range interaction
is also incompatible with the SU(4)S. Additionally, external
influences (electric and/or magnetic fields, substrate choice,
deformations, etc.) engineered for a specific purpose (e.g., sta-
bilizing a specific type of order parameter) must be considered
as well.

Under such circumstances, we expect that the true ground
state will be chosen from the list as a result of the interplay
of various nonuniversal and, possibly, sample-specific factors.
Situations of this sort, when multiple states compete against
each other to become the true ground state, are known to
appear in doped Hubbard model [7,9,10], and models with
nesting [8,14,15,23–26]. Unlike these, for our SU(4)S model
such competition occurs already at zero doping. However, the
aspect common for both types of models is the importance
of numerous nonuniversal contributions affecting the final
outcome of the competition [7].

Two additional questions for the future research are (i) the
completeness of the ordered phase list and (ii) the stability of
the phases in that list. In connection to (i) we must say that
within our formalism this problem becomes a purely mathe-
matical task of exhausting all possible solutions to Eq. (68).
Currently, we do not know if ordered states other than those
discussed in Sec. IV can be identified.

As for (ii), we want to emphasize that a stability study
of an ordered state may be very complicated, and any
self-consistency equation is insufficient to establish stability
or metastability of its solutions. For a mean field theory,
like ours, one can compare mean field energies for various
states. For example, it is easy to show that, for positive
V̄+, the Hermitian order-parameter state has lower energy
than the anti-Hermitian when V̄− > 0. For negative V̄−, the
anti-Hermitian order-parameter states have lower mean field
energy. For any sign of V̄−, the order parameter (100) has the
energy that is in-between the two.

The latter argumentation, however, ignores the issue of the
non-mean-field fluctuations. They are important for two rea-
sons: the fluctuation-induced contributions to the energy can
potentially lift the degeneracies between different multiplici-
ties [21], and the fluctuations can completely destroy the order
through the Mermin-Wagner-Hohenberg mechanism. These
two problems are the two sides to the same looming question:
the reliability of the mean field theory. While, at present, it is
impossible to address this question in full generality, a good
measure of theoretical understanding is already available. For
AA-BLG and other two-dimensional systems, it is expected
that the mean field theory is valid at zero temperature, at least
qualitatively. Zero-temperature fluctuation corrections to the
mean field energy may be of the same order as the mean
field energy itself [21]. This does present a certain theoretical
difficulty [27]. Fortunately, these corrections often can be in-
terpreted [7,27] as (weak) renormalizations to the interaction
constants, which allows one to preserve the general mean field
structure of the theory.

As for Mermin-Wagner-Hohenberg mechanism, it is well
recognized that any non-Ising order in a two-dimensional
system cannot endure finite temperatures. Yet, the destroyed
order does not disappear completely, but rather survives in
the form of short-range correlations, which gradually vanish
through a crossover. For a specific case of the SDW in AA-
BLG, qualitative theory of this crossover was discussed in
Ref. [15].

As we noted in Sec. I, our analysis of the order-parameter
symmetries in the AA-BLG is an extension of the approach
proposed by Nandkishore and Levitov in Ref. [21] for AB-
BLG. However, the authors of Ref. [21] limited themselves
by the study of Hermitian order parameters only. We guess
that including in the consideration non-Hermitian orders in the
AB-BLG is of interest and can be performed using the present
approach. Of a particular interest is the study of the order
parameters in twisted bilayer graphene. At low-twist angles
(and at magical angles, in particular), this system can be
considered as a periodic arrangement of regions with AA and
AB stacking. Thus, the analysis of the possible symmetries
of the order parameters in “aligned” bilayers (AB-BLG and
AA-BLG) can be considered as a first step for study of the
twisted graphene systems.

Finally, we want to mention that the proposed approach
may be useful for classification of superconducting order pa-
rameters in graphene-based systems. However, in this case the
consideration requires a significant modification. In particular,
we should take into account effects of doping. So, the analysis
of the superconducting orders is beyond the scope of this work
and is the topic of further studies.
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To conclude, we present a SU(4)-invariant model for the
AA-BLG and investigate this model within the mean field
approximation. The derived matrix self-consistency equa-
tion demonstrates rich diversity of solutions, every solution
representing a stationary ordered many-body phase of our
model. This wealth of the ordered states with close energies
indicates that in the AA-BLG several ordered phases compete
against each other to become the true ground state. Symmetry-
based classification of the discussed phases is developed.
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APPENDIX: CALCULATION OF THE
SYMMETRY-BREAKING AVERAGE

To derive the self-consistency relation in the form of
Eq. (60) we need to express N−1

c

∑
q〈�̂q〉 in terms of Q̂.

A convenient approach to address this task is to use the
Hellmann-Feynman formula〈

∂Ĥ

∂λ

〉
= ∂E0

∂λ
, (A1)

where Ĥ is a Hamiltonian dependent on some parameter λ,
and E0 = E0(λ) is the ground-state energy of Ĥ (λ).

To adopt the latter formula to our mean field approxima-
tion, we need to look for extrema of EMF = EMF(Q̂, Q̂†) over
Q̂. Since Q̂ is a matrix, it is useful to introduce the differen-
tiation over a matrix. Namely, the derivative ∂ f (X̂ )

∂X̂
is a matrix

Ŷ = ∂ f
∂X̂

whose elements yss′ are equal to

yss′ = ∂ f

∂xs′s
, (A2)

where xss′ are elements of X̂ . This definition implies that

∂

∂X̂
Tr(ÂX̂ ) = Â, (A3)

provided that Â itself is independent of X̂ . Using these no-
tations and the theorem (A1), we obtain for our mean field
Hamiltonian (56)

1

Nc

∑
q

〈�̂q〉 = −∂EMF

∂Q̂†
, (A4)

1

Nc

∑
q

〈�̂†
q〉 = −∂EMF

∂Q̂
, (A5)

where EMF is the ground-state energy (per unit cell) for ĤMF

[see Eq. (57)].
To calculate EMF it is convenient to write ĤMF [Eq. (56)]

as follows:

ĤMF =
∑

q

�†
qĤq�q. (A6)

In this formula the eight-component vector �†
q equals

�†
q = (�†

q2, �
†
q3), (A7)

where band-specific vectors �†
qs (s = 2, 3) are introduced ac-

cording to

�†
qs = (γ̂ †

qs↑K1
, γ̂

†
qs↓K1

, γ̂
†
qs↑K2

, γ̂
†
qs↓K2

). (A8)

Symbol Ĥq in Eq. (A6) is the 8×8 matrix defined as

Ĥq =
(

εqI4 −Q̂T

−Q̂∗ −εqI4

)
, (A9)

where εq = vF|q| − t0.
The energy EMF then equals

EMF = 1

Nc

∑
q

∑
n=1,...,8

E (n)
q ϑ

(−E (n)
q

)
, (A10)

where ϑ (x) is the step function, and E (n)
q is the nth eigenvalue

of Ĥq. Thus, we need to calculate the eigenvalues of Ĥq. It
is more convenient to replace the matrix Ĥq with its complex
conjugate Ĥ∗

q, which, however, has the same set of E (n)
q . The

eigenvalue-eigenvector relation for Ĥ∗
q reads as(

εq −Q̂†

−Q̂ −εq

)(
φ1

φ2

)
= Eq

(
φ1

φ2

)
. (A11)

Excluding φ2 from this equation, we derive(
E2

q − ε2
q

)
φ1 = Q̂†Q̂φ1. (A12)

Thus, the eigenenergies of Ĥq are

E (n)
q = ±

√
ε2

q + d2
i , (A13)

where d2
i , i = 1, . . . , 4, are the eigenvalues of the positive-

semidefinite 4×4 matrix Q̂†Q̂. Since the trace of a matrix is
invariant under unitary transformations, we derive

EMF = − 1

Nc

∑
q

Tr
(
ε2

q + Q̂†Q̂
) 1

2 . (A14)

The final step is to find the derivatives ∂EMF/∂Q̂ and
∂EMF/∂Q̂†. For this goal, we expand Eq. (A14) in powers of
Q̂†Q̂. Using definition (A2), we can demonstrate that

∂

∂Q̂†
Tr(Q̂†Q̂)n = nQ̂(Q̂†Q̂)n−1. (A15)

We see that the differentiation rule for this monomial is es-
sentially identical to the rule for differentiating a product
of commuting variables. Such a simplification occurs due to
invariance of the trace under cyclic permutation of multipliers
under sign of the trace. This allows us to perform a resumma-
tion of the power series and derive

−∂EMF

∂Q̂†
= 1

2Nc

∑
q

Q̂
(
ε2

q + Q̂†Q̂
)− 1

2 . (A16)

Thus we obtain the self-consistency condition (60). Similarly,
one can derive

−∂EMF

∂Q̂
= 1

2Nc

∑
q

(
ε2

q + Q̂†Q̂
)− 1

2 Q̂†, (A17)

which can be used in Eq. (A5).
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