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Emergent U(1) symmetry in non-particle-conserving one-dimensional models
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The properties of stable Luttinger liquid phases in models with a nonconserved number of particles are
investigated. We study the Luttinger liquid phases in one-dimensional models of hard-core boson and spinless
fermion chains where particles can be created and annihilated three by three on adjacent sites. We provide an
intuitive and systematic method based on the flow equation approach, which accounts for additional terms in the
correlations generated by the Z3-symmetric interactions. We find that despite the emergence of U(1) symmetry
under renormalization, the observables are still affected by its breaking in the bare Hamiltonian. In particular,
the standard bosonization mapping becomes insufficient to capture the full behavior of correlation functions.
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I. INTRODUCTION

The observation of density-wave order in recent experi-
ments on one-dimensional (1D) systems of Rydberg atoms
[1,2] has brought back unsolved questions about the nature
of the commensurate melting of period-p phases [3–8]. For
p > 2, a floating phase, characterized by incommensurate
and algebraic correlations, separates the Zp-ordered and the
disordered phases [3,8–10]. For p = 3 and 4, the extension
of the floating phase is still debated [8,11–20]. One open
question concerns the existence of a direct and continuous
transition in the chiral universality class that would occur
before the floating phase develops [4,8]. The quantum ver-
sion of this problem can be formulated in terms of hard-core
bosons associated with domain walls in the commensurate
structure of the density wave [21]. The resulting Hamiltonian
exhibits a Zp symmetry as it contains terms that create and
annihilate p adjacent particles. When these perturbations to
the free-fermion fixed point are irrelevant, the U(1) charge
conservation is restored at the scaling limit in an extended
incommensurate Luttinger liquid phase [17,22], equivalent to
the floating phase of the 2D classical problem [8].

The properties of the Luttinger liquid phase are described
by a bosonic conformal field theory [23,24]. The correspon-
dence between the operators at the lattice scale and the
bosonic fields in the continuum limit can be constructed in
principle from selection rules dictated by the symmetry of
the lattice Hamiltonian. When the latter exhibits U(1) sym-
metry, this correspondence is generally given by the standard
bosonization mapping [24]. For models that do not conserve
the number of particles, the latter becomes insufficient to cap-
ture the long-distance behavior of the correlations. A similar
problem was discussed recently in the case of nonsymmorphic
1D models [25,26]. In this paper, we provide a way to derive
a bosonic representation of lattice operators in Zp-symmetric
1D models. Using the flow equation approach [27] introduced
by Wegner, a continuous unitary transformation is designed
to restore the U(1) symmetry perturbatively in an effec-
tive Hamiltonian. The action of these transformations on the

lattice operator generates an expansion in terms of the bosonic
fields of the Luttinger liquid theory. The bosonization map-
pings obtained from this procedure are sufficient to capture
the long-distance behavior of the correlations. We illustrate
this method on two chains of spinless fermions and hard-core
bosons where particles are created and annihilated three by
three on adjacent sites. Our findings are assessed by density
matrix renormalization group (DMRG) [28–31] simulations.

The paper is organized as follows. In Sec. II, we discuss the
phase diagrams of the hard-core boson and spinless fermion
models. Section III provides a brief introduction to the flow
equation approach. In Sec. IV, the flow equation approach
is applied to the fermionic model to derive perturbatively a
U(1)-symmetric effective Hamiltonian. A modified bosonic
representation of the single-fermion operator is then derived
and used to calculate correlation functions inside the Luttinger
liquid phase. In Sec. V, the same procedure is applied to
the continuum limit of the hard-core boson model, using the
generator that diagonalizes the dual sine-Gordon model. The
results are summarized in Sec. VI.

II. MODELS AND PHASE DIAGRAMS

We consider one-dimensional models of hard-core bosons
and spinless fermions where particles are created and annihi-
lated three by three on adjacent sites. The two models share
the feature of a Luttinger liquid phase that remains stable
when the Z3-symmetric interaction is turned on. In this phase,
the low-energy properties of the system are described by the
Luttinger liquid Hamiltonian

HLL = 1

2π

∫
dx vK[∂xθ (x)]2 + v

K
[∂xφ(x)]2, (1)

where K is the Luttinger parameter and v is the velocity. The
fields φ and θ are bosonic in nature and satisfy the commuta-
tion relation [φ(x), θ (y)] = iπ sgn(y − x)/2. The correlations
decay algebraically with an exponent controlled by K and
oscillate with an incommensurate wave vector proportional
to the Fermi wave vector kF . We present in this section the
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arguments for the stability of the Luttinger liquid phase, and
we discuss the nature of the transitions out of it.

A. Hard-core bosonic model

The Hamiltonian of the hard-core boson model is given by

H =
∑

i

−t (b†
i+1bi + H.c.) − μni + λ(b†

i b†
i+1b†

i+2 + H.c.),

(2)

where b†
i and bi are, respectively, the creation and annihi-

lation operators of hard-core bosons at site i, and ni = b†
i bi

is the density operator. The hard-core constraint amounts
to a restriction of the occupation number to ni = 0 and 1.
Accordingly, the operators satisfy the commutation relation
[bi, b†

j] = (1 − 2ni )δi, j . The hard-core boson model was re-
cently introduced as a dual description of the transition to
phases with a density-wave order of period 3 in chains of Ry-
dberg atoms [15,22]. Its phase diagram is studied extensively
in Ref. [17]. We recall here the main results. Without loss of
generality, the hopping amplitude is set to t = 1. At λ = 0,
Eq. (2) is a free-fermion Hamiltonian that can be mapped in
the continuum limit to the Luttinger liquid Hamiltonian (1)
with a Luttinger exponent K = 1 and a velocity v = 2 sin(kF ).
When λ �= 0, the U(1) symmetry is reduced to a Z3 symmetry.
The stability of the Luttinger liquid phase follows from the
scaling analysis of the Hamiltonian in the continuum limit,
obtained by applying the bosonization mapping [24]. Since
the bosonic representation of the hard-core boson operators
takes the form b ∼ eiθ , the Hamiltonian reduces, at half-filling
(μ = 0) and up to the most relevant term, to

H ∼ HLL + g

πα2

∫
dx cos (3θ (x)), (3)

where g is a dimensionless coupling and α is a real-space
cutoff. A standard renormalization group (RG) analysis [24]
yields the RG equations

dK (l )

dl
= 9

4
g2(l ),

dg(l )

dl
=

(
2 − 9

4K (l )

)
g(l ).

(4)

When K < 9/8, the coupling constant decays exponentially
under renormalization such that the Luttinger liquid Hamil-
tonian is recovered with effective parameters K∗ and v∗
that depend on the bare coupling constants in Eq. (3). The
U(1) symmetry is thus restored at the scaling limit. It man-
ifests itself as a symmetry under translation of the dual
field θ . At K = 9/8, the system undergoes a Kosterlitz-
Thouless (KT) transition [32] into a Z3-ordered phase by
pinning the dual field in the minima of the cosine, i.e., at
θn = 2πn/3. Upon varying the chemical potential μ inside
the Luttinger liquid phase, a commensurate-incommensurate
transition into a disordered phase occurs. This transition is in
the Pokrovsky-Talapov (PT) universality class [33], character-
ized by a dynamical exponent z = 2 and an incommensurate
correlations wave vector that approaches its commensurate
value with a singularity proportional to |μ − μc|1/2. The KT
and PT lines are expected to meet at a Lifshitz point that would

appear before the three-state Potts point [8]. Between the two
points, the commensurate melting is direct and takes place in
the chiral universality class. These predictions are confirmed
numerically in Ref. [17].

B. Fermionic model

The Hamiltonian of the fermionic model is given by

H =
∑

i

−t (c†
i+1ci + H.c.) − μni + λ(c†

i c†
i+1c†

i+2 + H.c.),

(5)

where c†
i and ci are the creation and annihilation operators of

spinless fermions. It differs from the hard-core boson model
(2) by a string operator when the Jordan-Wigner transforma-
tion is applied.

Similar to the bosonic case, the stability of the Luttinger
liquid phase in Eq. (5) can be investigated using the bosoniza-
tion mapping [24]. In terms of the fields φ and θ , the
Hamiltonian reads

H ∼ HLL + g

πα2

∫
dx cos (3φ(x) − 3kF x) cos (3θ (x)),

(6)

where terms that oscillate at kF are neglected as they van-
ish under the integration for all fillings of the band inside
the Luttinger liquid phase. Equation (6) becomes nonoscil-
lating at kF = 2π/3. The perturbation to the Luttinger liquid
Hamiltonian has a scaling dimension 	 = 9(K + 1/K )/4 and
becomes relevant when 	 < 2. However, this inequality has
no solution, and the coupling constant g decays exponentially
under renormalization for all values of K . It should be noted
that terms such as cos(6θ ) and cos(6φ) are expected to arise
along the RG flow and can lead to a KT transition when
K > 9/2 or K < 2/9. DMRG computations of K suggest,
however, that it increases slowly enough from K = 1 for the
generated terms to remain irrelevant even at large values of
λ. For instance, the numerical results at μ = 0 indicate an
extension of the Luttinger liquid phase at least up to λ ∼ 50
(Fig. 1). Nevertheless, a KT transition at larger values of λ

cannot be excluded. As the chemical potential is varied in the
Luttinger liquid phase, a PT transition line can be identified
numerically using the scaling behavior of the wave vector
(Fig. 1).

III. FLOW EQUATION APPROACH

The general idea behind the flow equation approach in-
troduced by Wegner [27] is to apply continuous unitary
transformations to the Hamiltonian in order to bring it into
a more band-diagonal form. The approach consists in a renor-
malization scheme where states with large energy differences
are first decoupled while smaller energy differences are later
suppressed along the flow.

The formalism of the method is based on the parametriza-
tion of a set of unitarily equivalent Hamiltonians H (l ) =
U (l )H (0)U †(l ). By taking the derivative with respect to l , the
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FIG. 1. (a),(b) Scaling of the incommensurate wave vector as a
function of the chemical potential close to the PT transition for (a)
λ = 0.2 and (b) λ = 2. (c) Luttinger parameter K as a function of λ

at μ = 0, extracted numerically from the decay of the two-fermion
correlations. This procedure is only valid when K is larger than

√
3

(see Sec. IV C 2). The system is simulated with N = 600 sites.

problem is recast into the differential equation

dH (l )

dl
= [η(l ), H (l )], (7)

where

η(l ) = dU (l )

dl
U †(l ) (8)

is the anti-Hermitian generator of the flow. The latter can
be chosen appropriately to diagonalize the bare Hamiltonian
H (0). The canonical choice proposed by Wegner [27] is given
by η(l ) = [Hd(l ), Hod(l )], where Hd(l ) and Hod(l ) are the
diagonal and the off-diagonal parts of the flowing Hamiltonian
H (l ). From this definition of the generator, it can be shown
[34] that

d Tr(H2
od(l ))

dl
= −2 Tr(η†(l )η(l )) � 0, (9)

which indicates that the flow gradually brings the Hamilto-
nian into a more band-diagonal form. A fixed point of the
flow is reached when η(l ) vanishes. The diagonal and off-
diagonal parts of the flowing Hamiltonian then commute and
the Hamiltonian becomes block-diagonal with respect to the
symmetry of the noninteracting part. Thus, the flow equa-
tion approach provides a systematic way to design a unitary
transformation that recovers the U(1) symmetry in models that
do not conserve the number of particles. Its drawback is the
proliferation of terms along the flow. Truncation schemes are
hence needed to keep the calculations tractable.

Once the diagonal Hamiltonian is obtained from the flow
equation procedure, the change of basis associated with η(l )

can be applied to the operators. Given an operator O, its
transformation along the flow is dictated by the flow equation

dO(l )

dl
= [η(l ), O(l )]. (10)

The expectation value in the ground state of the bare Hamil-
tonian can be evaluated using the relation

〈ψgs|O|ψgs〉 = 〈ψgs(∞)|O(∞)|ψgs(∞)〉, (11)

where |ψgs(∞)〉 = U †(∞)|ψgs〉 is the ground state of the
diagonal Hamiltonian H (∞).

In the following sections, we apply the flow equation pro-
cedure to the models in Eqs. (2) and (5). The transformed
bosonic representations of hard-core bosonic and fermionic
operators are derived from the generator of the flow that
restores the U(1) symmetry in the Hamiltonians.

IV. FLOW EQUATION APPROACH TO THE FERMIONIC
MODEL

We derive in this section a U(1)-symmetric effective
Hamiltonian that describes the low-energy properties of the
fermionic Hamiltonian (5).

A. Flow of the Hamiltonian

We proceed by writing the Hamiltonian in the Fourier basis
in order to separate it into a diagonal part H0 and an interaction
part λH3. We have

H =
∑

k

ξkc†
kck + λ

3!
√

N

∑
k,q

Bk,q(c†
kc†

qc†
−k−q − H.c.), (12)

where

ξk = −2 cos(k) − μ

Bk,q = 2i[sin(2k + q) − sin(2q + k) − sin(k − q)].
(13)

Along the flow, other interaction terms that are not initially
present are generated. They are incorporated in the following
ansatz for the flowing Hamiltonian H (l ):

H (l ) = H0(l ) + λH3(l ) + λ2HU (l ), (14)

where

HU (l ) = 1

N

∑
k,q,p

Uk,q,p(l )c†
k+pc†

q−pcqck . (15)

The normal ordering of terms in Eq. (14) with respect to the
Fermi sea of the diagonal Hamiltonian H0(l ) is implicit. It
is systematically carried out during the calculation to trun-
cate the generated terms in a controlled manner. We note
that three-body interaction and six-fermion terms also arise
along the flow. They are neglected in the ansatz (14) due
to their large scaling dimension. By taking the generator as
η(l ) := [H0(l ), λH3(l )], which reads

η(l ) = λ

3!
√

N

∑
k,q

Bk,q(l )αk,q(l )(c†
kc†

qc†
−k−q + H.c.), (16)
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with αk,q = ξk + ξq + ξ−k−q, we obtain a set of flow
equations:

dBk,q(l )

dl
= −α2

k,q(l )Bk,q(l ),

dUk,q,p(l )

dl
= −1

2
[αk+p,q−p(l ) + αk,q(l )]Bk,q(l )Bk+p,q−p(l )

× [2(kF − |k + q|) − 1],

dξk (l )

dl
= −λ2

N

[ ∑
|q|<kF

αk,q(l )B2
k,q(l )(kF − |k + q|)

+
∑

|q|>kF

αk,q(l )B2
k,q(l )[1 − (kF − |k + q|)]

]

(17)

with the initial conditions Bk,q(0) = Bk,q, ξk (0) = ξk , and
Uk,q,p(0) = 0. We have omitted for brevity the l-dependence
in the bare Hamiltonian, i.e., H ≡ H (0). The derivation of the
flow equations is detailed in Appendix A. To the leading order
in λ, it is sufficient to take the bare value αk,q in the flow
equation of Bk,q(l ). The solution shows that the three-site term

decays to zero along the flow as Bk,q(l ) = Bk,qe−α2
k,ql . On the

other hand, the generated terms take finite values at l = ∞
given by

Uk,q,p(∞) = −1

2

αk+p,q−p + αk,q

α2
k,q + α2

k+p,q−p

Bk,qBk+p,q−p

× [2(kF − |k + q|) − 1],

ξk (∞) = ξk − λ2

2N

[ ∑
|q|<kF

B2
k,q

αk,q
(kF − |k + q|)

+
∑

|q|>kF

B2
k,q

αk,q
[1 − (kF − |k + q|)]

]
. (18)

By construction, the two-body interaction matrix Uk,q,p is
symmetrized with respect to the permutations of fermion op-
erators in Eq. (15). The divergence as αk,q goes to zero in the
renormalized quantities (18) is an artifact of the limit l → ∞.
In fact, the contribution of the flow to the dispersion vanishes
when αk,q = 0. Finally, we note that Wegner’s prescription
is relaxed by taking in the definition (16) of η(l ) only the
three-site term and not all the interacting part of H (l ). As a
result, the approach becomes perturbative in λ. Terms that are
generated along the flow have a second-order dependence in
λ and can be eliminated by including them in a redefinition
of the generator. This induces higher-order corrections to the
flow equations (17). Thus, the flow equation procedure en-
ables us to push the λ-dependence of terms that break the U(1)
symmetry to higher orders, thereby restoring the symmetry
perturbatively.

B. Bosonization of the effective Hamiltonian

We investigate in this section the low-energy properties
of the Hamiltonian (5) starting from the effective Hamilto-
nian Heff = H0(∞) + λ2HU (∞). After taking the long-range
limit in the two-body interaction term, only particle-hole

excitations within a momentum range � around the Fermi
points ±kF are retained. The renormalized dispersion relation
can then be linearized around the Fermi point, and the fermion
operators separated into right and left modes:

ck = (� − |k − kF |)cR,k + (� − |k + kF |)cL,k, (19)

where  is the Heaviside function. After constructing
fermionic fields from these modes, i.e.,

c(x) = 1√
N

∑
k

eikxck =: cR(x) + cL(x), (20)

we obtain in the continuum limit a Hamiltonian that describes
the low-lying states of Heff. It is given by

Heff = −iṽF

∫
dx [c†

R(x)∂xcR(x) − c†
L(x)∂xcL(x)]

+ 4λ2g2

∫
dx ρR(x)ρL(x), (21)

where ṽF = ∂ξk (∞)/∂k|k=kF is the renormalized Fermi veloc-
ity, ρR(x) and ρL(x) are, respectively, the density operators of
the right and left branches, and g2 = UkF ,−kF ,0 is the forward
scattering matrix element. Due to the symmetry of the two-
body interaction matrix, g4 scattering processes that couple
fermions at the same branch vanish. Finally, the factor 4
accounts for the two possible g2 processes and the two
backscattering processes, i.e., g1 = −UkF ,−kF ,2kF , which for
spinless fermions coincide with g2 processes. We note that
since g2 > 0, the interaction is attractive, which indicates that
the three-site term in the bare Hamiltonian favors the occupa-
tion of three adjacent sites.

We now apply the bosonization mapping between the
fermionic fields cR, cL and the bosonic fields φ, θ . It is given
by [24]

cr (x) = Fr√
2πα

eirkF xe−i[rφ(x)−θ (x)], (22)

where r = 1 for r = R and r = −1 for r = L. Here, α ∼
1/� is a short-distance cutoff and Fr are unitary operators
called Klein factors. They follow the commutation relations
{Fr, F †

r′ } = 2δr,r′ and ensure the anticommutation of fermions
from different species. Using Eq. (22), the Hamiltonian (21)
can be reduced to the Luttinger liquid Hamiltonian (1) with
a renormalized velocity u and a Luttinger parameter, given to
the second order of λ by

K = 1 + 4

π
sin(kF ) sin2

(
kF

2

)
λ2. (23)

The derivation of Eq. (23) is detailed in Appendix C. Here,
kF is defined by the filling of the renormalized band ξk (∞),
and it differs from its value at the noninteracting limit λ = 0.
The relation between kF in Eq. (23) and the bare chemical
potential can be obtained by setting ξkF (∞) = 0. This leads to
the autocoherent equation

μ = −2 cos(kF ) − λ2I (kF , μ), (24)

where I is the sum over the q modes in Eq. (18).
The behavior of the Luttinger parameter is compared to

DMRG results, along a small λ cut, where the perturbative
calculations still hold (Fig. 2). K is obtained numerically by
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FIG. 2. (a) Example of the local density profile at λ = 0.1 and
μ = 1.2. (b) Analytical calculation and DMRG simulations of the
Luttinger parameter K at λ = 0.1 as a function of the bare chemical
potential μ, obtained by solving Eq. (24).

fitting the profile of the local density, which for open boundary
conditions exhibits Friedel oscillations. According to confor-
mal field theory, we have [35,36]

〈n j〉 ∝ cos(2kF j + β )

[(N/π ) sin(π j/N )]K
, (25)

with a phase shift β. The DMRG results for K follow the form
described by Eq. (23). The absence of a reflection symmetry
with respect to μ is due to the breaking of particle-hole sym-
metry by the three-site interaction in Eq. (5). The maximal
deviation between the analytical and the numerical results is
of order 10−3. Its origin is twofold. First, it should be noted
that by considering only scattering processes with momentum
transfer p ∼ 0, 2kF in the effective Hamiltonian (21), we have
neglected terms that oscillate with a wave vector 2kF . These
terms contribute to the renormalization of K at the fourth
order of λ, mainly at half-filling. Secondly, three-body and
six-fermion interaction terms are discarded in the early stages
of the calculations. Including them in the generator of the
flow also provides corrections of order 4 in λ to the two-body
interaction matrix.

When the edges of the band ξk (∞) are crossed, the system
undergoes a PT transition as the density of fermions vanishes
or saturates, respectively. For small λ, the shape of the tran-
sition line can be extracted from the solution of Eq. (24) at
kF = 0, π (Fig. 3). As the transition is approached from the
Luttinger liquid phase, the two-body interaction matrix van-
ishes, i.e., UkF ,−kF ,p = 0 for all p, and the Luttinger parameter
tends, up to the second order in λ, towards its noninteracting
value K = 1. This result indicates that although the particles

FIG. 3. (a), (b) Theoretical prediction for the Pokrovsky-Talapov
transition line at (a) kF = 0 and (b) kF = π , as a function of λ.

are not conserved in the bare Hamiltonian, they still behave as
free fermions in the low-density limit.

C. Transformed fermionic operator

In this section, a modified bosonic representation of the
single-fermion operator is derived from the flow to the effec-
tive Hamiltonian (21). Consequences of these modifications
on the correlation functions of bare operators are discussed.

1. Flow of single-fermion operators

To evaluate observables in the ground state of Heff, the
operators need also to be transformed. In particular, the form
of the single-fermion operator under the transformation U (∞)
that block-diagonalizes the Hamiltonian can be obtained by
solving the flow equation

dck (l )

dl
= [η(l ), ck (l )]. (26)

Similar to the flow of the Hamiltonian, a closed form of the
solution to Eq. (26) is not tractable, and truncations should be
carried out. We take here the ansatz

ck (l ) = ck + λ√
N

∑
q

γk,q(l )c†
qc†

−k−q

− 2λ

3
√

N

∑
q,p

γq,p(l )[c†
qc†

pc†
−p−q − cqcpc−p−q]ck.

(27)

It will later be argued that higher-order terms in λ do not
bring any qualitative change to the behavior of the correlation
functions. The flow equation reads

dγk,q(l )

dl
= −1

2
Bk,q(l )αk,q(l ), (28)

with the initial condition γk,q(0) = 0. The solution is given by
γk,q(∞) = −Bk,q/2αk,q. Since the U(1) symmetry is recov-
ered in the rotated basis, the standard bosonization mapping
(22) can be applied. We start by constructing a fermionic field
c̃(x) from the transformed modes ck (∞) in the same fashion
as in Eq. (20). Given that the mode k decouples from the other
modes in the last term of Eq. (27), the Fourier transform yields
a local operator that will at most lead to a renormalization of
the numerical prefactors in the correlation functions. Hence,
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we only consider

c̃(x) ∼ c(x) + λ

N

∫
dydz �(z, z − y)c†(x + y)c†(x + z),

(29)

where

�(x, y) = 1

N

∑
k,q

e−ikxe−iqyγk,q(∞). (30)

The most relevant operators in the bosonic representation of
Eq. (29) are extracted by carrying out operator product expan-
sions (OPEs) in the product of vertex operators. We have

c†(x + y)c†(x + z) ∼ 1

πα
sin (kF (z − y))e−2iθ (x). (31)

By inserting this expression back into Eq. (29) and carrying
out the double integration, we obtain

c̃(x) ∼ eikF x

√
2πα

e−i[φ(x)−θ (x)] + e−ikF x

√
2πα

ei[φ(x)+θ (x)]

+ 4λ

πα
sin(kF )e−2iθ (x). (32)

From the structure of the generator η, the form of higher-order
terms in the transformed operator can be guessed. We will
only consider operators of order λ2 as these can contribute to
the second-order expansion of the correlations by combining
with the zeroth-order part of Eq. (27). Given an operator
O(c, c†) generated at the second order in λ, it transforms under
U(1) rotations as O(eiαc, e−iαc†) = einαO(c, c†), where n can
only take the values 1, 7,−5. Since the U(1) rotations act on
the bosonic fields as φ → φ and θ → θ + α, this indicates
that operators with a scaling dimension smaller than those in
Eq. (32) cannot be generated. The terms that transform as a
single-fermion operator will merely add a λ2-dependence to
the prefactor of the corresponding vertex operators. Thus, the
transformed fermion operator truncated to the second order in
λ takes the form

c̃(x) ∼ C1eikF xe−i[φ(x)−θ (x)]

+ C1e−ikF xei[φ(x)+θ (x)] + C2e−2iθ (x), (33)

with C1 ∼ 1 + O(λ2) and C2 ∼ O(λ).

2. Fermionic correlation functions

Using the effective bosonic representation of the trans-
formed fermion operator (33), we can now compute corre-
lation functions in the Luttinger liquid phase. Consider the
point-split product of the bare-fermion operator

Fp(x) = lim
	→0

p−1∏
n=0

c(x + n	). (34)

The correlations in the ground state of the bare Hamiltonian
can be evaluated in the Luttinger liquid ground state of Heff

using the relation

〈Fp(x)†Fp(y)〉GS = 〈F̃ †
p (x)F̃p(y)〉LL, (35)

where F̃p(x) = U (∞)Fp(x)U †(∞) is obtained by replacing c
with the transformed field c̃ in Eq. (34). The correlations of p

fermions are deduced from the well-known result [24] for the
correlation function of vertex operators in the Luttinger liquid
Hamiltonian (1):

〈ei[nφ(x)+mθ (x)]e−i[nφ(y)+mθ (y)]〉LL ∼ 1

|x − y| n2K
2 + m2

2K

. (36)

Accordingly, Eqs. (33) and (35) yield the one-fermion corre-
lations

〈F †
1 (x)F1(y)〉GS ∼ 2(C1)2 cos(kF r)

r
1

2K + K
2

+ (C2)2 1

r
2
K

, (37)

where r = |x − y|. Similarly, the two-fermion correlations
can be obtained from the bosonic representation of F2.
We have

F̃2(x) ∼ (C1)2e2iθ (x) + C1C2eikF xe−i[φ(x)+θ (x)]

+ C1C2e−ikF xei[φ(x)−θ (x)], (38)

which leads to

〈F †
2 (x)F2(y)〉GS ∼ (C1)4 1

r
2
K

+ 2(C1C2)2 cos(kF r)

r
1

2K + K
2

. (39)

We note that a single-fermion operator appears in the
bosonic representation of F2. It is an example of a term that is
not initially present in the standard bosonization mapping but
is generated by the Z3-symmetric interaction along the flow.
Its consequence is a crossover between two power laws in the
two-fermion correlations. At short distance, the correlations
decay with the standard exponent 2/K of the two-fermion
operator. At large distance, a single-fermion part with an ex-
ponent K

2 + 1
2K , oscillating with a wave vector kF , takes over

the correlations when K <
√

3. The crossover takes place at a
lengthscale l ∼ 1/λ4K/(3−K2 ). Numerically, it can be observed
near the PT transition line, where the Luttinger parameter
tends to K = 1 while λ remains small enough for l to remain
smaller than the system size. The numerical results for the
correlations (Fig. 4), fitted with Eqs. (37) and (39) by the
least-squares method, are in concordance with the analytical
calculations. Finally, it should be noted that a two-fermion
operator is also generated in the bosonic representation of
the single-fermion operator [see Eq. (33)]. Its effect on the
correlation, however, remains small compared to the single-
fermion part.

V. FLOW EQUATION APPROACH TO THE HARD-CORE
BOSONIC MODEL

We turn now to the hard-core boson model (2). The com-
mutation relation of the hard-core boson operator renders the
calculation of the flow on the lattice difficult. It is more con-
venient to consider the Hamiltonian in the continuum limit,
where it reduces to the dual sine-Gordon model:

H = vF

2π

∫
dx [∂xθ (x)]2 + [∂xφ(x)]2

+ g

πα2

∫
dx cos (βθ (x)), (40)

with β = 3/
√

K . Equation (40) is obtained from the bosoniza-
tion mapping (3) by absorbing the Luttinger parameter K into
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FIG. 4. One-fermion and two-fermion correlation functions in
the ground state of the bare Hamiltonian (5) at μ = 1.86 and λ = 3.
The dashed lines are provided as a guide to the eye. The DMRG
calculations are performed on a system of size N = 2100. The Lut-
tinger parameter K is extracted from Friedel oscillations as discussed
in Sec. IV B, and the coefficients in Eqs. (37) and (39) are obtained
from a least-squares fit.

a redefinition of the bosonic fields, i.e., φ → φ
√

K and θ →
θ/

√
K . The duality transformation φ ↔ θ and K → 1/K re-

covers the sine-Gordon Hamiltonian, which is studied with
the flow equation approach in Refs. [37,38]. We review here
the main result of this work, and we establish the duality
correspondence with Eq. (40) to obtain a low-energy effective
Hamiltonian.

A. Flow of the sine-Gordon Hamiltonian

We introduce the vertex operators Vr (β, x) = :
eiβ[rφ(x)−θ (x)] :, where r = R, L denotes the left and right
species. The relation between our notations and those used in
the reference can be found in Appendix B. The columns refer
to the normal ordering with respect to the ground state of the
noninteracting part in Eq. (40). After performing the duality
transformation, the interaction part of the Hamiltonian (40)

reads

H3 = g

2πα2

(
2πα

L

) β̃2

4
∫

dx[VR(β̃/2, x)VL(−β̃/2, x) + H.c.],

(41)

with L the total length of the chain, and β̃(K ) = β(1/K ).
Combined with the noninteracting part, Eq. (41) is the start-
ing point of calculations of the flow equations carried out in
Refs. [37,38]. The Hamiltonian is diagonalized by a generator
η(l ) = η(1)(l ) + η(2)(l ), where

η(1)(l ) = −2ivF

∫
dxdy

∂u(y, l )

∂y

× [VR(β̃/2, x)VL(−β̃/2, x − y) + H.c.], (42)

and u(x, l ) is obtained from the Fourier transform of u(k, l ) =
g(l )

4π2α2 ( 2πα
L )

β̃2

4
e−4v2

F k2l . Here, g(l ) is a running coupling that
flows to zero in the weak-coupling regime, i.e., inside the
Luttinger liquid phase. It is initially given by the bare coupling
constant in Eq. (40). η(2)(l ) generates the flow of the param-
eter β. Its expression can be found in Ref. [38]. At the end
of the flow, an effective Hamiltonian H (∞) = H0 + Hd(∞)
is obtained, where H0 denotes the noninteracting part in the
bare Hamiltonian, and

Hd(∞) =
∑
k>0

ωk (∞)[P̃R(−k)P̃†
R (−k) + P̃†

R (k)P̃R(k)

+ P̃L(k)P̃†
L (k) + P̃†

L (−k)P̃L(−k)], (43)

with ωk (∞) = −vF g2 cos(πβ̃2/4)
2�2(β̃2/4)

k|αk|(β̃2−8)/2. P̃R(k) and P̃L(k)
are soliton and antisoliton creation and annihilation operators
defined as the Fourier transform of vertex operators (see Ap-
pendix B). The effective Hamiltonian of the dual sine-Gordon
Hamiltonian (40) is deduced from the dual transformation of
Eq. (43). The latter acts on the soliton and antisoliton opera-
tors as P̃R(k) → P†

R (−k) and P̃L(k) → PL(k), where Pr (k) is
obtained from P̃r (k) by replacing β̃ with β. Moreover, the
flow equations for g and K in Eq. (40) can be deduced (see
Appendix A):

dK (lRG)

dlRG
= 9

4�
(

9
4K (lRG ) − 1

)g2(lRG),

dg(lRG)

dlRG
=

(
2 − 9

4K (lRG)

)
g(lRG),

(44)

where lRG is the parameter of the RG flow. It is related to the
parameter of the flow equation approach l by lRG = 1

2 ln( 32l
α2 ).

The RG equations, derived in Eq. (4), are recovered by an ex-
pansion of the � function around the critical value Kc = 9/8.
Finally, we note that since the soliton and antisoliton operators
transform under U(1) rotations as Pr (k) → eiαPr (k), the U(1)
symmetry is restored in the effective Hamiltonian.

B. Transformed hard-core boson operator

From the Jordan-Wigner transformation and the bosoniza-
tion mapping (22), a bosonic representation of the hard-core
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boson can be derived [24]. It is given by

b(x) = eiθ (x)

√
2πα

[1 + cos (2φ(x) − 2kF x)]. (45)

We calculate in this section the transformation of Eq. (45)
along the flow that diagonalizes the dual sine-Gordon model.

1. Flow of the hard-core boson operator

The flow of the hard-core boson operator is evaluated using
the generator of the dual sine-Gordon Hamiltonian. The latter
is given by the dual of Eq. (42), i.e.,

η
(1)
dual(l ) = −2ivF

∫
dxdy

∂u(y, l )

∂y

× [VR(β/2, x)VL(β/2, x − y) + H.c.]. (46)

We take the following ansatz for the flowing hard-core boson
operator, truncated to the most relevant terms:

b(x, l ) = [C1(l ) + C2(l ) cos (2φ(x) − 2kF x)]eiθ (x)

+ [C3(l ) + C4(l ) cos (2φ(x) − 2kF x)]e−2iθ (x),

(47)

with C1(0) = C2(0) = 1/
√

2πα, and C3(0) = C4(0) = 0.
Terms with larger scaling dimensions can be neglected in
describing the behavior of the correlation functions. Since the
bosonic fields in Eq. (47) are those of the original Hamiltonian
(3), the flow of the rescaled operator needs to be considered.
We calculate here the flow of eiθ (x), from which the flow
equation for C2(l ) can be deduced. We have

eiθ (x)/
√

K =
(

2πα

L

)β2/36

VR(−β/6, x)VL (−β/6, x). (48)

The details of the calculation can be found in Appendix D.
We summarize here the main steps of the derivation. First,
the commutator of Eq. (48) with the Hermitian conjugate
part of the generator (46) leads to less relevant terms that are
truncated in the ansatz (47). The most relevant operator in the
remaining part of [η(1)

dual(l ), eiθ (x)/
√

K ] is extracted by an OPE
of the vertex operators. The parameters of the vertex operators
in Eqs. (46) and (48) combine to produce the operator e−2iθ (x)

in the ansatz (47). Namely,

e−2iθ (x)/
√

K =
(

2πα

L

)β2/9

VR(β/3, x)VL(β/3, x). (49)

The flow equation for C3(l ) is then given by

dC3(l )

dl
= −C1(l )

4vF g(l )

�(β2/12)2

2π

L

∑
k>0

k|αk|β2/6−2e−4v2
F k2l .

(50)
To the leading order in the bare coupling constant g, we
can replace C1(l ) by its bare value. Moreover, the running
coupling constant can be replaced by its approximate solution
in the weak-coupling regime [39]. From the RG equations (4),
we have

g(lRG) ∼ ge(2−β2/4)lRG = g

(
32l

α2

)1−β2/8

. (51)

Finally, the solution of Eq. (50) at the end of the flow reads

C3(∞) = − 4vF g√
2πα

Dβ

∫ ∞

0
dk kβ2/6−1 f (2vF k), (52)

with Dβ = (32)1−β2/8

�(β2/12) and f (k) = kβ2/4−4�(2 − β2/8, k2).

2. Bosonic correlation functions

We consider the correlation functions of the point-split
product of p hard-core bosonic operators

Bp(x) = lim
	→0

p−1∏
n=0

b(x + n	). (53)

As in Sec. IV C, the correlation functions in the ground
state of the bare Hamiltonian (2) can be evaluated from the
bosonic representation of the transformed operator B̃p(x) =
U (∞)Bp(x)U †(∞). It is derived from Bp(x) by substituting
the hard-core boson operators with their transformed coun-
terpart b(x,∞). The one-boson and two-boson operators are
given by

B̃1(x) ∼ C1eiθ (x) + C3e−2iθ (x),

B̃2(x) ∼ (C1)2e2iθ (x) + 2C1C3e−iθ (x),
(54)

where the coefficients are taken at the end of the flow, i.e., at
l = ∞. The oscillating terms in Eq. (47) are neglected since
they have larger scaling dimensions. Using the result (36) for
the correlation functions in the Luttinger liquid Hamiltonian,
we obtain

〈B†
1(x)B1(y)〉GS ∼ (C1)2 1

r
1

2K

+ (C3)2 1

r
2
K

, (55)

〈B†
2(x)B2(y)〉GS ∼ (C1)4 1

r
2
K

+ 4(C1C3)2 1

r
1

2K

, (56)

with r = |x − y|. For p = 3, a combination of eiθ (x) in the
product (53) can lead to a vanishing exponent. In this case,
a higher-order expansion in the point-splitting parameter 	

needs to be carried out. Moreover, the Klein factors become
necessary as their anticommutation prevents artificial can-
cellations. They are reintroduced in the ansatz by replacing
cos(2φ) with FRe2iφ + FLe−2iφ . The details of the derivation
are presented in Appendix D. Finally, the correlation function
takes the form

〈B†
3(x)B3(y)〉GS ∼ D0

1

r
9

2K

+ D1
1

r2
+ D2

cos(2kF r)

r2K

+ D3
cos(2kF r)

r2K+2
+ D4

1

r4
, (57)

where D1, D2, D3, and D4 depend on the coefficient of the
transformed operator b(x,∞).

As shown in Fig. 5, the correlations decay algebraically
at short distance with the exponent p2/2K , associated with
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FIG. 5. (a) One-boson and two-boson correlation functions
at μ = 1, λ = 0.06, and (b) connected three-boson correlation
functions at μ = 1.9, λ = 0.2, in the ground state of the bare Hamil-
tonian. The dashed lines are provided as a guide to the eye. The
DMRG calculations are performed on a system of size N = 1200.
The Luttinger parameter K and the Fermi wave vector kF are ex-
tracted from Friedel oscillations as discussed in Sec. IV B, and the
coefficients in the correlations are obtained from a least-squares fit.

the operator eipθ (x) in the standard bosonic representation of
the product of p hard-core bosons. At large distances, the
two-boson and three-boson correlations undergo a crossover
to power laws with smaller exponents, induced by the terms
generated along the flow. In particular, the two-boson cor-
relations exhibit a crossover to the one-boson correlations.
Similarly, the three-boson correlations acquire, among other
terms, an oscillating part with a wave vector 2kF that decays
with an exponent 2K . We also note that the presence of
gradients of bosonic fields in B̃3(x) leads to a nonvanishing
expectation of the three-boson operator inside the Luttinger
liquid phase. Since these terms are generated to the first order
of the coupling g ∝ λ, the expectation decays linearly with the
interaction strength and vanishes at the noninteracting point
λ = 0. This result is confirmed by the numerical simulations
(Fig. 6).

FIG. 6. DMRG calculations of the expectation value of the three-
boson operator B3, in the ground state of the bare Hamiltonian (2), as
a function of the three-site interaction coupling λ and at μ = 1.

VI. CONCLUSION

Using the flow equation approach, we have provided an
analytical derivation of modified bosonic representations of
hard-core boson and spinless fermion operators that takes into
account the Z3 symmetry of the Hamiltonian. As a result,
the correlation functions of p-particles are dominated in the
long distances by the power-law decay of operators that are
not initially present in the bosonic representation of the oper-
ators. These calculations can be straightforwardly generalized
to Zn-symmetric models. Since the generator of the flow
exhibits the symmetry of the bare Hamiltonian by construc-
tion, terms that transform covariantly under Zn-rotations will
be generated in the bosonic representation of single-particle
operators. For instance, in the hard-core boson model with
creation/annihilation operators on four adjacent sites, which
is of interest in the open problem of commensurate melting
of density-waves, the bosonic representation of a product of p
bosons is expected to contain terms that are associated with
p − 4m particles, where m ∈ Z. Some of these terms have
smaller scaling dimension than the bare operator and will
dominate the correlations at long distances.

More generally, this paper demonstrates that even if an
emergent U(1) symmetry is present, the long-distance cor-
relation functions can have a behavior that differs from the
naive expectation, and that the flow equation approach is a
very useful tool to identify the correct bosonic representation
of lattice operators. It would be interesting to investigate the
extension of this method to models with an emergent non-
Abelian symmetry.
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APPENDIX A: DERIVATION OF THE FLOW EQUATIONS

1. Flow equations for the Fermionic Hamiltonian

An efficient way of computing the flow equations is to
use Wick’s theorem for operator products to collect the con-
tributions to the different generated terms in [η, H3]. For
convenience, we write the interaction term as

H3 = 1

3!
√

N

∑
�k

B̃k1,k2,k3 (c†
k1

c†
k2

c†
k3

+ ck1 ck2 ck3 ), (A1)

where �k = (k1, k2, k3) and

B̃k1,k2,k3 = δk1+k2+k3,0

∑
σ∈S3

ε(σ )e−ikσ (2) e−2ikσ (3) (A2)

is purely imaginary. S3 is the symmetric group of order 3, and
ε(σ ) is the sign of the permutation. The contribution from

[η, H3] to the flow of Uk,q,p and ξk stems from the following
term:

[η, H3] → 1

(3!)2N

∑
�k

B̃k1,k2,k3 B̃q1,q2,q3 α̃k1,k2,k3

× ([c†
k1

c†
k2

c†
k3
, cq1 cq2 cq3 ] + (�k ↔ �q)), (A3)

where α̃k1,k2,k3 = ∑3
i=1 ξki . To proceed with the calculation, it

is useful to apply Wick’s theorem in order to normal-order the
generated terms with respect to the Fermi sea in the ground
state of the free Hamiltonian H0. The contractions of two-
fermion operators are given by

(A4)
To compute the flow equation of the two-body interactions,

we need to collect all the normal-ordered terms that result
from single contractions in Eq. (A3). These are given by

: c†
k1

c†
k2

c†
k3

:: cq1 cq2 cq3 : → (kF − |k1|)δk1,q1 : c†
k2

c†
k3

cq2 cq3 : + other single contractions

=
( 1

2!

)2 ∑
σ,σ ′∈S3

ε(σ )ε(σ ′)(kF − |kσ (1)|)δkσ (1),qσ ′ (1)
: c†

kσ (2)
c†

kσ (3)
cqσ ′ (2)

cqσ ′ (3)
:,

(A5)

where the columns denote the normal-ordering with respect to the Fermi sea, and the factor (1/2!)2 avoids overcounting
contractions. Similarly,

: cq1 cq2 cq3 :: c†
k1

c†
k2

c†
k3

: →
(

1

2!

)2 ∑
σ,σ ′∈S3

ε(σ )ε(σ ′)[1 − (kF − |kσ (1)|)]δkσ (1),qσ ′ (1)
: c†

kσ (2)
c†

kσ (3)
cqσ ′ (2)

cqσ ′ (3)
: . (A6)

Therefore, the contribution to the two-body interaction term reads

[η, λH3] →
(

1

2!

)2
λ2

(3!)2N

∑
�k,�q

B̃k1,k2,k3 B̃q1,q2,q3 (α̃k1,k2,k3 + α̃q1,q2,q3 )
∑

σ,σ ′∈S3

ε(σ )ε(σ ′)[2(kF − |kσ (1)|) − 1]

× δkσ (1),qσ ′ (1)
: c†

kσ (2)
c†

kσ (3)
cqσ ′ (2)

cqσ ′ (3)
:

=
(

1

2!

)2 1

(3!)2N

∑
�k,�q

B̃k
σ−1 (1),kσ−1 (2),kσ−1(3)

B̃q
σ ′−1 (1),qσ ′−1 (2),qσ ′−1 (3)

(α̃k
σ−1(1),kσ−1 (2),kσ−1 (3)

+ α̃q
σ ′−1 (1),qσ ′−1 (2),qσ ′−1 (3)

)

×
∑

σ,σ ′∈S3

ε(σ )ε(σ ′)[2(kF − |k1|) − 1]δk1,q1 : c†
k2

c†
k3

cq2 cq3 :

=
(

3!

2!

)2 1

(3!)2N

∑
�k,�q

B̃k1,k2,k3 B̃k1,q2,q3 (α̃k1,k2,k3 + α̃k1,q2,q3 )[2(kF − |k1|) − 1] : c†
k2

c†
k3

cq2 cq3 : . (A7)

In the second line, the change of indices kσ ′(i) → ki for i = 1, 2, 3 is made in order to shift the permutations dependence to
the indices of the interaction matrix. Finally, the last line is obtained from the antisymmetry of the interaction matrix under
permutation, i.e., Bkσ (1),kσ (2),kσ (3) = ε(σ )Bk1,k2,k3 . A similar result can be obtained for terms generated from double contractions,
which contribute to the dispersion ξk . After writing Eq. (A7) in terms of Bk,q = B̃k,q,−k−q and αk,q = α̃k,q,−k−q, the contribution
to the two-body term reads

[η, λH3] → λ2

4N

∑
k,q,p

Bk+p,q−pBq,k (αk+p,q−p + αk,q)[2(kF − |k + q|) − 1] : c†
k+pc†

q−pcqck : . (A8)

Thus, the flow equation of the two-body interaction is given by

dUk,q,p(l )

dl
= −1

4
Bk+p,q−p(l )Bk,q(l )[αk+p,q−p(l ) + αk,q(l )][2(kF − |k + q|) − 1]. (A9)
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2. Flow equations for the hard-core bosonic Hamiltonian

The flow equations of the sine-Gordon model are derived
in Ref. [38]. We have

dβ̃2(lRG)

dlRG
= − β̃4(lRG)

4�( β̃2(lRG )
4 − 1)

g2(lRG),

dg(lRG)

dlRG
=

(
2 − β̃2(lRG)

4

)
g(lRG).

(A10)

Equations (44) are deduced from the relation β̃ = 3
√

K and
the duality transformation K → 1/K .

APPENDIX B: BOSONIZATION DICTIONARY

1. Bosonic fields

The bosonic fields φ, θ are constructed from the density
modes ρ†

r (p), where r = R, L denotes their species. We have

φ(x) = − iπ

L

∑
p�=0

e−α|p|/2−ipx

p
[ρ†

R(p) + ρ
†
L(p)],

(B1)

θ (x) = iπ

L

∑
p�=0

e−α|p|/2−ipx

p
[ρ†

R(p) − ρ
†
L(p)],

where

[ρ†
r (p), ρ†

r′ (−q)] = −δr,r′δp,q
r pL

2π
. (B2)

The relation between the density modes and the normal modes
of the sine-Gordon model is given by

ρ
†
R(p) =

√
|p|σ1(p),

ρ
†
L(p) =

√
|p|σ2(p).

(B3)

The relation between the fields in Eq. (B1) and the fields φ̃

and θ̃ introduced in the Refs. [37,38] is given by

φ(x) = √
πφ̃(x),

(B4)
θ (x) = −√

πθ̃ (x).

2. Vertex operators

We define the vertex operators as

Vr (β, x) = : eiβ[rφ(x)−θ (x)] : . (B5)

Note that this definition coincides with the vertex operators
Ṽr (β, x) = : ei

√
πβ[rφ̃(x)−θ̃ (x)] : introduced in the reference. In

terms of the density modes, Eq. (B5) reads

Vr (β, x) = : exp

⎛
⎝rβ

2π

L

∑
p�=0

e−α|p|/2−ipx

p
ρ†

r (p)

⎞
⎠ : . (B6)

The normal ordering with respect to the vacuum defined by

ρ
†
R(p < 0)|0〉 = 0,

ρ
†
L(p > 0)|0〉 = 0,

(B7)

yields

Vr (β, x) =
(

L

2πα

)β2/2

eiβ[rφ(x)−θ (x)]. (B8)

The bosonization mapping is then given by

ψr (x) = eirkF x

√
L

Vr (−1, x). (B9)

a. Operator product expansion

The operator product expansion of a product of vertex
operators is given by

VR(β, x)VR(−γ , y) ∼
(

L/2π

i(y − x) + α

)βγ

VR(β − γ , x),

VL(β, x)VL(−γ , y) ∼
(

L/2π

i(x − y) + α

)βγ

VL(β − γ , x).

(B10)

b. Exchange relations

The order of vertex operators can be exchanged using the
following relations:

VR(−γ , y)VR(β, x) ∼ VR(β, x)VR(−γ , y)
[i(y − x) + α]βγ

[i(x − y) + α]βγ
,

VL(−γ , y)VL(β, x) ∼ VL(β, x)VL(−γ , y)
[i(x − y) + α]βγ

[i(y − x) + α]βγ
,

(B11)

and [VR(γ , x),VL(δ, y)] = 0 for all γ , δ.

c. Soliton and antisoliton operators

The soliton and antisoliton operators in the effective
Hamiltonian (43) are defined as the Fourier transform of the
vertex operators:

P̃r (k) =
[

�(β̃2/4)

2πL

(
L|k|
2π

)1− β̃2

4

]1/2 ∫
dx e−ikxVr (−β̃/2, x)

for r = R, L. (B12)

APPENDIX C: DERIVATION OF THE LUTTINGER
LIQUID HAMILTONIAN

We derive here the Luttinger parameter and the velocity
inside the Luttinger liquid phase of the model (5). We consider
the particle-hole excitations close to the Fermi point ±kF in
the two-body interactions of the effective Hamiltonian Heff =
H0(∞) + λ2HU (∞). They consist of two g2 processes and
two g1 processes. Since the fermions are spinless, these two
processes are indistinguishable and the two-body interaction
term reduces to

HU (∞) = 4g2

N

∑
p

ρR(p)ρL(−p), (C1)

where

g2 = UkF ,−kF ,0 = −16 sin2(kF ) sin4(kF /2)

2 + 4 cos(kF ) + 3μ
(C2)
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and

ρr (p) =
∑

k

c†
r,k+pcr,k (C3)

are the Fourier components of the density operators at the
right (r = R) and left branches (r = L). Using the expressions
of the density operators in terms of the fields φ and θ :

ρR(x) = − 1

2π
[∂xφ(x) − ∂xθ (x)],

ρL(x) = − 1

2π
[∂xφ(x) + ∂xθ (x)],

(C4)

the two-body interaction becomes

HU (∞) = 4g2

(2π )2

∫
dx [∂xφ(x)]2 − [∂xθ (x)]2. (C5)

Equation (C5) is then combined with the noninteracting Lut-
tinger liquid Hamiltonian such that the Hamiltonian remains

quadratic. We obtain

HU (∞) = u

2π

∫
dx K[∂xφ(x)]2 + 1

K
[∂xθ (x)]2, (C6)

where

K =
[

1 − 2g2λ
2/π ṽF

1 + 2g2λ2/π ṽF

]1/2

,

u = ṽF

[
1 −

(
2g2λ

2

π ṽF

)2]1/2

,

(C7)

and ṽF = ∂ξk/∂k|k=kF is the renormalized velocity. Equa-
tion (23) is obtained from an expansion of Eq. (C7) to the
second order of λ.

APPENDIX D: SOME DETAILS OF THE CALCULATIONS

1. Derivation of the flow of the hard-core Boson operator

We give here the detailed calculation of the flow equation for C3 in Eq. (47). We have

[
η

(1)
dual(l ), eiθ (x)/

√
K
] = −2ivF

(
2πα

L

)β2/36 ∫
dydz

∂u(z, l )

∂y
[VR(β/2, y)VL(β/2, y − z) + H.c.,VR(−β/6, x)VL (−β/6, x)]. (D1)

Since the terms obtained from the Hermitian conjugation in Eq. (D1) are less relevant, we only consider the commutator

[VR(β/2, y)VL(β/2, y − z),VR(−β/6, x)VL(−β/6, x)]

= VR(β/2, y)VR(−β/6, x)VL(β/2, y − z)VL(−β/6, x)

{
1 −

[
i(x − y) + α

i(y − x) + α

]β2/12[ i(y − z − x) + α

i(x − y + z) + α

]β2/12}

∼
(

L

2π

)β2/6

VR(β/3, x)VL(β/3, x){[i(x − y) + α]−β2/12[i(y − z − x) + α]−β2/12

− [i(y − x) + α]−β2/12[i(x − y + z) + α]−β2/12}, (D2)

where an OPE of the vertex operator is carried out in the last line. By inserting this expression in Eq. (D1), we obtain, after a
few steps of calculations,

[
η

(1)
dual(l ), eiθ (x)/

√
K
] → − 2ivF αβ2/6 g(l )

4π2α2

2π

L

∑
k

(−ik)e−4v2
F k2l e−2iθ (x)/

√
K

∫
dydz e−ikz{[i(x − y) + α]−β2/12

× [i(y − z − x) + α]−β2/12 − [i(y − x) + α]−β2/12[i(x − y + z) + α]−β2/12}

= − vF g(l )

π2

2π

L

∑
k

ke−4v2
F k2l fβ (k)e−2iθ (x)/

√
K , (D3)

with

fβ (k) =
∫

dydz e−ikαz[1 − iy]−β2/12[1 + i(y − z)]−β2/12

= |αk|β2/6−2 4π2

�(β2/12)2
(k).

(D4)

Therefore, the flow equation for C3(l ) is given by

dC3(l )

dl
= −C1(l )

4vF g(l )

�(β2/12)2

2π

L

∑
k>0

k|αk|β2/6−2e−4v2
F k2l . (D5)
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2. Derivation of B̃3(x)

We give here the detailed calculation of the three-boson correlations in Eq. (57). We start by reordering the vertex operators
in the product B̃3(x). This leads to

B̃3(x) = lim
	→0

∑
n,m,l=0,1

[An + Bn cos (2φ̃(x))][Am + Bm(−1)pn cos (2φ̃(x + 	))][Al + Bl (−1)pn+pm cos (2φ̃(x + 2	))]

× ei[pnθ (x)+pmθ (x+	)+pl θ (x+2	)], (D6)

where φ̃(x) = φ(x) − kF x, pn = 1 − 3n, A0 = C0, B0 = C1, A1 = C3, and B1 = C4. To avoid artificial cancellations, it is
necessary to reintroduce the Klein factors in the definition of the ansatz. This amounts to the following substitution:

Bn cos (2φ(x)) → 1

2
Bn[FRe2iφ(x) + FLe−2iφ(x)],

An → 1

2
An(FR + FL ). (D7)

By carrying out an expansion in the splitting parameter 	, we obtain for a term at position x + (n − 1)	 in the product of
Eq. (D6):

1

2
[FRe2iφ[x+(n−1)	] + FLe−2iφ[x+(n−1)	]] ∼ 1

2
FR

{
1 + 2i[(n − 1)	∂xφ + (n − 1)2	2

2
(∂xφ)2] − 2(n − 1)2	2∂2

x φ

}
e2iφ

+ 1

2
FL

{
1 − 2i[(n − 1)	∂xφ + (n − 1)2	2

2
(∂xφ)2] − 2(n − 1)2	2∂2

x φ

}
e−2iφ, (D8)

where the position of the fields is at x and is omitted for brevity. Similarly, we have

ei[pnθ (x)+pmθ (x+	)+pl θ (x+2	)] ∼ ei[pn+pm+pl ]θei[(pm+2pl )	∂xθ+( 1
2 pm+2pl )	2∂2

x θ]

∼ ei[pn+pm+pl ]θ

[
1 + i[(pm + 2pl )	∂xθ +

(
1

2
pm + 2pl

)
	2∂2

x θ ] − 1

2
(pm + 2pl )

2	2(∂xθ )2

]
. (D9)

After collecting all the terms that have a scaling dimension smaller than the bare operator e3iθ (x), we obtain

B̃3(x) ∼ (C0)3e3iθ (x) + [8(C1)2C4 − (C2)2C4] cos(2φ̃) − 12	C1C2C4∂xθ + 	[32C1C2C3 − 8(C1)2C4 + (C2)2C4]∂xφ sin(2φ̃)

− 72	2(C1)2C3(∂xθ )2 + i	2[156(C1)2C3 − 2(C2)2C3 + 12C1C2C4]∂2
x θ + 16	2(C2)2C3(∂xφ)2. (D10)

It should be noted that for simplicity of the calculation, the normal-ordering of the operators in Eq. (D6) is not taken before
carrying out the Taylor expansion. The latter modifies the prefactors of the generated terms in Eq. (D10).
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