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We have investigated the effects of strain on two-dimensional square lattices and examined the methods for
inducing pseudomagnetic fields. In both the columnar and staggered π -flux square lattices, we have found
that strain only modulates Fermi velocities rather than inducing pseudomagnetic fields. However, spatially
nonuniform on-site potentials (anisotropic hoppings) can create pseudomagnetic fields in columnar (staggered)
π -flux square lattices. On the other hand, we demonstrate that strain does induce pseudomagnetic fields in
staggered zero-flux square lattices. By breaking a quarter of the bonds, we clarify that a staggered zero-flux
square lattice is topologically equivalent to a honeycomb lattice and displays pseudovector potentials and
pseudo-Landau-levels at the Dirac points.
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I. INTRODUCTION

Strain engineering has emerged as a powerful tool in
condensed matter physics for manipulating the electronic
properties of Dirac materials. In graphene, specifically, the
application of strain [1] can generate a pseudomagnetic field
[2–9] that couples to the two-dimensional Dirac electrons in
a manner similar to an externally applied magnetic field. Nu-
merous experimental [10–16] and theoretical [17–21] studies
have identified in graphene such strain-induced pseudomag-
netic fields, which give rise to novel transport phenomena
such as chiral anomalies [9,20] and quantum oscillations [21]
in the absence of magnetic fields.

Beyond graphene, pseudomagnetic fields can also be in-
duced in various other materials, including superconducting
[22–25], magnonic [26–31], photonic [32], and acoustic
[33–35] materials, as long as they possess a Dirac cone
band structure. In the case of two-dimensional materials,
strain-induced pseudomagnetic fields have previously been
predicted only in honeycomb-like lattices (e.g., honeycomb
[36–39], kagome [40], and α-T3 [41,42] lattices), because
their lattice geometry inherently guarantees the presence of
Dirac cones. However, it remains unknown whether strain can
induce pseudomagnetic fields in non-honeycomb-like lattices.

Square lattices are well-known for exhibiting Dirac cones
in the low-energy band structure when each elementary pla-
quette hosts half a magnetic flux quantum. Due to this
unique band structure, the π -flux square lattices have attracted
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significant attention and have been extensively studied in
both noninteracting [43–45] and strongly correlated [46–50]
regimes. Furthermore, the presence of Dirac cones in π -flux
square lattices is a prerequisite for the emergence of strain-
induced pseudomagnetic fields. Therefore, it is intriguing and
worthwhile to investigate whether a strained π -flux square
lattice can indeed give rise to a pseudomagnetic field, which
may have potential experimental realizations in optical lattices
[51,52] or electrical circuits [53].

In this manuscript, we investigate the effects of strain on
two-dimensional square lattices with and without π -flux. We
examine two different configurations of π -flux, and we ob-
serve that strain alone does not result in the induction of a
pseudomagnetic field in either case. However, we discover
that spatially nonuniform on-site potentials or anisotropic
hoppings can serve as alternative sources for generating pseu-
domagnetic fields. For the case without π -flux, we observe
that Dirac cones can be produced by introducing staggered
hoppings along the y direction. Additionally, we find that
strain patterns commonly used in graphene have the ability
to induce pseudomagnetic fields in this system. In the limit
case in which the weak bonds in the y direction are elimi-
nated, the resulting brick-wall square lattice is topologically
equivalent to a honeycomb lattice. Interestingly, the pseudo-
magnetic field induced by strain persists in this transformed
square geometry. These findings expand the effect of strain to
square geometries, further deepening our comprehension of
the strain-induced pseudomagnetic field.

This paper is organized as follows. In Sec. II, we intro-
duce the columnar π -flux square lattice and demonstrate its
low-energy Dirac cone band structure. In Sec. III, we show
that strain only modulates the Fermi velocity of the columnar
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FIG. 1. (a) Schematic plot of a columnar π -flux square lattice.
Each unit cell consists of two sites, labeled as A (red) and B (blue),
respectively. The hopping parameters of the four bonds associated
with each unit cell are labeled as t1,2,3,4. (b) Band structure of the
nearest-neighbor tight-binding model [Eq. (1)] defined on the colum-
nar π -flux square lattice. Here we have adopted −t1 = t2 = t3 =
t4 = t .

π -flux square lattice without inducing a pseudomagnetic field.
In Sec. IV, we propose that a pseudomagnetic field can arise
when a spatially nonuniform on-site potential is introduced
to the columnar π -flux square lattice. In Sec. V, we find that
strain cannot induce a pseudomagnetic field in the staggered
π -flux square lattice, but spatially nonuniform anisotropic
hoppings may generate one. In Sec. VI, we demonstrate that
strain can induce a pseudomagnetic field in the staggered
zero-flux square lattice. In Sec. VII, we reveal that breaking
a quarter of bonds in the staggered zero-flux square lattice
results in topological equivalence to a honeycomb lattice,
exhibiting a strain-induced pseudomagnetic field. Finally, in
Sec. VIII, we provide a summary of our key findings and
conclude the paper.

II. COLUMNAR π-FLUX SQUARE LATTICE

With half of a magnetic flux quantum threading through
each plaquette of a square lattice, the hopping parame-
ters associated with the four edges of the plaquette acquire
Aharonov-Bohm phases that sum up to π . By assigning this
π phase to t1, the square lattice manifests a columnar pattern
with a bipartite unit cell [Fig. 1(a)]. The corresponding spin-
less nearest-neighbor tight-binding Hamiltonian is given by

H0 =
∑

r

(t1a†
r ar+δ2 + t2b†

rbr+δ2 + t3a†
r br

+t4a†
r br−2δ1 ) + H.c., (1)

where ar and br are the annihilation operators associated
with the two sublattices, and δ1 = (1, 0) and δ2 = (0, 1) are
the nearest-neighbor vectors with the lattice constant set to
unity. The hopping parameters [Fig. 1(a)] associated with
each unit cell satisfy −sgn(t1) = sgn(t2) = sgn(t3) = sgn(t4).
In momentum space and the sublattice basis ψk = (ak, bk)T ,
the Hamiltonian [Eq. (1)] can be written as H0 = ∑

k ψ
†
kHkψk

with the kernel given by

Hk =
[

2t1 cos(ky) t3 + t4e2ikx

t3 + t4e−2ikx 2t2 cos(ky)

]
. (2)

Taking −t1 = t2 = t3 = t4 = t , the band structure of Hk reads
Ek = ±2t

√
cos2(kx ) + cos2(ky), which exhibits two Dirac

points at Kξ = ( π
2 , ξ π

2 ) with ξ = ± [see Fig. 1(b)]. We ex-
pand Hk in the vicinity of Kξ and obtain the corresponding
low-energy effective Hamiltonian

H ξ
q = 2t

[
ξqy −iqx

iqx −ξqy

]
= 2t (ξσzqy + σyqx ), (3)

where σy and σz are Pauli matrices. As a consequence, a linear
dispersion relation with isotropic properties emerges in the
vicinity of the Dirac points, expressed as εq = ±2t

√
q2

x + q2
y .

III. STRAIN-MODULATED FERMI VELOCITY IN THE
COLUMNAR π-FLUX SQUARE LATTICE

We now study the strain effects in the columnar π -flux
square lattice. When the strain is applied, it deforms the lattice
and modulates the hopping parameters to

tn = t + δtn, (4)

where δtn denotes the correction to the nth hopping param-
eter. Any strain, regardless of its space dependence, can be
characterized by a displacement field U (R). The variation
δtn can be approximated in terms of the strain tensor ui j =
(∂iUj + ∂ jUi )/2 and the corresponding bond vector δn as

δtn = −βtδn · u · δn, (5)

where β is referred to as the Grüneisen parameter [3]. For the
columnar π -flux square lattice, the strain-modulated hopping
parameters thus read

t1,2 = ±t (1 − βδ2 · u · δ2),

t3,4 = t (1 − βδ1 · u · δ1),
(6)

where the plus (minus) sign in the first equation corresponds
to t2 (t1). According to Eq. (6), we always have t1 = −t2 and
t3 = t4 regardless of the form of U (R). Plugging Eq. (6) into
Eq. (2) and expanding around Kξ , we find that the low-energy
effective Hamiltonian [Eq. (3)] is adapted to

H ξ
q = 2t[ξσz(1 − βδ2 · u · δ2)qy + σy(1 − βδ1 · u · δ1)qx],

(7)

which only incorporates modulation of the Fermi velocity
instead of induction of a pseudomagnetic field. For spa-
tially uniform strain, the Fermi velocity remains constant and
exhibits anisotropy when δ1 · u · δ1 �= δ2 · u · δ2. For nonuni-
form strain, the Fermi velocity in general exhibits anisotropy
and spatial inhomogeneity simultaneously.

It is well known that strain in graphene can induce both an
inhomogeneous Fermi velocity and a pseudomagnetic field,
which together give rise to dispersive pseudo-Landau-levels
[9,21]. However, in the case of the columnar π -flux square
lattice, nonuniform strain only generates an inhomogeneous
Fermi velocity. It is thus anticipated that an external magnetic
field produces dispersive Landau levels. In this scenario, the
magnetic field B = Bẑ is responsible for the Landau quanti-
zation En = √

2neBh̄vxvy as illustrated in Fig. 2(a), while the
nonuniform Fermi velocity v = (vx, vy) becomes k-dependent
when Fourier-transformed into momentum space, resulting in
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FIG. 2. Band structure of the nearest-neighbor tight-binding
model on the columnar π -flux square lattice with an ordinary mag-
netic field. (a) Flat Landau levels. (b) Dispersive Landau levels in the
presence of a nonuniform uniaxial strain. The strain results from the
displacement field U = (0, c

2β
y2) with strength c/cmax = 0.5 (cmax =

1/Ly). The lattice used in the calculation has a finite width (Ly = 600)
in the y direction and is infinite along the x direction.

dispersion. Our claim is numerically substantiated with a dis-
placement field U = (0, c

2β
y2) through exact diagonalization.

Indeed, we find that the initially flat Landau levels [Fig. 2(a)]
become dispersive [Fig. 2(b)] due to the nonuniform Fermi
velocity modulated by the strain.

Previously, there has been a debate regarding the origin of
the dispersive pseudo-Landau-levels in graphene. Recent find-
ings [21] have revealed that the dispersion arises from both the
strain-modulated inhomogeneous Fermi velocity [9,54] and
the strain-induced nonuniform pseudomagnetic field [20]. In
fact, these two effects cannot be separated for strong strain
[21]. In contrast, in the columnar π -flux square lattice, strain
independently affects the Fermi velocity and thus can serve as
a more agile tuning knob of the electronic structure.

IV. ON-SITE POTENTIAL INDUCED PSEUDOMAGNETIC
FIELD IN THE COLUMNAR π-FLUX SQUARE LATTICE

In Sec. III, we have shown that the strain-modulated hop-
ping parameters are unable to generate a pseudomagnetic field
on the columnar π -flux square lattice. Nevertheless, upon an-
alyzing the structure of the low-energy effective Hamiltonian
[Eq. (3)], it is observed that a nonuniform on-site potential,
which varies with the x coordinate, has the ability to induce a
vector potential. Explicitly, the potential reads

H1 = 2tU0

∑
r

(r · x̂)(a†
r ar − b†

rbr), (8)

where U0 characterizes the strength of the potential. The
total Hamiltonian now becomes Htot = H0 + H1, whose low-
energy effective Hamiltonian [cf., Eq. (3)] is written as

H ξ
q = 2t

[
ξqy + U0x −iqx

iqx −ξqy − U0x

]
= 2t[ξσz(qy + ξU0x) + σyqx]. (9)

It is worth noting that H1 is an artificial term, similar to an
electric field, but experienced oppositely by the two sublat-
tices. The Hamiltonian [Eq. (9)] exhibits a vector potential
Aξ = (0, ξU0x), which has opposite signs at the two Dirac
points. Solving the eigenvalue problem of Eq. (9) yields the
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FIG. 3. The low-energy band structure of the nearest-neighbor
tight-binding model of the columnar π -flux square lattice.
(a) Pseudo-Landau-levels induced by the engineered nonuniform on-
site potential [Eq. (8)]. (b) Landau levels arising from a real magnetic
field B = U0. The red curves in (a) and (b) represent the analytical
Landau levels [Eq. (10)].

pseudo-Landau-levels (see Appendix A for details)

En = ±2t
√

2U0n, n = 0, 1, 2, . . . , (10)

which exhibit a
√

n dependence, similar to that in strained
graphene. The analytical dispersion [Eq. (10)] can be fur-
ther verified by diagonalizing the corresponding tight-binding
model on the columnar π -flux square lattice, with open (peri-
odic) boundary condition along the x (y) direction. As shown
in Fig. 3(a), the analytical pseudo-Landau-levels and the nu-
merical bands match quite well with each other near the Dirac
points. For comparison, we also plot in Fig. 3(b) the Landau
levels induced by a real magnetic field with the same strength
(i.e., B = U0). While the pseudo-Landau-levels at the two
Dirac points are linked by the time-reversal symmetry, the two
sets of Landau levels in Fig. 3(b) are related to each other by
the inversion symmetry.

V. STAGGERED π-FLUX SQUARE LATTICE

We have so far focused on the columnar π -flux square
lattice in Secs. II–IV. In the present section, we analyze a
different π -flux square lattice which illustrates a staggered
pattern [Fig. 4(a)]. We will examine the strain effects and
study the possible induction of pseudomagnetic fields.

/2
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FIG. 4. (a) Schematic plot of a staggered π -flux square lattice.
Each unit cell consists of two sites, labeled as A (red) and B (blue),
respectively. The hopping parameters of the four bonds associated
with each unit cell are labeled as t1,2,3,4. (b) Band structure of the
tight-binding model [Eq. (11)] defined on the staggered π -flux square
lattice. Here we have adopted −t1 = t2 = t3 = t4 = t .
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The tight-binding model of a staggered π -flux square lat-
tice reads

H0 =
∑

r

(t1a†
r br + t2a†

r br−2δ2 + t3a†
r br−δ1−δ2

+ t4a†
r br+δ1−δ2 ) + H.c. (11)

Performing Fourier transform, we find in the sublattice space
the following Bloch Hamiltonian:

Hk =
[

0 fk

f ∗
k 0

]
, (12)

where fk = t1 + t2e−i2ky + t3e−i(kx+ky ) + t4ei(kx−ky ). Taking
−t1 = t2 = t3 = t4 = t , we find that Hk exhibits two Dirac
points at Kξ = (ξ π

2 , 0) [see Fig. 4(b)], in the vicinity of
which the low-energy effective Hamiltonian is obtained
through linearization as

H ξ
q = −2t (σxξqx − σyqy), (13)

whose spectrum εq = ±2t
√

q2
x + q2

y is exactly the same as

that of the columnar π -flux square lattice.
We next consider the effect of strain in the staggered π -flux

square lattice. The strain can be incorporated using the same
hopping modulation [Eq. (6)]. Plugging Eq. (6) into Eq. (11),
performing Fourier transform, and linearizing in the vicinity
of the Dirac points, we find the low-energy effective Hamilto-
nian

H ξ
q = −2tξσx(1 − βδ1 · u · δ1)qx+2tσy(1 − βδ2 · u · δ2)qy.

(14)

It is apparent that applying nonuniform strain only results
in an inhomogeneous Fermi velocity and cannot produce a
pseudomagnetic field. This observation is consistent with the
strain effect in the columnar π -flux square lattice.

While a pseudomagnetic field cannot be produced by
strain, it can be artificially created through engineering the
hopping parameters. One such example reads

t1 = −t, t2 = t4 = t, t3 = t (1 − cx), (15)

where c characterizes the inhomogeneous anisotropy of
hoppings. The resulting low-energy effective Hamiltonian be-
comes

H ξ
q = 2t

[
−

(
1 − c

2
x
)
ξqxσx +

(
qy − ξ

c

2
x
)
σy

]
. (16)

Clearly, a pseudovector potential Aξ = (0, ξ c
2 x) with opposite

signs ξ = ± is created at the two Dirac points, resulting in
a uniform pseudomagnetic field in the z direction. Solving
the eigenvalue problem of Eq. (16) yields the pseudo-Landau-
levels (see Appendix B for details)

E ξ
n = ±2t

√
n|c|(1 − ξqy), n = 0, 1, 2, . . . , (17)

where the dispersion of the pseudo-Landau-levels is origi-
nated from the combined effect of the nonuniform pseudo-
magnetic field and Fermi velocity. The analytically derived
pseudo-Landau-levels [Eq. (17)] well match the numerical
energy bands obtained through exact diagonalization of the
nearest-neighbor tight-binding model on the staggered π -flux
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FIG. 5. The low-energy band structure of the nearest-neighbor
tight-binding model on the staggered π -flux square lattice.
(a) Pseudo-Landau-levels induced by the engineered hopping pa-
rameters [Eq. (15)]. The anisotropic hoppings are characterized by
c = 0.5cmax, where cmax = 1/Lx . (b) Landau levels arising from a real
magnetic field B = c/2. In both panels, the red curves represent the
analytical Landau levels [Eq. (17)], and the system size is Lx = 600
(infinite) in the x (y) direction.

square lattice [Fig. 5(a)]. The dispersion of the pseudo-
Landau-levels makes them stand out from the regular flat
Landau levels [Fig. 5(b)] produced by a real magnetic field.

We mention that the zeroth pseudo-Landau-levels
[Eq. (17)] generated by engineering the hopping parameters
[Eq. (15)] also exhibit sublattice polarization, and they
are different from the ordinary zeroth Landau levels that
distribute on both sublattices. To substantiate this claim, we
plot the distributions of the wave functions at the two valleys
(i.e., Dirac cones). The zeroth pseudo-Landau-levels are
only distributed on the B sublattice for c > 0 at both valleys
[Figs. 6(a) and 6(b)]. In contrast, the zeroth Landau levels can
appear on either the A or B sublattice [Figs. 6(c) and 6(d)],
depending on which valley is examined. It is worth noting
that the sublattice polarization flips when the sign of c is
reversed.
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FIG. 6. The distributions of the wave functions of zeroth
(pseudo-)Landau-levels at different momenta. (a) Zeroth pseudo-
Landau-level at ky = 0.125. (b) Zeroth pseudo-Landau-level at ky =
−0.125. (c),(d) Two degenerate sectors of the zeroth Landau levels
at ky = −0.125. The degeneracy emerges because the two Dirac
cones, whose Dirac points are located at Kξ = (ξ π

2 , 0), overlap in
the vicinity of ky = 0 when projected along the x direction. For all
panels, the red (blue) curves represent the distribution on the A (B)
sublattice. Here we set c = 0.5cmax.
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VI. STRAIN-INDUCED PSEUDOMAGNETIC FIELD
IN THE STAGGERED ZERO-FLUX SQUARE LATTICE

In Sec. V, we have shown that strain only modulates the
Fermi velocity of the staggered π -flux square lattice. In the
present section, we demonstrate that strain may induce a
pseudomagnetic field if the flux is removed [i.e., sgn(t1) =
sgn(t2) = sgn(t3) = sgn(t4)] from the staggered π -flux square
lattice. The circumvention of the negative hopping should also
render the lattice more experimentally accessible.

Removing the flux, the resulting staggered zero-flux square
lattice can still be characterized by the tight-binding Hamil-
tonian [Eq. (11)] and the Bloch Hamiltonian [Eq. (12)]
of the staggered π -flux square lattice [Fig. 4(a)], except
that we now take t1 = rt and t2 = t3 = t4 = t rather than
−t1 = t2 = t3 = t4 = t . For the ratio 0 � r < 1, we find for
the Bloch Hamiltonian [Eq. (12)] two gapless points at
Kξ = [ξ arccos(− 1+r

2 ), 0]. Expanding the Bloch Hamiltonian
[Eq. (12)] in the vicinity of Kξ yields a low-energy effective
Hamiltonian

H ξ
q = −σxtξ pqx + σyt[(1 − r)qy − ξ pqxqy], (18)

where we define p = √
(3 + r)(1 − r) for transparency. We

note that Eq. (18) is still a Dirac Hamiltonian when ignoring
the O(qxqy) term.

We now check whether such Dirac cones can be Landau-
quantized by strain. By incorporating the corrections to the
hopping parameters [Eq. (6)], we can derive the low-energy
effective Hamiltonian in the presence of strain as

H ξ
q = σxt{−ξ p(1 − βδ1 · u · δ1)qx

+ (1 + r)β(δ1 · u · δ1 − δ2 · u · δ2)}
+ σyt{[(1 − r) + (1 + r)βδ1 · u · δ1

− 2βδ2 · u · δ2]qy − ξ p(1 − βδ1 · u · δ1)qxqy}, (19)

which indicates that a uniform pseudomagnetic field can be
induced when δ1 · u · δ1 − δ2 · u · δ2 is proportional to the y
coordinate. This requirement can be fulfilled by a nonuniform
uniaxial strain characterized by the displacement field U =
(0, c

2β
y2). Under this strain, the low-energy effective Hamil-

tonian can be expressed as

H ξ
q = t{σx[−ξ pqx − (1 + r)cy]

+ σy[(1 − r − 2cy)qy − ξ pqxqy]}. (20)

Solving the eigenvalue problem of Eq. (20) yields the fol-
lowing strain-induced dispersive pseudo-Landau-levels (see
Appendix C for details):

E ξ
n = ±t

√
2(1 − r)

√
n|c|(ξ pqx + 1 + r), (21)

which exhibit a good match to the numerical band structure
obtained by diagonalizing the nearest-neighbor tight-binding
model that incorporates the strain effect [Figs. 7(a) and 7(b)].
From Eq. (21), it can be inferred that the interval between the
pseudo-Landau-levels decreases as r increases from 0 to 1.
Specifically, when r = 1, the pseudo-Landau-levels collapse,
because the ordinary square lattice is restored and the low-
energy dispersion becomes quadratic.

A pseudomagnetic field can also be generated by applying
a triaxial strain, which is characterized by the displacement
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FIG. 7. The low-energy band structure of the nearest-neighbor
tight-binding model on a staggered zero-flux square lattice under
different strain patterns and r values. (a) Uniaxial strain, r = 0.5.
(b) Uniaxial strain, r = 0.8. (c) Triaxial strain, r = 0.5. (d) Triaxial
strain, r = 0.8. In all panels, the red dashed curves plot the analytical
pseudo-Landau-levels [Eq. (21) for the uniaxial strain and Eq. (26)
for the triaxial strain]. The width of the strip is Ly = 600, and the
strain strength is c = 0.5cmax.

field U (x, y) = c
β

(2xy, x2 − y2). According to Eq. (6), the
hopping parameters are modulated by the triaxial strain as

t1 = rt (1 + 2cy), t2 = t (1 + 2cy), t3 = t4 = t (1 − 2cy).
(22)

The low-energy effective Hamiltonian can be directly ob-
tained and reads

H ξ
q = tσx[−ξ p(1 − 2cy)qx + (1 + r)4cy]

+tσy[1 − r − ξ pqx + 2c(3 + r)y]qy.
(23)

We first consider a simplified solution to the eigenvalue prob-
lem of Eq. (23) by neglecting the small terms O(cqx ), O(cqy),
and O(qxqy). Afterwards, Eq. (23) is reduced to a minimally
coupled (i.e., Peierls-substituted) Dirac Hamiltonian

H ξ
q = t{σx[−ξ pqx + (1 + r)4cy] + σy(1 − r)qy}, (24)

where a strain-induced vector potential can be read off as
Aξ = ξ 4c

p (1 + r)yx̂, giving rise to a uniform strain-induced

pseudomagnetic field Bξ = ξ 4c
p (1 + r)ẑ. The resulting strain-

induced pseudo-Landau-levels read

En = ±t
√

n|c|8(1 − r2), n = 0, 1, 2, . . . , (25)

which are dispersionless because the contribution from the
inhomogeneous Fermi velocity is neglected. We are also able
to solve the full eigenvalue problem of Eq. (23) and obtain the
dispersive pseudo-Landau-levels (see Appendix C for details)

E ξ
n = ±t

√
n|c|8[1 − r2 + ξ pqx(1 − r)], (26)

whose validity is justified by its good match to the numer-
ical bands obtained by diagonalizing the nearest-neighbor
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FIG. 8. Schematic plot of the staggered zero-flux square lattice
with t1 = 0 and the honeycomb lattice. The former is also known as
the brick-wall lattice and is topologically equivalently to the latter.
(a) Strain-free brick-wall lattice. (b) Strain-free honeycomb lattice.
(c) Triaxially strained brick-wall lattice. (d) Uniaxially strained
brick-wall lattice.

tight-binding model on the staggered zero-flux square lattice
with triaxial strain [Figs. 7(c) and 7(d)].

VII. CONNECTION WITH THE HONEYCOMB LATTICE

In Sec. VI, we have shown that the staggered zero-flux
square lattice hosts a pair of Dirac cones when 0 � t1 < t .
In this section, we focus on the staggered zero-flux square
with t1 = 0 and study its connection with the honeycomb
lattice. We first investigate the spectrum of a nearest-neighbor
tight-binding model on the staggered zero-flux square lat-
tice. Breaking the t1 bond (i.e., the flux-carrying bond in
the staggered π -flux square lattice), the staggered zero-flux
square lattice is reduced to the so-called “brick-wall” lattice
[Fig. 8(a)], which is topologically equivalent to a honeycomb
lattice [Fig. 8(b)] because they can be transformed into one
another through continuous lattice geometry variation. The
band structure of the brick-wall lattice reads

Ek = ±t
√

3 + 2 cos(2kx ) + 4 cos(kx ) cos(ky), (27)

which is derived from the spectrum of Eq. (12) upon set-
ting t1 = 0. There are two Dirac points at Kξ = (ξ 2π

3 , 0),
around which the low-energy effective Hamiltonian is written
as H ξ

q = t (−ξ
√

3σxqx + σyqy), implying an anisotropic Dirac
cone. In contrast, the band structure of the corresponding
honeycomb lattice [1] is given by

Eh
k = ±t

√√√√3 + 2 cos(
√

3kx ) + 4 cos

(√
3

2
kx

)
cos

(
3

2
ky

)
.

(28)

Equation (28) also exhibits two Dirac points Kh,ξ =
(ξ 4π

3
√

3
, 0), around which the low-energy effective

Hamiltonian is written as Hh,ξ
q = 3

2 t (−ξσxqx + σyqy),
implying an isotropic Dirac cone. It is thus evident that
the brick-wall lattice is linked to the honeycomb lattice under
the following transformation:

kx →
√

3

2
kx, ky → 3

2
ky, (29)

which corresponds to the lattice geometry variation from the
brick-wall lattice to the honeycomb lattice.

We next consider the strain effect. Here, our focus on the
nonuniform triaxial strain, and the case of nonuniform uniax-
ial strain is similar. The low-energy effective Hamiltonian of
the brick-wall lattice under the triaxial strain can be obtained
directly by setting r = 0 in Eq. (24). It reads

H ξ
q = t{σx[−ξ

√
3qx + 4cy] + σyqy}. (30)

For the honeycomb lattice, the effective Hamiltonian under
the triaxial strain can be written as [41]

H ξ
q = 3

2 t{σx[−ξqx + 2cy] + σy[qy + ξ2cx]}. (31)

Comparing Eq. (30) to Eq. (31), we find that the lattice geom-
etry influences both the Fermi velocity and the strain-induced
pseudovector potential. On the one hand, the Fermi veloci-
ties of the two lattices are connected by the transformation
Eq. (29). On the other hand, the pseudovector potentials of
the two lattices are different in gauge. While the pseudovector
potential of the honeycomb lattice, Aξ = ξ (2cy,−2cx), is
symmetric, the pseudovector potential of the brick-wall lattice
only contains a nonzero x component Aξ

x = 4ξcy/
√

3. The
disappearance of Aξ

y is attributed to the square geometry,
where t3 and t4 are always equal under strain [Eq. (22)]. Al-
though lattice geometry variation leads to discrepancy in the
effective Hamiltonians, the resulting pseudo-Landau-levels
can still be expressed using a general formula

En = ±h̄vF

√
8|c|n, n = 0, 1, 2, . . . , (32)

where vF = t/h̄ (vF = 3t/2h̄) for the brick-wall and honey-
comb lattices, respectively.

Lastly, it is worth noting that the translational symmetry
is completely broken by the triaxial strain in the honeycomb
lattice. However, in the case of the brick-wall lattice, the trans-
lational symmetry along the x direction is preserved, because
the strain-induced pseudovector potential adopts a Landau
gauge [Eq. (30)]. This is evident from the fact that the hopping
parameters, which are modulated by the triaxial strain, depend
only on the y coordinate [Eq. (22)].

VIII. CONCLUSIONS

We have investigated the strain effects on columnar and
staggered π -flux square lattices. Our analysis using low-
energy effective theory reveals that strain applied to these
π -flux square lattices does not induce pseudomagnetic fields,
but rather leads to inhomogeneous Fermi velocities. We fur-
ther explore alternative methods to generate pseudomagnetic
fields in these systems. For columnar π -flux square lattices,
pseudomagnetic fields can be created through nonuniform
on-site potentials, while for staggered π -flux square lattices,
pseudomagnetic fields require anisotropic hoppings. We have
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validated the theoretical predictions of the pseudo-Landau-
levels through numerical simulations using corresponding
nearest-neighbor tight-binding models. The difference be-
tween pseudo-Landau-levels and ordinary Landau levels
arising from magnetic fields is discussed.

Removing the flux from the staggered π -flux square lat-
tice, we find that both uniaxial and triaxial strain can induce
pseudomagnetic fields and dispersive pseudo-Landau-levels.
Additionally, the strain-free and strained staggered zero-flux
square lattices should in principle be more experimentally
feasible than their π -flux counterparts. Further breaking the
t1 bond (i.e., the flux-carrying bond in the staggered π -
flux square lattice) of the staggered zero-flux square lattice,
we find that the resulting brick-wall lattice is topologically
equivalent to the honeycomb lattice. While the strain-free
band structures of these two lattices can be made equivalent
by stretching and shrinking the Brillouin zone, the pseudo-
magnetic fields generated under the same triaxial strain are
different in gauge. The triaxial-strain-deformed honeycomb
lattice has a symmetric pseudovector potential, while the
pseudovector potential in the triaxial-strain-deformed brick-
wall lattice aligns along the x direction. These results expand
the effect of strain to square geometries, further enhancing our
comprehension of the strain-induced pseudomagnetic field.
It is very possible that our strained lattices could be experi-
mentally implemented in artificial platforms, such as optical
lattices [51,52] or electrical circuits [53].

Recently, metamaterials have been instrumental in the
study of pseudomagnetic fields and associated physical phe-
nomena in honeycomb lattices. Experimental progress has
been made in observing pseudo-Landau-levels on various
artificial platforms [55–58], such as photonic [32,59,60],
phononic [33,34,61], and topolectric [62,63] systems. Cur-
rently, there is no ideal two-dimensional quantum material
with a square lattice structure similar to graphene that can
perfectly replicate the honeycomb lattice. However, we an-
ticipate that our theoretical findings can be validated through
the utilization of artificially strained square lattices engineered
using the aforementioned metamaterials. As an example, the
two essential ingredients required to engineer the pseudomag-
netic field, namely spatially nonuniform on-site potentials and
anisotropic hoppings, can be effectively induced in topolectric
circuits composed of simple elements such as capacitance
and inductance [64,65]. The positive hoppings are achieved
through the use of capacitors, while the negative hoppings
are achieved by carefully selecting the appropriate inductors.
The spatial variations in the hoppings required to generate the
pseudomagnetic field can be created by connecting additional
suitable inductors and capacitors. The on-site chemical po-
tentials can be manipulated by applying distinct grounding
elements to each site. Furthermore, a recent proposal suggests
that a tight-binding model with arbitrary hopping amplitudes
and phases can be constructed by extending a node in an LC
circuit [65]. Given the rapid advancements in topolectric cir-
cuits, it is highly likely that our theoretical results pertaining
to strained square lattices will be observed experimentally.
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APPENDIX A: NONUNIFORM POTENTIAL INDUCED
PSEUDO-LANDAU-LEVELS IN THE COLUMNAR π-FLUX

SQUARE LATTICE

In Sec. IV of the main text, we have mentioned
that a nonuniform potential produces pseudo-Landau-levels
[Eq. (10)] in the columnar π -flux square lattice. We now
explicitly derive Eq. (10) by solving the eigenvalue problem
of Eq. (9).

Writing the wave function as � = eiqyy(φA, φB)T , the
eigenvalue problem of Eq. (9) explicitly reads

(ξqy + U0x − ε)φA = ∂

∂x
φB,

(ξqy + U0x + ε)φB = ∂

∂x
φA, (A1)

where we define ε = E
2t . Equation (A1) can be rewritten as(

ξqy + U0x − ∂

∂x

)
f1 = ε f2,(

ξqy + U0x + ∂

∂x

)
f2 = ε f1, (A2)

where we define new variables f1 = φA + φB and f2 = φA −
φB. Since [ξqy + U0x + ∂

∂x , ξqy + U0x − ∂
∂x ] = 2U0, we can

define the following bosonic ladder operators:

β = 1√
2U0

(
ξqy + U0x + ∂

∂x

)
,

β† = 1√
2U0

(
ξqy + U0x − ∂

∂x

)
. (A3)

Making use of Eq. (A2), we obtain

2U0β
†β f2 = ε2 f2. (A4)

Note that β†β is a bosonic number operator whose eigenval-
ues are n = 0, 1, 2, . . . . We thus have ε = ±√

2U0n, and the
resulting pseudo-Landau-levels read

En = ±2t
√

2U0n, n = 0, 1, 2, . . . , (A5)

which is labeled as Eq. (10) in the main text.

APPENDIX B: ANISOTROPIC HOPPINGS INDUCED
PSEUDO-LANDAU-LEVELS IN THE STAGGERED π-FLUX

SQUARE LATTICE

In Sec. V of the main text, we have mentioned that inhomo-
geneous anisotropic hoppings produce pseudo-Landau-levels
[Eq. (17)] in the staggered π -flux square lattice. We now
explicitly derive Eq. (17) by solving the eigenvalue problem
of Eq. (16).
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For simplicity, we perform a variable substitution x → x +
2
c to Eq. (16). The resulting low-energy effective Hamiltonian
becomes

Hξ
q = 2t

[
− c

2
ξxi∂xσx +

(
qy − ξ − ξ

c

2
x

)
σy

]
. (B1)

As ix∂x in Eq. (B1) is non-Hermitian, we need to replace
it with a Hermitian operator, ix∂x → i(x∂x + ∂xx)/2. Writing
the wave function as � = eiqyy(φA, φB)T , the eigenvalue prob-
lem of the Hermitianized effective Hamiltonian reads[

−i
c

2
ξ

(
x∂x + 1

2

)
− i

(
qy − ξ − ξ

c

2
x
)]

φB = εφA,

[
−i

c

2
ξ

(
x∂x + 1

2

)
+ i

(
qy − ξ − ξ

c

2
x
)]

φA = εφB,

(B2)

where we have defined ε = E
2t . The elimination of φA gives

rise to a second-order ordinary differential equation with re-
spect to φB as[

x2 − 4
(
ξqy − 1

) − c

c
x + �

c2
− 1

4

]
φB

−(2xφ′
B + x2φ′′

B) = 0, (B3)

where we define � = 4[(ξqy − 1)2 − ε2] for transparency.
We can then find the asymptotic solutions for x → 0 and

x → ±∞, respectively. When approaching x = 0, we can
neglect the x2φB and xφB terms in Eq. (B3), leading to the
following asymptotic ordinary differential equation:(

�

c2
− 1

4

)
φB − (2xφ′

B + x2φ′′
B) = 0, (B4)

which is a Cauchy-Euler equation with convergent solution

φB ≈ x− 1
2 +

√
�

|c| . As x → ±∞, only x2φB and x2φ′′
B should be

kept, leading to the following asymptotic ordinary differential
equation:

φB − φ′′
B = 0. (B5)

It is worth noting that the general solution to Eq. (B5), φB =
Aex + Be−x, cannot converge simultaneously as x → −∞ and
x → +∞. To guarantee the π flux, we require the engineered
hopping t3 to be positive. According to Eq. (15), this require-
ment mandates that the solution must converge as x → −∞
(x → +∞) if c > 0 (c < 0). Therefore, the convergent so-
lution can be written as φB = esgn(c)x. With this a posteriori
solution, we can express the full solution to Eq. (B3) as φB =
esgn(c)xx− 1

2 +
√

�
|c| u(x), which, upon substitution into Eq. (B3),

yields

zu′′(z) + (γ − z)u′(z) − αu(z) = 0, (B6)

where we define for transparency γ = 1 + 2
√

�/|c|,
α = 1

|c| (
√

� + 2ξqy + |c|−c
2 − 2), and z = −2sgn(c)x.

Equation (B6) is a confluent hypergeometric equation with a
regular singularity at z = 0, and it can be solved by the series
expansion method. One solution reads

u(z) = 1 + α

γ

z

1!
+ α(α + 1)

γ (γ + 1)

z2

2!
+ · · · , (B7)

where γ �= 0,−1,−2, . . . . To make u(z) a polynomial (and
therefore finite) function, α should be zero or negative integers
(i.e., α = −ν with ν = 0, 1, 2, . . . ). This constraint leads to
the following expression for the eigenenergy:

E ξ
n = ±2t

√
n|c|(1 − ξqy), (B8)

where n = 0, 1, 2, . . . (n = 1, 2, . . . ) for c > 0 (c < 0). This
equation is labeled as Eq. (17) in the main text.

APPENDIX C: STRAIN-INDUCED
PSEUDO-LANDAU-LEVELS IN THE STAGGERED

ZERO-FLUX SQUARE LATTICE

In Sec. VI of the main text, we have mentioned that both
uniaxial and triaxial strain produce pseudo-Landau-levels
[Eqs. (21) and (26)] in the staggered zero-flux square lattice.
We now explicitly derive Eqs. (21) and (26) by solving the
eigenvalue problems of Eqs. (20) and (23), respectively.

We start from the eigenvalue problem of Eq. (20). For sim-
plicity, we perform a variable substitution y → y + 1−r−ξ pqx

2c ,

where p = √
(3 + r)(1 − r). The low-energy effective Hamil-

tonian [Eq. (20)] is changed to

H ξ
q = tσx

[
r − 1

2
ξ pqx − (1 + r)cy + r2 − 1

2

]
+ tσyi2cy∂y.

(C1)
As the operator iy∂y in Eq. (C1) is non-Hermitian, we
again apply the replacement iy∂y → i(y∂y + ∂yy)/2 to re-
store the Hermiticity. Writing the wave function as � =
eiqxx(φA, φB)T , the eigenvalue problem of the Hermitianized
effective Hamiltonian reads[

r − 1

2
ξ pqx − (1 + r)cy + r2 − 1

2
+ 2cy∂y + c

]
φB = εφA,

[
r − 1

2
ξ pqx − (1 + r)cy + r2 − 1

2
− 2cy∂y − c

]
φA = εφB,

(C2)

where we have defined ε = E/t . By eliminating φA, we obtain
a second-order ordinary differential equation with respect to
φB as{

(1 + r)2

4
y2 + (1 + r)[2c − r2 + 1 + (1 − r)ξ pqx]

4c
y

+ �

4c2
− 1

4

}
φB − (2yφ′

B + y2φ′′
B) = 0, (C3)

where we define � = 1
4 [r2 − 1 − (1 − r)ξ pqx]2 − ε2 for

transparency.
Following the same strategy as in Appendix B, we first find

the asymptotic solutions to Eq. (C3). For y → 0, we neglect
the y2φB and yφB terms in Eq. (C3), resulting in the following
asymptotic ordinary differential equation:(

�

4c2
− 1

4

)
φB − (2yφ′

B + y2φ′′
B) = 0, (C4)

whose convergent solution is φB ≈ y− 1
2 +

√
�

2|c| . As y → ±∞,
Eq. (C3) is simplified as

(1 + r)2

4
φB − φ′′

B = 0, (C5)
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whose convergent solution is φB = esgn(c) (1+r)
2 y. Con-

sequently, the full solution to Eq. (C3) reads φB =
y− 1

2 +
√

�
2|c| esgn(c) (1+r)

2 yu(y), which, upon plugging back into
Eq. (C3), leads to the following confluent hypergeometric
equation:

zu′′(z) + (γ − z)u′(z) − αu(z) = 0, (C6)

where γ = 1 − 2
√

�
|c| , α = 1

|c| (
√

� − ξ pqx + r2−1
2 + |c|−c

2 ),
and z = −sgn(c)(r + 1)y. As discussed in Appendix B, we
require α = 0,−1,−2, . . . . This constraint requires the fol-
lowing eigenenergy:

E ξ
n = ±t

√
2(1 − r)

√
n|c|(ξ pqx + 1 + r), (C7)

which is labeled as Eq. (21) in the main text.
We now turn to study the eigenvalue problem of Eq. (23).

For simplicity, we perform the variable substitution y → y −
1−r−ξ pqx

2c(3+r) , where p = √
(3 + r)(1 − r). The low-energy effec-

tive Hamiltonian [Eq. (23)] is then mapped to

H ξ
q = tσx

[
(ξ pqx + r − 1)2 − p2

3 + r
+ 2c(2 + 2r + ξ pqx )y

]

+ tσy2c(3 + r)(−iy∂y). (C8)

To restore the Hermiticity of Eq. (C8), we again apply the
replacement iy∂y → i(y∂y + ∂yy)/2. Writing the wave func-
tion as � = eiqxx(φA, φB)T , the eigenvalue problem of the
Hermitianized effective Hamiltonian reads[

(ξ pqx + r − 1)2 − p2

3 + r
+ 2c(2 + 2r + ξ pqx )y

− 2c(3 + r)y∂y − c(3 + r)

]
φB = εφA,

[
(ξ pqx + r − 1)2 − p2

3 + r
+ 2c(2 + 2r + ξ pqx )y

+ 2c(3 + r)y∂y + c(3 + r)

]
φA = εφB, (C9)

where we have defined ε = E/t . By eliminating φA, we arrive
at a second-order ordinary differential equation with respect

to φB as{
(2 + 2r + ξ pqx )2

(3 + r)2
y2 + (2 + 2r + ξ pqx )

(3 + r)c

×
[

(ξ pqx + r)2 + r2

(3 + r)2
+ c − 2(ξ pqx + 1)

(3 + r)2

]
y

+ �

4c2(3 + r)4
− 1

4

}
φB − (y2φ′′

B + 2yφ′
B) = 0,

(C10)

where � = [(ξ pqx + r − 1)2 − p2]2 − (3 + r)2ε2 is defined
for transparency.

Following the procedure solving Eqs. (B3) and (C3), we
study the asymptotic solutions of Eq. (C10). For y → 0, the
terms associated with y2φB and yφB in Eq. (C10) can be safely
neglected, resulting in the following asymptotic ordinary dif-
ferential equation:[

�

4c2(3 + r)4
− 1

4

]
φB − (2yφ′

B + y2φ′′
B) = 0, (C11)

whose convergent solution reads φB ≈ y
− 1

2 +
√

�

2|c|(3+r)2 . As
y → ±∞, Eq. (C10) is reduced to

(2 + 2r + ξ pqx )2

(3 + r)2
φB − φ′′

B = 0, (C12)

whose convergent solution is φB = esgn(c) (2+2r+ξ pqx )
3+r y. The

full solution of Eq. (C10) can thus be written as φB =
y
− 1

2 +
√

�

2|c|(3+r)2 esgn(c) (2+2r+ξ pqx )
3+r yu(y), which, upon plugging back

into Eq. (C10), leads to the following confluent hypergeomet-
ric equation:

zu′′(z) + (γ − z)u′(z) − αu(z) = 0, (C13)

where γ = [
√

� + c2(3 + r)2]/[2c(3 + r)(2 + 2r + ξ pqx )],
α = [

√
� − 2(ξ pqx + 1) + 2c(3 + r)2 + (ξ pqx + r)2 +

r2]/[2c(3 + r)2], and z = −sgn(c) 2(2+2r+ξ pqx )
3+r y. As discussed

above, α should adopt zero or negative integers. This
constraint requires the following eigenenergy:

E ξ
n = ±t

√
n|c|8[1 − r2 + ξ pqx(1 − r)], (C14)

which is labeled as Eq. (26) in the main text.
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