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Fractional Chern insulators realize the remarkable physics of the fractional quantum Hall effect (FQHE) in
crystalline systems with Chern bands. The lowest Landau level (LLL) is known to host the FQHE, but not all
Chern bands are suitable for realizing fractional Chern insulators (FCI). Previous approaches to stabilizing FCIs
focused on mimicking the LLL through momentum-space criteria. Here, instead, we take a real-space perspective
by introducing the notion of vortexability. Vortexable Chern bands admit a fixed operator that introduces vortices
into any band wavefunction while keeping the state entirely within the same band. Vortexable bands admit trial
wavefunctions for FCI states, akin to Laughlin states. In the absence of dispersion and for sufficiently short-
ranged interactions, these FCI states are the ground state—independent of the distribution of Berry curvature.
Vortexable bands are much more general than the LLL, and we showcase a recipe for constructing them. We
exhibit diverse examples in graphene-based systems with or without magnetic field, and with any Chern number.
A special class of vortexable bands is shown to be equivalent to the momentum-space “trace condition” or “ideal
band condition”. In addition, we also identify a more general form of vortexability that goes beyond this criterion.
We introduce a modified measure that quantifies deviations from general vortexability, which can be applied to
generic Chern bands to identify promising FCI platforms.
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I. INTRODUCTION

Widely considered to be the most remarkable example
of emergence, the fractional quantum Hall effect (FQHE)
has traditionally been studied at partial fillings of the lowest
Landau level (LLL). A Chern band may also host a gapped
lattice-translation symmetric FQHE state at partial filling;
these are translation symmetry-enriched topological orders
[1–6], known as fractional Chern insulators (FCIs) [7–15].
FCIs can form at any magnetic field—including zero. Their
spectral gap EFCI ∼ 1/a is set by the unit-cell scale, rather
than ELLL ∼ √

B in the FQHE, bringing the promise of en-
hanced energy scales EFCI � ELLL. FCIs were experimentally
reported [2] in Harper-Hofstadter bands [16–21]. They were
also recently predicted to appear in the Chern bands of twisted
bilayer graphene [22–25], and subsequently observed with the
help of a small magnetic field [1,26].

While the energetics of the FQHE in the LLL are well es-
tablished, the energetics of FCIs are much less understood due
to the enormous diversity of Chern bands and the generic lack
of any analytic control over the single-particle wavefunctions.
How do we find Chern bands that are likely to host FCI states?

One popular—but ultimately limiting—approach to find-
ing candidate Chern bands for FCIs is to completely mimic
the LLL through its momentum-space band geometry [22,27–
35]. The momentum-space band geometry (MSBG) of the
LLL has a host of special properties: uniform Berry curvature,
the “determinant” and “trace” conditions, the GMP algebra
[36], and more. While it is possible to completely reproduce
LLL physics by satisfying these conditions [37], the principle
of mimicry is insufficient to determine which conditions are
central versus merely peripheral.

Hints at a deeper perspective come from recent works on
chiral twisted graphene [22,38–47], which focused on the

“trace condition” [22,48–50]. The exactly flat Chern bands of
chiral twisted graphene not only satisfy the trace condition
but also have a transparent real-space structure. This structure
enables the construction of “short-range ground states (SRI-
GS)”: FQHE trial wavefunctions that are exact many-body
ground states of short-range (pseudopotential) interactions
[22,49–52]. Subsequent work have shown the trace condition
directly enables SRI-GS construction [48]. Is the trace condi-
tion essential, or one example of a deeper structure?

We will adopt a unifying real-space perspective. After all,
the rich geometrical structures of the FQHE are rooted in real
space, as are most trial wavefunctions. We will show how to
place the real-space geometry of FCIs on the same footing
as the FQHE. Earlier work has developed different aspects of
the geometry of the fractional quantum Hall effect in the LLL
[53–70]. Here, we describe an alternate approach to real-space
geometry of FCIs that allows for continuous, discrete, or even
absent translation symmetry, and captures sub unit-cell length
scales that are known to be crucial for FCI energetics [51].
In contrast to much of the FCI literature [7–9], we do not
work directly in the singular tight-binding limit; instead we
use continuum models, the setting in which the energetics and
geometry of the FQHE is most transparent.

Let us recall the construction of the Laughlin state in the
LLL, a SRI-GS, on the infinite-planar (or expandable disk)
geometry. We begin with the fully filled state |�ν=1〉 and
attach a Jastrow factor that makes each particle see every other
particle as an order 2s vortex,

|� (2s)〉 =
∏
i< j

(zi − z j )
2s|�ν=1〉. (1)

Here z = x + iy and s is a positive integer. The construc-
tion (1) produces the Laughlin state at filling ν = 1/m with
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FIG. 1. (Left) A vortexable band (2) with associated projector P
and complement Q = I − P . Acting with ẑ keeps the wavefunction
within the vortexable band: ẑψ = (P + Q)ẑψ = P ẑψ . (Right) the
vortex metric g(r0) from Eq. (6) describes the shape of the dip in
probability density induced by the vortex attachment (3), (4).

m = 2s + 1. Note that the particle density has changed as a
result of the Jastrow prefactor

∏
i< j (zi − z j )2s, which pushes

particles apart—crucial for minimizing the Coulomb repul-
sion. This intuition may be made precise: the Laughlin state is
a SRI-GS [51,71].

It is tantalizing to apply this construction to any Chern
band. However, Eq. (1) required a crucial single-particle prop-
erty of the LLL: attaching vortices (i.e., multiplying by z)
keeps the wavefunction within the LLL (Fig. 1; details to
follow)—a prerequisite to construct FQHE trial states. By
contrast, attaching vortices to generic Chern bands takes the
wavefunction outside the band of interest, thereby greatly
increasing kinetic energy. Our goal is to emphasize the prop-
erty of vortex attachment and generalize it beyond the lowest
Landau level.

In this paper we introduce vortexable bands, a class of
bands to which one can attach vortices while remaining within
the subspace defined by the bands. Remarkably, vortexable
bands are much more general than the lowest Landau level.
Below we provide examples both with or without a magnetic
field; with continuous, discrete, or absent translation symme-
try; and for any Chern number. In such vortexable bands, we
can construct generalized FQHE trial states, which include
exact many-body SRI-GS, like Laughlin states in the lowest
Landau level.

Real-space vortexability provides an organizing princi-
ple for many ideas in momentum-space band geometry. We
show that a subset of special vortexable bands, where the
“vortex function” is linear, are exactly the trace condition
bands. However, general vortexable bands, with nonlinear
vortex functions are beyond the scope of traditional band
geometry—but appear often. For example, we find spatially
varying strain in graphene yields a general vortexable band.
This shortcoming of band geometry is rooted in the implicit
choice to define the periodic part of the Bloch wavefunc-
tion: uk(r) = e−ik·rψk(r) using a plane wave e−ik·r. In fact,
any function e−ik·φ(r), which satisfies φ(r + a) = φ(r) + a un-
der lattice translations will suffice. General vortexable bands
leverage precisely this freedom to expand the space of vortex-
able bands. We conclude with a momentum-space condition
to detect all vortexable bands.

II. SINGLE-PARTICLE STRUCTURE
OF VORTEXABLE BANDS

Consider a Chern C band1 with an orthonormal basis
{ψα (r)} of (single-particle) continuum wavefunctions on R2.
Let P = ∑

α |ψα〉 〈ψα| be the projector onto the band of in-
terest (Fig. 1).

A band is vortexable with vortex function z : R2 → C if

z(r)|ψ〉 = Pz(r)|ψ〉, (2)

for any |ψ〉 in the band, i.e., P |ψ〉 = |ψ〉. Vortex functions
z(r) can be thought of as complex coordinates on the plane:
they act like x + iy, but need not be equal to x + iy (technical
definition below). A simple class of possible vortex functions
is z(r) = x + iy + δ(r), where δ(r) is a sufficiently small de-
formation of the standard vortex x + iy. Note that z(r) may be
nonlinear in r.

Multiplying a vortexable band by the operator z(r) keeps
the wavefunction entirely within the band (Fig. 1)—a strong
condition few bands satisfy. The first example of a vortexable
band is the LLL itself. Recall that vortex insertion in the LLL
proceeds by adiabatically inserting a 2π flux, which has the
effect of shifting angular momentum of each of the single-
particle states ψm ∝ zme−zz̄/4 by m → m + 1. Clearly this can
also be achieved by multiplying the wavefunction by z. Indi-
vidual higher Landau levels are not vortexable, but the first C
Landau levels together comprise a Chern C vortexable band.
Our construction Eq. (2) generalizes this idea well beyond the
LLL. We now describe the real-space geometry of vortexable
bands and some technical properties; eager readers may skip
to the construction of SRGS trial wavefunctions in the next
section.

Historically, Eq. (2) first appeared with z = x + iy as an in-
termediate step to reproduce the GMP algebra [36] of the LLL
from MSBG in translation symmetric bands [37]. However,
reproducing the GMP algebra relies on both uniform Berry
curvature and (2). The condition (2) reappeared in Ref. [48]
by some of us, where its relationship to band geometry in-
dependent of Berry curvature distribution was highlighted,
chiral MATBG was shown to satisfy it, and its role in ensuring
FQH trial states are also exact ground states with short-ranged
interactions was mentioned.

A. Vortex Geometry

Consider attaching a vortex at a generic point r0,

ψ 	→ ψ̃ = (z(r) − z(r0))ψ. (3)

We call this “vortex attachment” because ψ̃ has a zero at
r0 and winds by a ±2π phase around it. This creates a dip
in probability density near the position r0 where the wave-
function vanishes; at the many-body level these will become

1We use the term “band” for linguistic convenience; by “band” we
mean any extensive subspace separated by spectral gaps below and
above so that the Hall conductance changes by Ce2/h upon fully
filling the band, giving a Chern number C. Thus our statements and
techniques apply equally well to single or multiple Bloch bands with
any number of nonpositional orbitals (e.g., layers), or even bands
without any translation symmetry.
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“correlation holes”. Near the point r0 we have

|ψ̃ (r − r0)|2 = gμν (r0)rμrν |ψ (r0)|2 + O(r3), (4)

where gμν (r) = Re∂μz(r)∂νz(r) is a “vortex metric” that de-
scribes the elliptical shape of the vortex core, such that the
semimajor and semiminor lengths λ1,2(r0) are the eigenvalues
of g(r0). We note the overall scale of z and g is not fixed.

To eliminate pathological cases, we impose a nondegen-
eracy condition. A function z : R2 → C is a vortex function
if the vortex-metric eigenvalues are uniformly bounded above
and below,

c−1 � λ1,2(r) � c. (5)

This ensures the vortex cores do not get arbitrarily large,
small, or squeezed. In fact, (5) implies the vortex function
z : R2 → C is invertible, such that there exists coordinates
r′(r) = (x′, y′) where z = x′ + iy′, through a global version of
the inverse function theorem, see Ref. [72].

We caution that the diffeomorphism r 	→ r′ does not mean
that any vortexable band is physically equivalent to one
with z = x + iy. This is because distances are not preserved
under the diffeomorphism so, e.g., Coulomb interactions
V (r) = 1/‖r‖ �= 1/‖r′‖ single out the “laboratory” frame,
which we use unless otherwise stated. However, the r′ coor-
dinates will give a convenient link to momentum-space band
geometry.

The vortex metric is part of a Hermitian metric,

ημν (r) = ∂μz(r)∂νz(r),

gμν (r) = Reημν (r), �(r)εμν = Imημν (r). (6)

We call � the vortex chirality because the phase winding
of vortices is sign(�)2π , which reverses under z ↔ z. The
nonsingular metric g implies that � does not vanish or change
sign, such that the vortex phase winding is the same every-
where, because the rank one nature of η implies det g = |�|2.
In fact, vortex chirality is tied to Chern number, �C � 0;
we show this in Appendix A. We note in passing that the
condition det g = |�|2 specifies a real-space Kähler structure,
reminiscent of that of MSBG [31].

B. Uniqueness

Can a vortexable band have two or more distinct vortex
functions? With relatively weak assumptions we can show that
this is not the case. In the appendix we show that the vortex
function is unique up to affine transformations z → αz + β if
the following conditions hold (Prop. 3):

(1) The vortexable band has a discrete translation symme-
try with translation operator Ta, in the sense that [Ta,P] = 0
and ∂μz(r + a) = ∂μz(r).

(2) The electron density at full filling, ρ(r) =∑
α |ψα (r)|2, is finite, continuous, and almost always nonzero.
Let us briefly comment on the two conditions. We view the

discrete translation symmetry condition as a technical tool but
not a strong physical restriction. Indeed, we make no assump-
tion on how large the unit cell is or how many Bloch bands are
encompassed by the vortexable “band”, and we expect most
condensed-matter systems to be translation symmetric in the
limit of thermodynamically large unit cells. A condition on
the density ρ(r) is necessary to eliminate pathological density

profiles: it is always possible to modify the vortex function on
regions of vanishing electron density.

III. VORTEXABLE BANDS ADMIT PSEUDOPOTENTIAL
FQH TRIAL STATES

We now construct FQHE ground states from vortexable
bands, and demonstrate they are exact many-body ground
states for short-range (pseudopotential) interactions (SRI-
GS). At the single-particle level, iterating (2) implies2

f (z)ψ = P f (z)ψ for holomorphic f (z) =
∑
n�0

fnzn. (7)

Next, at the many-body level, we may apply (7) to each
particle of the system to obtain

f (z1, . . . , zN )|�〉 = P f (z1, . . . , zN )|�〉, (8)

where P = ⊗iPi is the many-body projector, zi = z(ri ) is the
vortex operator for particle i, f is holomorphic in each zi, and
|�〉 = P |�〉 is any initial state of electrons in the band of
interest. The ability to attach holomorphic functions to many-
body wavefunctions in vortexable bands generalizes any trial
wavefunction in the LLL to any vortexable band. We focus on
Laughlin-like states∣∣� (2s)

z

〉 =
∏
i< j

(zi − z j )
2s|�〉, (9)

so we may make pseudopotential arguments, but we imagine
future works will find interest in examining composite Fermi
liquids or Pfaffian states in vortexable bands. We additionally
emphasize that while we are inspired by the Laughlin con-
struction, the construction (9) applies to any vortexable band,
and can lead to states qualitatively different than Laughlin
states (for example, in vortexable bands with higher Chern
number).

As two particles i and j approach each other at a center-
of-mass position r0, the probability density associated to (9)
vanishes as

|� (2s)
z |2 ∝ |gμν (r0)rμ

−rν
−|4s, (10)

where r− = ri − r j is the relative coordinate. The high power
4s by which (9) vanishes ensures that |� (2s)

z 〉 is a SRGS
[51]; see the appendix for a pedagogical review of this ar-
gument. Note that we focus on a density-density interaction
Hamiltonian—the vortexable band should have zero bare
dispersion. As we will see in the examples section, this is
typically automatic.

The reader may worry that vortex attachment would also
generate FCI ground states in a topologically trivial band
(C = 0). In Appendix A we show that C = 0 vortexable
bands instead admit a basis of delta-function-localized posi-
tion eigenstates (similar to a single band tight-binding model
or a free particle). The ability to ultralocalize electrons in a

2Note that f (z) is not a “new” vortex function, since f must be
linear else the nondegeneracy condition is not satisfied. Indeed, f ′(z)
is either constant or unbounded by Liouville’s theorem, and the
metric associated to f (z) is | f ′(z)|2∂μz∂νz + c.c.
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band projected manner implies that it is straightforward to
keep them apart. Indeed, for C = 0 vortexable bands a simple
charge density wave is a zero-energy ground state of any
potential with range strictly less than the interparticle spacing.

We have argued that topological vortexable bands with
zero dispersion host FCI ground states in the limit of short-
range interactions. However, this limit may be hard to reach
if the Berry curvature is highly inhomogeneous. Indeed, con-
sider the extreme limit of a soleinoidal Berry curvature. For
a finite-size system with periodic boundary conditions, such
that momentum space is discretized, the Berry curvature is
completely invisible to the momentum-space grid. In this case
the band can energetically resemble a trivial band, see e.g.,
Ref. [73].

IV. CHIRAL MODELS AS AN ORIGIN
OF VORTEXABILITY

We have shown that vortexable bands generalize the LLL
in such a way to preserve vortex attachment and the ensuing
energetic arguments for hosting SRI-GS. However, vortexable
bands can and do arise in systems quite dissimilar to free elec-
trons in a magnetic field. We now consider four examples of
vortexable bands: two have z �= x + iy, two have no magnetic
field, and one has arbitrary Chern number C > 1.

Our examples have a common origin: a continuum chirally
symmetric model {H, σz} = 0. These models have the general
form

H =
(

0 D†

D 0

)
, σz =

(
I 0
0 −I

)
, (11)

for some operator D. If D satisfies both of the following two
conditions then the space of zero modes of D is a vortexable
band.

(P1) [D, z(r)] = 0 for a vortex function z.
(P2) D has an extensive number of zero modes.
Property P1 holds when the dependence of D on deriva-

tives ∂x and ∂y is through a single differential operator with
complex-valued coefficients ∂z. Solving the Beltrami equation
∂zz = 0 then yields a vortex function that satisfies [D, z] = 0.

A. Strained Graphene in Magnetic Field (Nonlinear z(r)).

Our first example demonstrates that nonlinear vortex func-
tions z(r) arise naturally in strained graphene. When placed
on a bumpy surface, or subject to external stress, the atoms
of a graphene lattice are displaced by u(r), which modifies
the laboratory-frame metric of the graphene surface. Indeed,
the graphene sheet is an embedded surface with (laboratory-
frame) metric gμν (r) = δμν + 2uμν (r) = δabea

μ(r)eb
ν (r) where

uμν = [∂μuν + ∂νuμ]/2 is the strain tensor and ea
μ(r) = δa

μ +
δaνuμν . Here δ is always the Kronecker delta regardless of
index positions. We will use shortly use the inverse metric gμν

to raise indices, eμ
a = gμνea

ν . The Latin index positions do not
matter (they are raised and lowered by δab).

The uneven distances between atomic sites modifies the
velocity operator to v̂μ = veμ

a (r)σ a, whose anisotropy and
position dependence is encoded into the orthonormal basis
eμ

a (r). The continuum Hamiltonian is then [74–84]

Hstrained graphene(r) = veμ
a (r)σ a

( − i∂μ − Aeff
μ

)
, (12)

where Aeff
μ = Ael

μ (r) + Aext
μ (r). Here Aext

μ (r) is the magnetic
vector potential and Ael

μ (r) is a pseudomagnetic vector po-
tential due to the elastic modulation of the hopping matrix
elements t (a0) 	→ t (a0 + u(r)). Note that there are also other
terms that are second order in gradients that arise from the
hopping modulation [80,82,85,86]; we ignore them here for
simplicity although they do not change our conclusions, which
will be based on topology and the Dirac nature of (12).

When written in the form (11), the zero-mode operator D
of (12) is

Dstrained graphene = 2vχμ(r)
( − i∂μ − Aeff

μ

)
, (13)

where χμ = 1
2 (eμ

1 + ieμ
2 ). The vortex operator is now obtained

by solving the Beltrami equation

χμ(r)∂μz = ∂zz = 0, (14)

such that property P1 is satisfied.
The easiest way to achieve P2 is a magnetic field B0ẑ =

∇ × Aext, but experiments have also found strain Landau lev-
els with Ael �= 0, Aext = 0 [87]. In either case, the number of
zero modes is tied to the number of flux quanta by an index
theorem [40] (see e.g., [88] Eq. 12.86),

dim ker D − dim ker D† = Nφ =
∫

∇ × Aeffd2r, (15)

such that the number of zero modes dim ker D is bounded
below by Nφ , which is typically extensive in the system size.
Therefore Eq. (12) gives an experimentally realizable vor-
texable band without any translation symmetry and vortex
z �= x + iy. Indeed, z(r) is typically nonlinear in r.

B. Chiral Twisted Bilayer Graphene (no magnetic field)

We will now show how chiral twisted bilayer graphene
yields a vortexable band with no magnetic field. Ordinary
twisted bilayer graphene (TBG) contains tunneling matrix
elements for inter-sublattice tunneling and intra-sublattice
tunneling. However, the energetic preference for local AB
over AA stacking induces lattice deformations [84,89–91],
leading to a suppression of the AA tunneling, as well as an
experimentally-unavoidable internal strain field that we will
discuss later. The suppression of the AA tunneling motivated
Ref. [38] to consider an idealized limit of zero AA tunneling.
The Hamiltonian is then of the form (11) with

DTBG =
[ −2iv∂ w1U1(r)
w1U1(−r) −2iv∂.

]
, (16)

where U1(r) = ∑2
n=0 einφ−iqn·r, qn = Cn

3zkθ (0,−1), φ = 2π
3 ,

kθ = |K top − Kbot|, and w1 ≈ 110 meV is the AB interlayer
tunneling. Note that DTBG only depends on the antiholo-
morphic derivative ∂ = 1

2 (∂x + i∂y). The spectrum of the
Hamiltonian defined with (16) depends only on the dimen-
sionless parameter α = w1/vF kθ , up to an overall scale vF kθ .

The operator (16) satisfies P1 for z = x + iy and, at the
“magic angle” α ≈ 0.586, P2 is satisfied as well. Here DTBG

has an extensive number of zero modes [38,47] that form a
C = 1 band, despite the lack of an external magnetic field.
Indeed, the origin of P2 is not the index theorem (15), as
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FIG. 2. The “magic line” of chiral twisted graphene. Bandwidth
of chiral TBG, Eq. (17), as a (a) discrete or (b) continuous function of
internal strain and angle. We take a realistic [84] internal strain vector
potential and modulate its strength as αsA(r), where αs interpolates
from 0 to the realistic value of 1. Details in the text.

dim ker D = dim ker D† for all α. We conclude that there are
examples of vortexable bands with no external magnetic field.

The same relaxation mechanisms that led to suppressed AA
tunneling yields equal and opposite strain in both layers, u+ =
−u− [84,89]. The resulting pseudomagnetic field B(r) = ∇ ×
A(r) is moiré periodic, equal and opposite in the layers, and
averages to zero over each moiré unit cell, but has peaks of
∼80T [84,89].

It is interesting to examine the effect of this heterostrain
on the vortexability of (16). We will see that while P2 is
satisfied at a renormalized angle, P1 no longer holds. With
strain effects taken into account, we obtain

D(αs )
TBG =

[
2vχ

μ
+ (−i∂μ + αsAμ) w1U1(r)
w1U1(−r) 2vχ

μ
− (−i∂μ − αsAμ)

]
,

(17)

property P2 remains satisfied. Indeed, Refs. [45,46,92] show
the existence of a magic angle is robust to symmetry-
preserving perturbations, which is indeed the case for realistic
A(r) [84]. Furthermore, the position-dependent Fermi veloc-
ities, which lead to χ± �= 1

2 (1 i), do not change the band
energies. Indeed, we may work in the crystal frame of un-
perturbed atomic positions where χμ∂μ → ∂ . Thus, we still
obtain an exactly flat band at a suitably renormalized θ (αs).
We show in Fig. 2 how the magic angle changes with αsA(r),
0 � αs � 1, giving rise to a “magic line” of bands without any
external magnetic field.

However, the different complex differential operators
χ

μ
± (r)∂μ, associated with the opposite strains in both layers

prevent us from defining a single vortex function z that com-
mutes with (17) in the laboratory frame. Thus, property P1
is not satisfied. It is possible to define a generalized “layer
dependent vortex operator” z̃ = diag(z+, z−) that satisfies
[D, z̃] = 0 and z̃ψ = P z̃ψ . But z̃ does not lead to a SRI-GS
because on-site interlayer repulsion is no longer screened,
z+(r) − z−(r) �= 0.

We note that (17) was recently studied in the final section of
Ref. [86], where a flat band also appeared. In their chiral
model, the authors of [86] work consistently to a lower order

in gradients and hence do not include the position-dependent
Fermi velocity, such that their chiral Hamiltonian may be
interpreted as the crystal frame version of (17). With this ap-
proximation, (17) is vortexable with z = x + iy (and therefore
hosts SRI-GS). Note that previous non-chiral Hamiltonians in
Refs. [85,86] do include the position dependent Fermi veloc-
ity as well as other nongeometrical effects at the same order
in gradients. Amongst the second order in gradient terms,
we have kept only the geometric position-dependent Fermi
velocity in order to study its effect on vortexability from a
conceptual point of view.

C. Degenerate Landau Levels in Chirally stacked Graphene
(Multiple bands, total C > 1).

For the next two examples we will focus on vortexable
bands with higher Chern number. For simplicity, we will
consider unstrained graphene and obtain standard vortex func-
tions z = x + iy; strain may be included straightforwardly but
here we want to emphasize the emergence of higher Chern
numbers.

Recall that by “band” we mean “low-energy subspace with
an extensive number of states”; vortexable bands can consist
of multiple Bloch bands or Landau levels. In Bernal bilayer
graphene it is well known that the zeroth and first Landau
level are degenerate at zero energy [93,94]. This pattern ex-
tends to chirally stacked graphene multilayers [95–97] where
Landau levels 0 through n − 1 are degenerate, where n is the
number of layers [98]. To understand the vortexability of the
combined set of Landau levels, consider the Hamiltonian for
AB stacked Bernal bilayer graphene in a constant magnetic
field B0,

HBernal-Bilayer =

⎛
⎜⎜⎝

0 D†
1 0 0

D1 0 γ 0
0 0 0 D†

1
0 0 D1 0

⎞
⎟⎟⎠. (18)

In (18) the Hamiltonian acts on a wavefunction
(ψA1 ψB1 ψA2 ψB2)T . The interlayer tunneling strength
is γ , and

D1 = 2v(−i∂z − Az ) =
√

2v�−1â (19)

is the monolayer zero-mode operator where ∂z = 1
2 (∂x + i∂y),

Az = 1
2 (Ax + iAy), â is the standard Landau level lowering

operator, and � = 1/
√

B is the magnetic length. We have
neglected smaller interlayer hoppings [99].

Let us write (18) in the form (11). We obtain

DBernal-Bilayer =
(

D1 γ

0 D1

)
. (20)

There are two types of zero modes of (20) corresponding to a
zeroth and first Landau level

ψ0 =
(

ψLLL

0

)
ψ1 =

(
â†ψLLL√
2vγ

�
ψLLL

)
. (21)

Here ψLLL is a LLL state, which satisfies âψLLL = âzψLLL =
0. The combined zero-mode subspace (21), consisting of the
zeroth and first Landau level together, is a vortexable band:
the zero-mode operator (20) commutes with z. The space
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spanned by the zeroth Landau level ψ0 is also vortexable
on its own. However, the first Landau level on its own is
not vortexable. Indeed, direct calculation shows that zψ1 has
spectral weight in the zeroth Landau level, i.e., states of the
form ψ0 (21), because [a†, z] �= 0.

We may similarly write down the zero-mode operator for
n-layer chiral graphene, which has the inductive form

Dn =
(

D1 γn−1
0 Dn−1.

)
(22)

where γ = (γ , 0, . . . , 0) is an (n − 1)-dimensional hopping
vector, which we take to be nearest-neighbor for simplicity.
The lowest n Landau levels are therefore vortexable zero-
mode subspace of (22), with total Chern number C = n.

D. Chiral Graphene multilayers (C > 1, no magnetic field)

Our final example constructs vortexable bands with arbi-
trary Chern number C > 1 without an external magnetic field.
Our construction uses twisted chiral graphene multilayers
[48,100,101]: these are the structures above except the bottom
layer is replaced by a chiral twisted bilayer graphene system.
While this example is nominally that of a single physical
system, we expect the general structure of this example to be
a source of future zero-field higher Chern vortexable bands.

Our zero-mode operator is given by

Dn =
(−2iv∂z γn

0 Dn−1

)
, (23)

with D1 = DTBG such that Dn is associated with a chiral TBG
system at its magic angle with n − 1 monolayers stacked on
top with zero twist angle such that each pair of monolayers is
AB-stacked Bernal graphene.

The zero-mode Bloch-periodic wavefunctions ψ
(n)
k,�

(r) of
Dn on layer 1 � � � n may be obtained as

2iv∂ψ
(n)
k,1(r) = γψ

(n)
k,2(r), ψ

(n)
k,�

= λkψ
(n−1)
k,�+1, (24)

where λk is k dependent but otherwise constant.
The first equation of (24) is generically solvable through

Fourier series ψ
(n)
k,�<n(r) = eik·r ∑

G u(n)
k�<n(G)eiG·r where k is

measured from the K point (for the nth layer the periodicity
is different due to the twist angle, although this will not play
a role here [48]). However, there is a single value k = 0 in
the first Brillouin zone for which there is an obstruction to
inverting Eq. (24). Indeed, we obtain

−iv(k + G)u(n)
k,1(G) = γ u(n)

k,2(G) = γ λku(n−1)
k,1 (G), (25)

where k = kx + iky and G = Gx + iGy. Because
u(n−1)

k=−G,1(G) �= 0 generically, which we have verified
numerically for this system, we must have λk=−G = 0
for all reciprocal lattice vectors G. The additional phase
winding associated with this zero leads to an increase in
Chern number Cn = Cn−1 + 1; see Ref. [48] for details. Since
the zero-mode operator satisfies [Dn, z] = 0, we conclude
that we have found a class of vortexable Bloch bands with
arbitrary Chern number.

V. CONNECTION TO MOMENTUM-SPACE
BAND GEOMETRY

We now specialize to the case of lattice translations, where-
upon vortexability will become a computable and quantifiable
notion, and an organizing principle for many ideas in band
geometry. “Trace condition” bands are always special vor-
texable bands, with a linear vortex function z = x + iy. We
show the converse fails; the “trace condition” is insufficient
to identify general vortexable bands where z(r) is nonlinear,
such as Secs. IV A and IV B above. We then identify the point
of failure—the choice uk(r) = e−ik·rψk(r) in Bloch’s theorem.
We end with a general formula, Eq. (39), that detects if a band
is vortexable or nearly vortexable. Throughout the section we
assume that the vortexable bands of interest satisfy the mild
conditions in Sec. II B.

A. Traditional Band Geometry and Vortexability with x + iy

We first recall some standard definitions and results on
band geometry. Consider a Chern C band with an orthonormal
basis |ψka〉. Throughout this section we set C,�(r) � 0 (the
other case follows from complex conjugation). Momentum-
space band geometry characterizes the gauge-invariant part
of the Bloch periodic wavefunctions |uka〉 := e−ik·r |ψka〉
through the Berry curvature F (k) and Fubini-Study metric
gFS(k) [102]. These are defined by (see e.g., [7,27,103])

gμν
FS(k) = Reη̃μν (k), F (k)εμν = − 1

2 Imη̃μν (k), (26)

where

η̃μν (k) =
∑

a

〈
∂kν uka

∣∣Qk|∂kμuka
〉

(27)

is the positive semidefinite quantum geometric tensor and
Qk = I − ∑

a |uka〉 〈uka|. The lowest Landau level is entirely
specified by its band geometry, any C = 1 band where (I) the
trace inequality ∫

trgFS(k) d2k � 2πC (28)

is saturated [the trace condition] and (II) F (k) is constant—
is equivalent to the LLL [37]. The idea of “Landau level
mimicry” is that, so long as (I) and (II) are nearly satis-
fied then, by adiabatic continuity, the band is likely to host
a FCI phase. We reiterate that vortexable bands go beyond
mimicry, hosting FQHE states in bands that do not resem-
ble the LLL, with, e.g., inhomogeneous Berry curvature or
higher Chern number. Furthermore, in Appendix D we use
our beyond-mimicry perspective to analyze other previously
proposed band-geometric conditions such as the “determinant
condition”, which we argue to be generically unrelated to the
physics of the FQHE (Appendix D 3).

Bands satisfy the trace condition if and only if they are vor-
texable with z(r) = x + iy. Note that vortexability involves
multiplication of the ψ wavefunctions by a position operator
whereas band geometry consists of differentiating the u wave-
functions with respect to k. These settings are bridged by the
product rule (as in Fourier transforms) through the definition
|uka〉 := e−ik·r |ψka〉,

−i∇k

∣∣ψa
k

〉 = r̂
∣∣ψa

k

〉 + eikr(−i∇k)
∣∣ua

k

〉
. (29)
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Acting with Q := 1 − P = 1 − ∑
ka |ψka〉 〈ψka| annihilates

the left-hand side of Eq. (29), which can be seen by writing
the k derivative as a finite difference between wavefunctions
at two nearby k points, and realizing that each of them belongs
to the band and is hence annihilated by Q. This gives

Qr
∣∣ψa

k

〉 = Qieik·r∇k

∣∣ua
k

〉
. (30)

For clarity, the projector Q acts on Bloch periodic wave-
functions |ψk〉 and contains a sum over k, whereas Q(k)
acts on periodic wavefunctions, appears in the definition of
quantum geometry (27), and contains no sum over k. Since
〈ψk′ | eik·r∇k |uk〉 vanishes for k �= k′ by translation symmetry,
we have Qeik·r∇k |uk〉 = eik·rQ(k)∇k |uk〉, a rewriting of the
right-hand side of (30). Multiplication by ω(0) = (1 i)T then
yields

Qz |ψka〉 = 0 ⇐⇒ Q(k)∂k |uka〉 = 0, (31)

where z = x + iy and 2∂k = ∂kx + i∂ky . The right-hand side of
(31) vanishes for all k, a if and only if the trace condition is
satisfied∫

d2k(trgFS(k) − F (k)) =
∫

d2k ω(0)
μ η̃μν (k)ω(0)

μ

=
∑

a

∫
d2k

∥∥Q(k)∂kua
k

∥∥2
. (32)

Thus a band is vortexable with z = x + iy if and only if the
trace condition is satisfied, and deviations can quantified using∫

trgFSd2k − 2πC � 0.
A powerful alternative way to think about the trace condi-

tion is through k-space holomorphicity. The trace condition
holds if, and only if, the Bloch wavefunctions uk can be
written as holomorphic functions of k = kx + iky after a
nonunitary gauge transformation ũk = Skuk [31]. Here Sk is an
invertible matrix at each k, and acts by matrix multiplication
in band indices. This claim is proven in the appendix (see
Prop. 2 and Appendix D 2). The key point is that the right-
hand side of Eq. (31) is a gauge-invariant version of the
Cauchy-Riemann equations. If Q(k)∂k |uka〉 = 0, one may al-
ways solve P(k)∂k (Sk |uk〉) = 0 to fix a k-holomorphic gauge.
Brillouin zone holomorphicity provides exceptionally strong
constraints on the single-particle wavefunctions of vortexable
bands, and is a key tool in our uniqueness result Prop. 3.

The structures we have described in this subsection is a
special case, corresponding to z = x + iy, of the interrelations
depicted in Fig. 3. We will now cover the general case, with
arbitrary z and a suitably modified trace condition.

B. Bloch’s Theorem and General Vortexability

General vortexable bands are vortexable bands where z(r)
is a nonlinear function of r. In light of examples Secs. IV A
and IV B this class is physically relevant, leading to a natural
question: Given a band, how can one compute if it is a gener-
ally vortexable band? We must go beyond the trace condition
Eq. (28), which is equivalent to vortexability with z = x + iy.
Traditional band geometry (26) can only detect linear vortex
functions (special vortexability). The limitation is the single k
derivative acting on |uk〉 in (26), which translates to a single
power of the position operator r through the differentiation of

FIG. 3. Flowchart describing examples, equivalent conditions,
and consequences of vortexability. Several models, all describable
using continuum chiral Hamiltonians (11), lead to vortexable bands.
Such bands satisfy the trace condition with a suitable choice of
periodic wavefunction (33) if the band is rotationally symmetric;
if not a further linear transformation (37) may be required. With
this choice, and after a suitable nonunitary gauge transformation, the
Bloch wavefunctions u′ can be chosen to be holomorphic in kx + iky.
Topologically nontrivial vortexable bands lead to SRI-GS: FQHE
ground states in the limit of short-range interactions.

uk(r) = e−ik·rψk(r) [see e.g., (29)]. Thus we can only have an
equivalence (31) for linear vortex functions for this definition
of |uka〉.

However, we can instead define

|u′
ka〉 = e−ik·r′ |ψka〉 (33)

where r′(r + a) = r′(r) + a. This, in turn, defines F ′ and g′
FS .

The reasoning above (31) then yields

Qz′ |ψka〉 = 0 ⇐⇒ Q(k)∂k |u′
ka〉 = 0, (34)

such that the trace condition (28), defined using the wavefunc-
tions |u′

ka〉 is equivalent to vortexability with z = z′ = x′ +
iy′. We underscore that (33) is not related to the usual defini-
tion by a gauge transformation. Indeed, such a transformation
is akin to changing unit cell embedding in tight-binding mod-
els and yields different values for gauge-invariant quantities
such as the Berry curvature, F ′

k �= Fk [103]. We note that the
traditional choice |uka〉 = e−ik·r |ψka〉 is often convenient; for
example, electric fields couple via E · r such that the tradi-
tional |uk〉 appears in semiclassical transport [103]. For our
purposes, however, widening our scope to the modification
(33) is essential.

We now show how (33) and (34) characterize general vor-
texable bands, starting with the case of rotational symmetry
for simplicity. Any vortex function may be written as z(r) =
x(z) + iy(z) where rz(r) : R2 → R2 is a diffeomorphism [see
below Eq. (5)]. With n > 2-fold rotation symmetry, vortex
functions obey z(r + a) = z(r) + ax + iay under translations
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(see appendix Prop. 4). Then r(z)(r + a) = r(z)(r) + a such
that the wavefunctions |u(z)

ka 〉 = e−ik·r(z) |ψka〉 are periodic and
(34) is satisfied for z = x(z) + iy(z). We define

T =
[

min
r′(r)

∫
trg′

FS d2k
]

− 2πC � 0 (35)

where r′ runs over lattice-periodic, orientation-preserving dif-
feomorphisms. A (Cn�2 symmetric) band is vortexable [with
C,�(r) � 0] if and only if T = 0. The minimizing diffeomor-
phism r′ = (x′, y′) gives the vortex function z = x′ + iy′.

The modification (35) of band geometry was previously
proposed in Ref. [103] in the tight-binding setting (see also
[104] for C = 0). There it was interpreted as a choice of unit
cell embedding in tight-binding models. Here it emerges nat-
urally for continuum vortexable bands in terms of the choice
of periodic wavefunction (33): this is precisely where the
choice of coordinate frame or unit-cell embedding enters band
geometry.

For bands without rotational symmetry, we must modify
Eq. (35) slightly. In general (see appendix Props. 1 and 2),

z(r + a) = z(r) + ωμaμ, (36)

for some complex vector ω = ω(0)J where ω(0) = (1 i)T

and J is a 2 × 2 invertible matrix. Note that the transformation

r → J−1r, a → J−1a, k → kJ, (37)

reduces us to the rotationally symmetric case. Therefore we
require a form of the trace condition that is invariant under
linear transformations.

The reformulation of the trace condition we need is the
zero-mode condition ωμη̃μν (k) = 0 for k independent ωμ

[42]. It is invariant under linear transformations induced
by (37), ω → ωJ−1 and η̃ → JηJT , and it reduces to the
usual trace condition ω(0)

μ η̃μν = 0 [see (32)] under a suitable
choice of J . Such a zero mode ωμ exists if and only if
det η̃I = 0 with

η̃I =
∫

BZ
η̃(k) d2k, (38)

because η̃(k) is positive definite for each k. Let us then define

T = min
r′(r)

2
√

det η̃I � 0, (39)

such that a band with discrete translation symmetry is vor-
texable with a translationally symmetric vortex function
∂μz(r) = ∂μz(r + a) if and only if T = 0 in (39). The vortex
function is given as z = ωμr′μ where r′(r) is the minimizing
diffeomorphism of (39) and ωμ is the zero mode that leads to
the vanishing of det η̃I . We have included a square root and
factor of 2 such that (39) reduces to (35) in the rotationally
symmetric case. It would be interesting to study the regime of
“nearly” vortexable bands where T is small but nonzero.

VI. CONCLUSIONS

In this paper we have introduced vortexable bands: bands,
which admit vortex attachment through a complex-valued
function z(r). These bands allow construction of SRI-
GS—exact many-body FQHE ground states in the limit of
short-range interactions. Vortexable bands emerge naturally in

graphene-based systems with or without magnetic field, with
arbitrary Chern number, and with arbitrary vortex functions
z(r). A subset of “special” vortexable bands, with z = x + iy
and discrete translation symmetry, may be characterized using
traditional approaches to momentum-space band geometry, in
particular the trace condition. By moving beyond the conven-
tional choice of periodic wavefunctions uk(r) = e−ik·rψk(r)
we arrived at a formula that can check if any band is
vortexable.

Our treatment of vortexable bands opens up a number of
directions for future investigation. What types of vortexable
bands are possible? Can we characterize the single-particle
wavefunctions? Can we define the real-space geometry of
general bands, such that the Kahler geometry (6) emerges
when the band is vortexable? How can we understand the
interplay between interaction range and Berry curvature inho-
mogeneity? What types of FCIs do they host, especially with
higher Chern number? How do composite Fermi liquids or
non-Abelian states behave in generic vortexable bands? What
happens to excitations like Skyrmions or magnetoroton modes
in vortexable bands that are dissimilar to the LLL? Chern
bands with small dispersion and small T [Eq. (35)] should
host FCIs—can one derive a quantitative relation to the many-
body gap? Are vortexable bands of equal and opposite Chern
numbers ideal for other phases such as superconductors? We
believe that future work will focus on the above questions and
more.

More broadly, vortexable bands combine the analytic
tractability of the LLL with much of the diversity of topo-
logical bands in condensed-matter systems (in particular,
magnetic translation symmetry and flat Berry curvature is not
required). We therefore argue that vortexability will provide
a central conceptual role in the rich and emerging field of
interacting topological bands.
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APPENDIX A: PROOF OF �C � 0
AND COMMENTS ON C = 0 VORTEXABILITY

In this appendix we prove that the chirality � of vortex
geometry is tied to the Chern number of the band and then use
the result to understand C = 0 vortexable bands. There are
several ways to show this result, including momentum-space
band geometry for translationally symmetric systems—which
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is done in the final section of the main text—as well as
the closely related twist-angle torus geometry [105,106] for
systems that are placed on a twist-angle torus with arbitrary
twisted boundary conditions. Here, however, we will take a
bulk position operator point of view3 and use the formula
[107–109]

C = 2π iTr′[Px′P,Py′P], (A1)

where Tr′ is the trace per unit volume

Tr′A = lim
|�|→∞

1

|�| trP�AP�, (A2)

where � labels successively larger regions of real space, P�

projects onto states that vanish outside �, and we use the
volume form dx′ ∧ dy′ associated with the coordinates (x′, y′)
to measure the volume |�| = ∫

�
dx′ ∧ dy′. The trace tr is

the usual dimensionless Hilbert-space trace. Note that some
caution is required in using (A2) since the trace is over an
infinite-dimensional space. In particular, the cyclic property
only holds when the trace exists and cannot be used on each
term of the commutator (A1) individually. For systems with
lattice translation symmetry we recover the usual formula
from (A1). In particular we have

[Px′P,Py′P] = −i
∑

k

F ′(k)|ψk〉〈ψk|, (A3)

such that

Tr′[Px′P,Py′P] = −i
1

V

∑
k

F ′(k) = −i
∫

d2k
(2π )2

F ′(k),

(A4)

where the Berry curvature F ′ is defined using the (x′, y′)
coordinate system and V = ∫

dx′ ∧ dy′. For a system on a
twist-angle torus we may also use a similar calculation to
show that (A1) reproduces the expected result.4

The virtue of (A1) is that it makes sense on the infinite
plane and is stated in terms of the position operator. We use
the coordinates (x′, y′) because we will soon plug in the vortex
function z = x′ ± iy′. As a topological quantity, the Chern
number is invariant under of choice of coordinates—although
this is not always true for the Hall conductance in states
without a charge gap [103].

See Refs. [107–109] for a careful discussion of Eq. (A1).
Note that in these references the trace is often written in the
equivalent form Tr′P[[x,P][y,P]] = Tr′P[[x,P], [y,P]]P
to emphasize the role of the position operator as a general-
ization of a derivative.

We now take � > 0 such that z = x′ + iy′ and show that
C � 0. The analogous case of � < 0 follows straightfor-
wardly. We now compute

C = πTr′[PzP,PzP] = πTr′(PzzP − PzPzP )

= πTr′Pz(1 − P )zP = πTr′PzQzP � 0, (A5)

3We would like to thank Ruihua Fan for patient help in understand-
ing this perspective, both conceptually and computationally.

4Twist-angle boundary conditions are formally equivalent to Bloch
boundary conditions if one chooses the entire system to be a single
unit cell.

where we expanded the commutator, used the vortexability
condition PzP = zP in the first term, and used the commu-
tativity [z, z] = 0 of the unprojected vortex functions. The
non-negativity comes from the writing PzQzP = A†A as a
positive-definite operator where A = QzP .

1. Vortexable bands with C = 0

Using the above results, we now shows that C = 0 vortex-
able bands are “trivial” in the sense that they do not support
FQHE ground states.

If C = 0, then by (A5), C = πTrA†A = π‖A‖2 = 0, so we
must have A = QzP = 0. Thus, if C = 0 then the band is also
vortexable with vortex operator z. This makes some sense, as
C = 0 bands intuitively do not have have a bias towards either
chirality. However, this dramatically restricts the wavefunc-
tions of the C = 0 band. For bands with translation symmetry,
for example, it is possible to show that the wavefunctions |uk〉
may be chosen constant in k such that F = gFS = 0. However,
we will instead proceed by characterizing the wavefunctions
without reference to the translation symmetric case.

Indeed, since the vortexability condition is linear we have
(z ± z)ψ = P (z ± z)ψ such that

r′ψ = Pr′ψ. (A6)

We may extend this to any analytic function of r′ by ex-
panding in a Taylor series. This seems to enable us to construct
an infinite number of states in any finite volume. Indeed,
consider the attachment

fr′
0
(r′)|ψ〉 = P fr′

0
(r′)|ψ〉, fr′

0
(r) = 1

2πa2
e− ‖r′−r′0‖2

2a2 , (A7)

which localizes the wavefunction |ψ〉 around some position
r0 where |ψ〉 has nonzero density with localization length a.
Performing (A7) for arbitrarily small a and arbitrarily many
positions r′

0 seems to enable the construction of an arbitrarily
large number of states in a finite volume. The one loophole is
that |ψ〉, and all other states in the band of interest, may have
only finitely many points r′

0 with nonzero density, such that
the vast majority of attachments (A7) simply give zero. This
is the case in the tight-binding limit for example, but we find
it remarkable that all C = 0 vortexable bands with finite fully
filled density are exactly in this limit of completely localized
states.

We now show that we can describe such bands using a
basis of position eigenstates; i.e., the band admits a basis of
delta-function localized “Wannier orbitals”. Applying (A6) to
a basis of states in the band we obtain

r′P = Pr′P (A8)

and the Hermitian conjugate Pr′ = Pr′P . We therefore con-
clude

[r′,P] = 0 (A9)

such that the position operator and the band projector are
simultaneously diagonalizable. The band therefore admits a
basis in terms of the eigenstates of the position operator as
claimed, r̂′ |ψα〉 = r′

α |ψα〉.
To minimize repulsive interaction energy at fractional fill-

ing, we may simply occupy some subset of the orbitals |ψα〉
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and maximize the minimum distance between occupied or-
bitals. For instance, one can use a charge-density wave pattern.
If, for a given filling factor, the minimum distance between
occupied orbitals is d , then the state will be a zero-energy
ground state of any potential with V (‖r‖) = 0 for ‖r‖ > d .
This is a much larger class of interactions than the pseudopo-
tential Hamiltonians, which are all ultralocal and only make
sense in continuum models.

It is also worth noting that if we start with the fully filled
C = 0 Slater determinant state, then the vortex attachment
(9) simply multiplies the wavefunction by a constant. Indeed,
the fully filled Slater determinant may be written as the anti-
symmetric tensor product of position eigenstates such that the
vortex operators zi get replaced by their eigenvalue.

We therefore conclude that vortex attachment in C = 0 vor-
texable bands is ineffective in producing fractional quantum
Hall states; charge density waves are much more effective at
minimizing the interaction energy due to the perfect localiza-
tion of the single-particle states.

APPENDIX B: PSEUDOPOTENTIAL EXPANSIONS

In this appendix we argue that the Laughlin-like state

|� (2s)〉 =
∏
i< j

(zi − z j )
2s |�〉 (B1)

is the ground state for C �= 0 continuum vortexable bands in
the limit of short-range interaction potentials. That is, it is an
“SRI-GS”. We follow the argument in Ref. [51], which used
a real-space version of the Haldane pseudopotentials [71] to
argue that the Laughlin state does not crucially depend on
angular momentum or rotation symmetry. This argument has
recently been applied to chiral twisted bilayer graphene as
well [22,49,50].

We consider a purely interacting Hamiltonian projected to
the band of interest

H = P
∑
i< j

V (ri, r j )P (B2)

where P = ⊗iPi is the many-body projector to the band
of interest. We take V (r, r′) = V (|r − r′|) > 0 to be a
circularly and translationally symmetric repulsive interac-
tion potential—both for simplicity and because we have a
screened-Coulomb-type interaction in mind. The essential
piece of the argument below will be power-counting in the
short-range limit, which may therefore be generalized to any
short-range repulsive interaction.

We begin by expanding the interaction potential into “pseu-
dopotentials”, written in a real-space basis. To understand this
expansion, we note that the potential V (r) = V (r) will always
be integrated against some matrix element or probability-
density of states in the band (for the energy, this will be
ultimately be the pair distribution function). Call this function
�(r). The function �(r) generically varies on the scale of
the effective magnetic length � where 2π�−2 is the change
in electron density upon fully filling the band. An important
exception to this is the tight-binding limit where electrons
have a finite average density but are taken to be infinitely
localized—this discussion will therefore apply most saliently
to continuum models. Note that the tight-binding limit is itself

an approximation, however, and real electron atomic orbitals
tend to have appreciable spread: of the same order as the
intersite distance. We will now proceed assuming � varies on
the scale of �, ∫

d2 rV (r)�(r). (B3)

While � is usually not circularly symmetric a priori, we
may assume it to be so because it is integrated against V (r) =
V (r). Motivated by Haldane pseudopotentials for short-range
interactions, we expand near r = 0 using the Taylor-like ex-
pansion for circularly symmetric analytic functions

�(r) =
∞∑

n=0

c−1
n (∇2n�)(r = 0)r2n, (B4)

where cn = (∇2nr2n)|r=0 = 4n(n!)2. We have∫
d2rV (r)�(r) =

∞∑
n=0

c−1
n ((�∇ )2n�)(0)

∫
d2r

(
r

aM

)2n

V (r),

(B5)

where we have inserted factors of � to effectively nondimen-
sionalize r because � varies on the scale of �.

The above result may be interpreted as coming from a
“pseudopotential” expansion

V (r) =
∞∑

n=0

vn(�∇ )2nδ(r)

vn = 1

cn

∫
d2r

( r

�

)2n
V (r) ∼

(
d

�

)2n

v0, (B6)

through the use of integration by parts. Here, d is the range of
the interaction. If d � � the coefficients vn rapidly decrease
with n, although they may decrease rapidly regardless due to
the extremely rapid growth of cn = 4n(n!)2.

1. Ground state in the pseudopotential limit

We now show that the Laughlin-like state |� (2s)〉, defined
in (B1) through attaching 2s vortices, is a zero mode under the
first 2s − 1 terms of (B6) such that the ground-state energy
scales to zero no-slower-than d4s as d → 0.5

The energy expectation value is

E =
∑
i< j

∫
V (ri − r j )d

2rid
2r j

×
∫ ∥∥� (2s)(r1, . . . , rN )

∥∥2 ∏
k �=i, j

d2rk

= N
∫

d2rd2r0V (r − r0)Gr0 (r − r0), (B7)

5In the ordinary spin-polarized FQHE an additional vortex from
Fermi statistics makes the scaling d4s+2 instead, for example. This
extra enhancement is not always present. For example, it is absent in
the spin-singlet (2s + 1, 2s + 1, 2s) Halperin states, which also arise
from vortex attachment.
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where

G(2s)
r0

(r−) = (N − 1)
∫ ∏

k>2

d2rk

∥∥� (2s)
∥∥

× (r0, r0 + r−, r3, . . . , rN )2 (B8)

is the pair distribution function as a function of the relative
coordinate r− = r − r0. Above we used that ‖�2s({ri})‖2 is a
symmetric under permuting the positions of the particles. The
vortex attachment (9) implies that

G(2s)
r0

(r−) = (
gv

μν (r0)rμ
−rν

−
)4s

λr0 (r−) + . . . (B9)

in terms of the vortex metric g(r0) defined in the main text.
Here the dotted terms vanish with even higher powers of rμ

−
and λr0 (r−) is some function that we will not be concerned
with here, although we ask that it is finite (i.e., not infinite, it
is ok if it vanishes) as we would expect in a continuum model
with a smooth Gr0 (r−).

Using the pseudopotential expansion (B6), the energy is
then given by

E =
∞∑

n=0

N
∫

d2rd2r0vn(�∇ )2nδ(r−)

× ((gμν (r0)rμ
−rν

−)4sλ(r0) + . . .). (B10)

We then move all derivatives off the delta function through
integration by parts, and evaluate the rest of the integrand at
r− = 0 in accordance with the delta function. We see that for
n < 2s there are more powers of rμ

− than derivatives such that
the integrand must vanish at r− = 0. Thus, the energy only
receives contributions from n � 2s such that the ground-state
energy is expected to scale as d4s for small d � �. We expect
that other competing states will not be zero modes under all
terms with n < 2s, such that the state (B1) emerges as the
ground state as d → 0.

APPENDIX C: STRAIN, GRAPHENE,
AND TWISTED BILAYER GRAPHENE

This appendix gives details of strain in graphene and TBG
that are used in examples in the main text.

1. Graphene

To set conventions, let R1,2 = (1/2,∓√
3/2)a be the lat-

tice of graphene, where a is the graphene lattice constant.
Consider graphene where atoms are displaced from their equi-
librium positions by u(r). One can think of this as embedding
a 2d crystal of graphene—with regularly spaced atoms—into
3d space in the laboratory. These two frames are called the
crystal and laboratory frames respectively, and have coordi-
nates r′ and r [80–82]. The latter must be used when coupling
to all external probes. For instance, electron fields couple as
E · r. However, the lattice is only evenly spaced in the crystal
frame, making it useful for Fourier transforms. The metric
of the crystal frame is trivial, but the embedding makes the
metric nontrivial in the laboratory frame,

gμν (r) = δμν + 2uμν (r) = ea
μ(r)eb

ν (r), (C1)

where eaμ(r) = δaμ + δν
a uμν are tetrads giving an local or-

thonormal basis [80] and uμν (r) = 1
2 [∂μuν + ∂νuμ] is the

strain tensor in terms of the atomic displacements uμ(r).
At first order in a derivative expansion, the low-energy

continuum model of strained graphene is

ĥstrained graphene = vF

∫
d2rψ̂†eμ

a σ a( − i∂μ − Aμ(r))ψ̂ (r),

A = β

2a
(uxx − uyy,−2uxy), (C2)

where the strain gauge field A is determined by the elastic
coefficient β = ∂ ln t (d )/∂ ln d|d=a in terms of the hopping
matrix element t at separation d , and vF is the Fermi velocity
[110]. Remarkably, the Hamiltonian takes the form (C2) in
both frames at this order in derivatives, though it differs at
second order in derivatives, where a spin connection enters
[82].

2. Strained Twisted Bilayer Graphene

At twist angle θ , the unstrained moiré reciprocal lattice is
g1,2 = (2π/

√
3,±2π )L−1

M where LM = [2 sin θ
2 ]−1a in terms

of the graphene unit cell. A standard model for the low-energy
Hamiltonian (in the K valley) is [50]

ĤTBG(r) =
(−ivF σ · ∇ T (r)

T (r)† −ivF σ · ∇
)

UL

,

T (r) = wAB

[
κU0(r) U1(r)
U1(−r) κU0(r)

]
AB

, (C3)

where “UL” and “AB” specify layer and sublattice blocks
respectively. We take wAB = 110 meV, and 0 � κ � 1 is the
chiral parameter.

Here, −ivF σ · ∇ is the standard continuum model of
graphene for the top and bottom layers. Rotations of the Pauli
matrices are neglected, σ±θ/2 → σ, due to their negligible
effect at small twist angles. Although for the κ = 0 chiral
model of interest they may also be removed by a unitary
transformation [38].

The functions

U0(r) = e−iq1·r + e−iq2·r + e−iq3·r,

U1(r) = e−iq1·r + e−2π i/3e−iq2·r + e−4π i/3e−iq3·r (C4)

encode the tunneling between layers. The tunneling wavevec-
tors, which connect the Dirac points in each layer, are
q1 = kθ (0,−1) and q2,3 = kθ (±

√
3

2 , 1
2 ), where kθ = 4π

3LM
and

g1,2 = q2,3 − q1.
We now consider the effect of strain. Experimental samples

of TBG possess both external and internal strain. Externally
imposed strain (e.g., from the substrate) distorts the moiré
unit cell itself, and can significantly shift the energetics and
ground-state phases of the system [111,112]. Internal strain,
by contrast, leaves the moiré unit cell unchanged and expands
the AB regions while shrinking the AA regions. As internal
strain is caused by the action of one graphene sheet on the
other, it is necessarily present even in pristine and completely
isolated samples. Physically, this is because Bernal (AB)
stacking is energetically preferable to AA stacking. Therefore,
TBG locally displaces towards Bernal stacking everywhere
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FIG. 4. Internal strain of TBG. (a) Displacement field u(r) in units of the graphene scale aGr. The solid hexagon is a real-space unit cell.
(b) Magnitude of the displacement field |u(r)|. (c) Psuedomagnetic field in real space. All data is for θ = 1.05◦ and uses ab initio strain
parameters from [84].

except the centers of the AA regions, where the lattice instead
buckles out of plane. This effect has been carefully studied in
ab initio calculations and observed in experiments. As both
AB regions growing and AA regions buckling serve to reduce
the AA tunneling, it is often modelled phenomenologically by
reducing the chiral ratio from κ = 1 to κ = 0.5 − 0.8.

Here we take a more microscopic perspective. We consider
a moiré-periodic displacement field [83]

u(r) = u(r)+ − u(r)− =
∑

g

ugeig·r, (C5)

which is equal and opposite between the two layers ±. We
take parameters ug from Ref. [83] (see also [89]). This, in turn,
induces a moiré-periodic pseudovector potential

A±(r) = β

2a
(u±

xx − u±
yy,−2u±

xy), uμν (r)±

= 1

2
[∂rμ

u±
ν + ∂rν

u±
μ ], (C6)

and psuedomagnetic field B = dA, shown in Fig. 4. We
note this microscopically realistic psuedomagnetic field av-
erages to zero, but has peaks of ∼80 T [83]—a significant
perturbation.

The Hamiltonian for (internally) strained TBG is therefore

Ĥ (r) = ĤTBG(r) + vF

(
σμA+

μ (r) 0
0 σμA−

μ (r)

)
. (C7)

Permuting the layer and sublattice indices, we can write this
as

Ĥ (r) =
(

κT0(r) D†
TBG

DTBG κT0(r)

)
,

T0(r) =
[

0 U0(r)
U0(−r)

]
,

DTBG =
[

2χ
μ
+ (r)(−i∂μ + A+

μ ) αU1(r)
αU1(−r) 2χ

μ
− (r)(−i∂μ + A−

μ )

]
,

(C8)

where χ
μ
± (r) = 1

2 [eμ
1± + ieμ

2±]. Replacing A(r) → αsA(r)
and taking κ → 0 gives Eq. (17) in the main text.

Equation (C8) retains the symmetries of unstrained TBG,
including C3z, C2x, and particle-hole symmetries. This is be-
cause we consider strains which are equal and opposite in the
two layers, and because the displacement field u±(r) is itself
C3 and C2x symmetric (Fig. 4)—and hence A(r) is as well.

APPENDIX D: REVIEW OF TRADITIONAL
BAND GEOMETRY

This section will review “traditional” results on band ge-
ometry and its relationship to the FQHE. We start off by
recalling the definitions of band geometry, and the key re-
sults on how to mimic a Landau level from conditions on
band geometry. One of these conditions—the determinant
condition—can be understood as a k-dependent generaliza-
tion of the trace condition. However, we immediately argue
that the determinant condition is not physically meaningful
in the context of FQHE physics. Our treatment is entirely
self-contained.

For ease of referencing, we copy the band geometry defi-
nitions from the main text below,

η̃μν (k) =
∑

a

〈∂kν ukb|Q(k)|∂kμuka〉,

Q(k) = 1 −
∑

a

|uka〉〈uka|,

gμν
FS(k) = Reη̃μν (k), F (k)εμν = − 1

2 Imη̃μν (k). (D1)

1. Landau Level Mimicry

The FS metric and Berry curvature for the LLL are
given by

gμν

FS, 0(k) = 1
2�2δμν, F0 = �2, (D2)

where � is the magnetic length [32,50]. Roy showed that the
Girvin-Macdonald-Platzmann algebra [36] of density opera-
tors holds if the Fubini-Study metric and the Berry curvature
are the same as those of the LLL [37]. If, additionally, the band
is flat with Chern number ±1, then the many-body problem
of electrons interacting in the LLL is fully reproduced and we
expect to obtain an FCI in the band of interest.
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While a full mimicking of the LLL band geometry is
required for Roy’s result, partial results may or may not be
sufficient. Each of the following conditions have been pro-
posed as potential conditions, perhaps sufficient, or necessary,
or both, for ideality (see e.g., [27]).

(G1) The Berry curvature is k independent.
(G2) The Fubini-Study metric is k independent.
(G3) The determinant inequality

∫
d2k

√
det gFS � π |C|

is saturated (determinant condition).
(G4) The trace inequality

∫
d2ktrgFS(k) � 2π |C| is satu-

rated (trace condition).
As the geometry of the LLL (D2) obeys trgFS, 0(k) = �2 =

F0 and
√

det gFS, 0(k) = �2/2, all four conditions are exactly
satisfied. The k independence of gFS and F originates from
continuous magnetic translation symmetry, and the relation-
ship (G4) between the FS metric and the Berry curvature can
be understood through vortexability, as discussed in the main
text.

We note that there are relationships between the above
conditions that we will now review. The inequality in condi-
tion (G3) comes from noting that η̃ is a positive semidefinite
matrix and computing

det η̃ = det gFS − 1
4 |F |2 � 0. (D3)

The inequality in (G3) then follows from taking a square
root, integrating over k, and applying the fact∫

d2k|F | �
∫

d2kF = 2πC. (D4)

Therefore, the inequality in (G3) is saturated if and only if
det η̃ = 0 and F does not change sign. The inequality in (G4)
then follows by applying the arithmetic mean-geometric mean
(AM-GM) inequality on the real and positive eigenvalues
of gFS , which yields trgFS � 2

√
det gFS. The trace condition

(G4) therefore implies the determinant condition (G3) and is
satisfied if and only if gμν

FS = ± 1
2Fδμν such that the AM-GM

inequality is saturated for the eigenvalues of g and F does
not change sign. Additionally, this implies that (G1) and (G4)
together imply (G2). Thus, if (G1) and (G4) are satisfied, all
four conditions are.

There is a rich structure associated with conditions (G3)
and (G4). In particular, the determinant condition is saturated
if and only if the Berry curvature does not change sign6 and
there is a complex vector ωμ(k) that varies smoothly with k
that satisfies the following equivalent conditions.

(D1) The vector ωμ(k) is a zero mode of the quantum
metric, ωμ(k)η̃μν (k) = 0.

(D2) The periodic wavefunctions satisfy Q(k)∂k |uk〉 = 0
with ∂k = ωμ(k)∂kμ .

(D3) The Bloch wavefunctions satisfy zk |ψka〉 =
Pzk |ψka〉 where zk = ωμ(k)rμ.

6Note that sign changes of the Berry curvature are somewhat sin-
gular when the determinant condition is satisfied because they come
with a degenerate metric det gFS = 0, see (D3). If one only demands
4 det gFS(k) = F (k)2 for all k, rather than

∫
d2k

√
det gFS = π |C|,

then sign changes of the Berry curvature are allowed.

The trace condition (G4) is a special case of the de-
terminant condition with gμν

FS ∝ δμν and corresponds to the

k-independent ωμ(k) = (1 i)T such that zk = z = x + iy.
The condition (D3) is a weaker version of vortexability

where the vortex function is allowed to be k dependent. To our
knowledge, this weaker vortexability condition does not en-
able us to make any pseudopotential arguments. Furthermore,
we will soon argue that ideality conditions for the FQHE
should be invariant under forgetting translation symmetry, and
the determinant condition is not—unless ωμ is k independent
(see Appendix D 3). A generic k-independent ωμ is a mild
generalization of the trace condition; the usual trace condi-
tion may be recovered by the linear transformation on k that
makes the Fubini-Study metric proportional to the identity
matrix.

Let us now prove the equivalence of (D1)–(D3) to the de-
terminant condition with single-sign Berry curvature. We first
prove this for (D1) and then show (D1) ⇐⇒ (D2), (D2) ⇐⇒
(D3). Note that the determinant condition is satisfied if and
only if det η̃(k) = 0 for all k and the Berry curvature has the
same sign throughout the BZ; see the discussion around (D3),
(D4). Then the condition det η̃(k) = 0 is satisfied if and only
if there is a zero mode ωμ(k)η̃μν (k) = 0.

To show (D1) ⇐⇒ (D2) we compute

ωμ(k)η̃μν (k)ων (k) =
∑

a

〈
ων∂

kν uka

∣∣Q(k)
∣∣ωμ∂kμuka

〉
=

∑
a

‖Q(k)∂kuka‖2. (D5)

The vanishing of the left- and right-hand sides are equivalent
to (D1) and (D2), respectively.

We finish by showing (D2) ⇐⇒ (D3) using an argument
that is very similar to that of the trace condition vortexability
in the main text; we include the details here for completeness.
We begin with the product rule

−i∇k

∣∣ψa
k

〉 = r̂
∣∣ψa

k

〉 + eikr(−i∇k)
∣∣ua

k

〉
. (D6)

Acting with Q := 1 − P = 1 − ∑
ka |ψka〉 〈ψka| annihilates

the left-hand side of Eq. (D6), giving

Qr
∣∣ψa

k

〉 = Qieik·r∇k

∣∣ua
k

〉
. (D7)

For clarity, the projector Q acts on Bloch periodic wave-
functions |ψk〉 and contains a sum over k, whereas Q(k)
acts on periodic wavefunctions, appears in the definition of
quantum geometry (D1), and contains no sum over k. Since
〈ψk′ | eik·r∇k |uk〉 vanishes for k �= k′ by translation symmetry,
we have Qeik·r∇k |uk〉 = eik·rQ(k)∇k |uk〉, a rewriting of the
right-hand side of (D7). We therefore have

Qrμ|ψka〉 = eik·rQ(k)i∂kμ |uka〉, (D8)

such that dotting each side with ωμ(k) gives

Qzk|ψka〉 = 0 ⇐⇒ Q(k)∂k|uka〉, (D9)

which establishes the equivalence between (D2) and (D3).
In Ref. [31], the condition (D2) was interpreted in the

context of Kähler geometry. In particular, the periodic wave-
functions |uka〉 determine a map from the Brillouin zone to
complex projective space (such that the unphysical phase of
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the wavefunction is quotiented away). This map is a holomor-
phic function of the complex coordinate k, where k solves the
Beltrami equation ∂kk = 0, if and only if the condition (D2) is
satisfied with a “nondegenerate” ωμ(k). By nondegenerate we
mean that the metric g(ω)

μν = Reωμων is nondegenerate (i.e.,
bounded with no zero modes). It is possible to show that this
is the case if the Fubini-Study metric is bounded with no zero
modes, as gFS ∝ (g(ω) )−1, but this will not be important for us.

Through such a holomorphic map, the Kähler structure of
complex projective space is pulled back to the Brillouin zone
and the pull backs of the Riemannian metric and symplectic
form of complex projective space may be identified as the
Fubini-Study metric and the Berry curvature respectively [31].

2. Holomorphic Bloch wavefunctions

The determinant and trace conditions enable us to perform
a gauge transformation, that is in general nonunitary and non-
periodic,

|uk〉 → |uk〉 = S(k)|uk〉, (D10)

with matrix multiplication in band indices, such that the new
wavefunction is a holomorphic function of the coordinate
k [31]

∂k |uk〉 = ωμ(k)∂kμ |uk〉 = 0. (D11)

In this appendix we will explicitly construct such an S(k).
While S(k) is in general nonunitary and nonperiodic, this is

a powerful result that we will use to prove a uniqueness result
on vortex functions (Prop. 3 below). Indeed, as discussed in
the main text, there is always a coordinate frame for which
vortexable bands satisfy (D1) and (D2) with a k-independent
ωμ (see also Prop. 2). We imagine k holomorphicity will be a
future calculational tool as well for working with such bands,
so we elaborate on how to choose such a gauge here.

To obtain (D11) we will combine (D2), Q(k)∂k |uk〉 = 0, a
gauge invariant statement, with a choice of S(k) such that

∂k (Sk |uk〉)︸ ︷︷ ︸
|uk〉

= [Q(k) + P(k)]∂k(Sk |uk〉)

= P(k)∂k(Sk |uk〉) = 0,

⇐⇒ (∂k + iAk )Sk = 0, (D12)

where Ak(k) = ωμAμ(k) is a matrix-valued function of k,
and Aμ

ab(k) = −i 〈ukb| ∂kμ |uka〉 is the Berry connection. We
assume the Berry connection is smooth in k (and therefore
not periodic under translations by reciprocal lattice vectors).
Such a gauge choice is always possible.

We will solve the right side of (D12) with an explicit ansatz
for Sk. We begin by noting the identity

∂kW [ f ](k) = f (k),

W [ f ](k) = 1

2π i

∫
C

f (k − ζ )

ζ
dζdζ . (D13)

Note that f does not need to be holomorphic. For complete-
ness we pause to prove (D13). We excise an arbitrarily small
disk Dε centered at the origin with radius ε (where the denom-

inator becomes singular) and compute, using Stokes’ theorem

∂kW [ f ](k) = lim
ε→0

1

2π i

∫
C−Dε

∂k
f (k − ζ )

ζ
dζ ∧ dζ

= − lim
ε→0

1

2π i

∫
C−Dε

∂ζ f (k − ζ )

ζ
dζ ∧ dζ

= lim
ε→0

1

2π i

∮
∂Dε

f (k − ζ )

ζ
dζ

= f (k) lim
ε→0

1

2π i

∮
Dε

dζ

ζ

= f (k). (D14)

To apply Stokes’ theorem, we used the differential-form

calculation d ( f
ζ

dζ ) = ∂ζ f

ζ
dζ ∧ dζ away from ζ = 0. The

negative sign in the second line originates from the chain rule
and disappears in the third line due to change in orientation
from ∂ (C − Dε ) to ∂Dε. Finally, we pulled f (k − ζ ) ≈ f (k)
out of the integral using the ε → 0 limit in which the integral
domain involves arbitrarily small ζ .

We now write the ansatz

Sk = 1 − iW [h](k) (D15)

under which we may solve (D12) for h iteratively,

h = Ak − iAkW [h],

= Ak − iAkW [Ak] + (−i)2AkW [AkW [Ak]] + . . . . (D16)

We may view the above solution as a generalization of the
path ordered exponential used to solve real first-order matrix
differential equations. To show convergence of Eq. (D16), we
first show that it converges locally and then patch together
local solutions. We may partition the total space C (that k lives
on) with an open cover of sets Ui for Ui arbitrarily small. Note
that on a set Ui of diameter δ we have |W [ f ]| � δ maxUi | f |,
such that (D16) converges for sufficiently small δ. It remains
to patch the solutions on the various Ui together, but there is
no obstruction to this because C is contractible. Explicitly, on
intersections Ui ∩ Uj , the solutions differ by a holomorphic
matrix, Si(k) = Fi j (k)S j (k). To see this, apply ∂k to Fi j =
S−1

j Si and use (D12). The collection of matrices Fi j (k) may
be interpreted as transition functions for a holomorphic vector
bundle over C. But since C is contractible, there exists trivial-
izing functions gi(k) such that Fi j (k) = gi(k)g j (k). Then the
matrix Sk = gi(k)Si(k) is independent of the patch i, and is
thus globally defined.

We have now shown the existence of a complexified gauge
Sk so that |uk〉 = Sk |uk〉 is k holomorphic.

3. The determinant condition is not folding invariant

One filtration technique on natural ideal conditions for
fractional quantum Hall states is invariance under the process
of “forgetting” translation symmetry. Indeed, opting to use
the maximally sized Brillouin zone is a choice; the fractional
quantum Hall effect is just as likely to occur if we use a differ-
ent description to describe the single-particle wavefunctions.

Another way to motivate this requirement is that the FQHE
is stable under weak perturbations, and so the single-particle
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band-geometric heuristics should not drastically change under
such perturbations, for example, an arbitrarily weak perturba-
tion that breaks translation symmetry to a subgroup and folds
the Brillouin zone onto itself.

Consider enlarging the real-space unit-cell area by a factor
of M. This increases the number of bands from N to MN
and causes M vectors Qm in the original first Brillouin zone
to become reciprocal lattice vectors, such that the new first
Brillouin zone is M times smaller. This “folding” of the Bril-
louin zone corresponds to a new labeling of the single-particle
wavefunctions ∣∣ψ f

k(a,m)

〉 = ∣∣ψk+mQm,a
〉
, (D17)

for k in the folded Brillouin zone, which is M times smaller
than the original Brillouin zone. Correspondingly∣∣u f

k(a,m)

〉 = eiQm·r∣∣uk+mQm,a
〉
. (D18)

The “forgotten” translation symmetry implies that
〈ũk(a,m)|ũk′(a′,m′ )〉 = 0 for m �= m′, even if k �= k′. The new
quantum metric can therefore be computed as

η̃
μν

f (k) =
∑

m

η̃μν (k + Qm) (D19)

such that it is now periodic in the new first Brillouin zone.
We will now show that the determinant condition is not

invariant under the operation of forgetting translation sym-
metry and folding the Brillouin zone, except when ωμ(k) is
k independent. In this case the trace condition in linearly
transformed coordinates is satisfied. We use condition (D1),
ωμ(k)η̃μν (k) = 0. For this to be true for η̃ f (k), which is a
sum of positive definite matrices η̃(k + Qm), we must have
that the zero modes ω(k + Qm) all coincide. If we consider
a thermodynamically large system and forget all translation
symmetry, then the vectors Qm form a dense subset of the
Brillouin zone such that we must have a k-independent ωμ

as claimed.
Note that our result—that the determinant condition is

folding invariant if and only if ωμ(k) is constant—was first
obtained by Refs. [31,32] from a mathematical perspective of
satisfying the determinant condition on the twist-angle torus.
Their twist-angle torus effectively emerges when we forget all
translation symmetry, such that the entire system is a single
unit cell and the Bloch boundary conditions and the twist-
angle boundary conditions may be identified.

APPENDIX E: UNIQUENESS OF THE VORTEX FUNCTION

This appendix is devoted to proving a uniqueness result
on vortexable bands, Prop. 3. We show that under mild
assumptions—a “generic” continuum model with discrete
translation symmetry—vortex functions are unique. Some
restriction on the electron density is necessary to avoid patho-
logical cases: The vortex function may take arbitrary values
where the band has no density. For example, in the strict
tight-binding limit only the values of the vortex function at
atomic sites matter. We will take the electron density to be
finite continuous and almost never zero, which is sufficient
for our proof and is the typical situation in continuum models.
The assumption of lattice translation symmetry can perhaps
be weakened, although we emphasize that the unit cell of

the lattice can be arbitrarily large and we do not restrict the
number of Bloch bands. We expect most condensed-matter
systems to be translation symmetric in the limit where the unit
cell is taken to be thermodynamically large.

We will have to prove some prerequisite results before
directly addressing uniqueness. We start with a simple result
on the form of vortexable bands with translation symmetry.

Proposition 1. Consider a vortexable band with discrete
translation symmetry, r → r + a and ∂μz(r + a) = ∂μz(r).
Then z(r + a) = z(r) + ωμaμ for some complex vector ωμ.

Proof. From ∂μz(r + a) = ∂μz(r) we conclude that z(r +
a) = z(r) + βa for an a-dependent constant βa. Iterating
translations, we find βa1+a2 = βa1 + βa2 such that β is a linear
function on the lattice. We may therefore write βa = ωμaμ for
some complex-valued vector ωμ. �

We will find it convenient to use a unit-cell averaged ver-
sion of the vortex geometry to characterize ωμ.

Lemma 1. Consider a vortexable band with discrete trans-
lation symmetry z(r + a) = z(r) + ωμaμ (Prop. 1). We have∫

uc
�(r)d2r = �(ω)Auc = −iεμνωμωνAuc. (E1)

Here � = −iεμν∂μz∂νz is the vortex chirality, the
integral is over the unit cell, Auc is the unit-cell area, and
�(ω) = −iεμνωμων . Furthermore, the metric g(ω)

μν = Reωμων

is nondegenerate (det g(ω) �= 0).
Proof. First we write � as a curl

� = −iεμν∂μz∂νz = −iεμν∂μ(z∂νz) = ẑ · ∇ × A,

Aμ = −iz∂μz, (E2)

such that we may apply Stokes’ theorem∫
uc

�d2r =
∮

∂uc
A · dr, (E3)

where the line integral is taken counterclockwise around the
parallelogram defined by the points r, r + a1, r + a1 + a2, r +
a2. We may group the paths associated with the opposite sides
of the parallelogram and use the boundary condition z(r +
a) = z(r) + ωμaμ. We then obtain∮

∂uc
A · dr = −i

∫ r+a1+a2

r+a1

ωμaμ
1 ∇z · dr

− i
∫ r+a2

r+a1+a2

ωνaν
2∇z · dr

= −iωμaμ
1 ωνaν

2 − ωμaμ
2 ωνaν

1

= −i(ωμων − ωνωμ)aμ
1 aν

2

= −iερσ ωρωσ Auc, (E4)

where we used that two-dimensional antisymmetric matri-
ces Bμν are proportional to εμν and therefore satisfy Bμν =
1
2ερσ Bρσ εμν . We also identified εμνaμ

1 aν
2 = Auc. For the last

part of the proposition we use the rank one Hermitian
matrix η(ω)

μν = ωμων . Computing 0 = det η(ω) = det g(ω) −
|�(ω)|2 then implies that det g(ω) �= 0. �

Proposition 2. Suppose we have a vortexable band with
discrete translation symmetry r → r + a, where the vortex
function satisfies z(r + a) = z(r) + ωμaμ (Prop. 1). Define
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periodic wavefunctions

|u′
ka〉 = e−ik·r′ |ψka〉, (E5)

using a periodic diffeomorphism r′(r + a) = r′(r) + a. We
may choose r′(r) such that

(1) Q(k)∂k |uka〉 = 0 where ∂k = ωμ∂kμ

(2) There exists a gauge choice |uk〉 = Sk |uk〉, where Sk is
invertible but generically nonunitary, so that

∂k |uk〉 = 0, (E6)

i.e., the periodic wavefunctions are holomorphic functions
of k.

Here k is a linear function of k such that ∂kk = 0.
Proof. The coordinate system r′(r) is obtained by first

choosing “nonperiodic” coordinates rz(r) where z = xz + iyz
using the fact that z : R2 → C is a diffeomorphism [see be-
low Eq. (5)]. These coordinates satisfy

rμ
z (r + a) = rμ

z (r) + Jμ
ν aν (E7)

where Jx
μ = Reωμ and Jy

μ = Imωμ. We have JT J = g(ω), and
det g(ω) �= 0 (Lemma 1), so J is invertible. We then define
(r′)μ = (J−1)μν rν

z , whereupon

r′(r + a) = r′(r) + a (E8)

as claimed. With this choice z = ωμr′μ. Then the equiva-
lence (D1) ⇐⇒ (D2) ⇐⇒ (D3) in Appendix D, applied to
the wavefunctions |u′

ka〉 = e−ik·r′ |ψka〉, implies that ωμ is a
left zero mode of the quantum metric and Q(k)∂k |uka〉 = 0.
Next, the nondegeneracy det g(ω) �= 0 together with the dis-
cussion of Appendix D 2 enables us to construct an Sk such
that ∂k |uk〉 = 0. �

A canonical choice of holomorphic coordinate k is

k = i
(
�(ω)

)−1
εμνωμkν, (E9)

where �(ω) = −iεμνωμων from Lemma 1. The definition (E9)
was chosen so that

∂kk = ωμ∂kμk = 0, ∂kk = ωμ∂kμk = 1. (E10)

A conceptual point worth emphasizing is that vortexability
z |ψ〉 = Pz |ψ〉 remarkably does not depend on the Hilbert
space inner product 〈·|·〉—despite its dependence on the or-
thogonal projector P = P (〈·|·〉). Indeed, the existence of a
gauge where ∂kuk = 0 is satisfied is completely independent
of the Hilbert space inner product, its equivalence to vortexa-
bility notwithstanding.

We need one last technical Lemma before the uniqueness
result. Namely, we need to understand some properties of the
k-space zeros of wavefunctions in the holomorphic gauge.
The existence of such zeros and their relation to the Chern
number was shown by Ref. [49] for a single Bloch band. Since
vortexable “bands” can contain many Bloch bands, we must
prove this result for multiple bands. This follows by passing
to wavefunctions

Uk(r1 . . . rN ) = εa1,...aN uka1 (r1) . . . ukaN (rN ). (E11)

in the “determinant-line-bundle” associated to the vector bun-
dle of Bloch wavefunctions uka.

Lemma 2. Consider a vortexable band with discrete trans-
lation symmetry z(r + a) = z(r) + ωμaμ (Prop. 1), such that

there are holomorphic periodic wavefunctions |uk〉 (Prop. 2)
where k is given by (E9). Then the Chern number is given by
the contour integral around the boundary of the Brillouin zone

C = 1

2π i

∮
∂BZ

∂k ln Uk(r1 . . . rN )dk = Nz (E12)

where ∂k and k are given in (E9), (E10) such that ∂kk = 1. The
integral counts the number of k-space zeros Nz, multiplicities
included, of Uk defined in (E11).

Proof. We first show that the integral counts the number
of zeros. Note that the logarithm log Uk, as well as Uk, are
k-holomorphic functions where they are defined (away from
zeros of the logarithm). Thus we may use Cauchy’s integral
theorem to deform the path of the integral as we please, as
long as we do not cross any zeros. We deform the path such
that it makes an arbitrarily small circle Cα around each zero
and retraces its path between zeros, such that we obtain a
sum of contour integrals around each zero. Near a zero at kα

with multiplicity pα we have that Uk(r1, . . . rN ) ∝ (k − kα )pα ,
which implies

1

2π i

∮
∂BZ

∂k ln Uk(r1 . . . rN )dk =
∑

α

1

2π i

∮
Cα

pα∂k ln(k − kα )

=
∑

α

pα = Nz. (E13)

We now compute (E13) directly on the boundary of the
Brillouin zone using k-space boundary conditions to relate it
to the Chern number of the band. Specifically, we have that
uk+G is related by a gauge transformation �G(k), a matrix in
band space, to e−iG·ruk,

uk+G = �G(k)e−iG·ruk. (E14)

For the function (E11) we have

Uk+G({ra}) = det �G(k)e−iG·∑a ra Uk({ra}). (E15)

We may then directly compute the contour integrate around
the parallelogram k, k + G1, k + G1 + G2, and k + G2 as

2π iNz =
∮

∂BZ
∂k ln Uk(r1 . . . rN )dk

=
∫ k+G1+G2

k+G1

∂k ln det �G1 (k − G1)

+
∫ k+G2

k+G1+G2

∂k ln det �G2 (k − G2)dk

= ln det �G1 (k + G2) − ln det �G1 (k)

+ ln det �G2 (k) − ln det �G2 (k + G1). (E16)

Note that the dependence of the boundary conditions (E15)
on ra has dropped out due to the derivative ∂k. We now
compute the Chern number of the vortexable band using the
boundary conditions (E14). First we deal with the fact that
our choice of holomorphic gauge has resulted in nonorthonor-
mal band basis. The usual definition of the Berry connection
Aab = −i 〈ukb| ∇k |uka〉 is not valid in this setting: it is only
gauge covariant under unitary gauge transformations. There
is a simple fix, however, through the use of the Gram matrix
Xab(k) = 〈ukb| |uka〉, which transforms as X (k) → SkX (k)S†

k
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for general invertible Sk. The Berry connection

Aab(k) = −i(〈uk| X −1)b∇k |uka〉 (E17)

transforms as

A(k) → S−1
k A(k)Sk − iS−1

k ∇kSk (E18)

under a general invertible gauge transformation Sk. Thus, un-
der k → k + G we have, using the holomorphic gauge |uk〉
and the associated boundary conditions (E14),

A(k + G) = �−1
G (k)A(k)�G(k) − i�−1

G (k)∇k�G(k)
(E19)

such that

tr(A(k + G) − A(k)) = −itr�−1
G (k)∇k�G(k)

= −i∇ktr log �G(k)

= −i∇k log det �G(k). (E20)

We now compute the Chern number, which in our smooth
nonperiodic gauge can be obtained via Stokes’ theorem

2π iC = i
∫

BZ
d2kF (k)

= i
∮

∂BZ
A · dk

= i
∫ k+G1+G2

k+G1

(A(k) − A(k − G1)) · dk

+ i
∫ k+G2

k+G1+G2

(A(k) − A(k − G2)) · dk

=
∫ k+G1+G2

k+G1

∇k ln det �G1 (k − G1) · dk

+
∫ k+G2

k+G1+G2

∇k ln det �G2 (k − G2) · dk

= ln det �G1 (k + G2) − ln det �G1 (k)

+ ln det �G2 (k) − ln det �G2 (k + G1). (E21)

Comparing (E21) and (E16) yields our desired result. �
We are now in a position to state and prove our uniqueness

result.
Proposition 3. A vortexable band with discrete transla-

tion symmetry r → r + a, ∂μz = ∂μz(r + a) and an electron
density ρ(r) = ∑

ka |ψka(r)|2 that is finite, continuous, and
almost never zero, has a unique vortex function up to affine
transformations z → αz + β.

Proof. In this proof we will restrict to C,� > 0 without
loss of generality (note that for C = 0 the assumption that
the electron density is finite and continuous is false, see Ap-
pendix A 1). Let us assume that there are two vortex functions
z1 and z2 (which we will eventually show must be related by
an affine transformation) that satisfy

z1(r + a) = z1(r) + ω(1)
μ aμ, z2(r + a) = z2(r) + ω(2)

μ aμ.

(E22)

By Prop. 2, we have periodic wavefunctions∣∣u(i)
k(i)

〉 = S(i)
k e−ik·r′

i |ψk〉, (E23)

for i = 1, 2 such that |u(i)
k(i)〉 is a holomorphic function of k(i) =

i(�(ωi ) )−1εμνω(i)
μ kν and S(i)

k is a matrix in band space that
implements the choice of a holomorphic gauge. The periodic
wavefunctions are related as∣∣u(1)

k1

〉 = e−ik·(r′
1−r′

2 )S̃k

∣∣u(2)
k2

〉
. (E24)

where S̃k = (S(1)
k )−1S(2)

k . We wish to show that ω(1)
μ ∝ ω(2)

μ .
The intuition is as follows: the shape of the k-space zeros of
u(1,2) should be similar since they are related linearly as (E24).
Such zeros must exist due to C > 0, which can be justified
using Lemma 2. However, the shape of the respective zeros
are described by ω(i)

μ , which should therefore be proportional
to each other. The multiband nature of (E24) makes it difficult
to immediately conclude this, however, so we pass to “Slater
wavefunctions”

U(i)
k(i) (r1, . . . rN ) = εa1,...aN u(i)

ka1
(r1) . . . u(i)

kaN
(rN ), (E25)

where N is the number of Bloch bands (that comprise a single
vortexable “band”). Using (E24) we obtain

U(1)
k1

(r1, . . . rN ) = det(S̃k)e−ik·∑N
a=1(r′

1(ra )−r′
2(ra ))U(2)

k2
(r1, . . . rN ).

(E26)

Since C > 0, Lemma 2 implies that both U(1)
k1

and U(1)
k2

have
exactly C zeros in the Brillouin zone (we will only focus on
one). In fact, due to the proportionality Eq. (E26), the set
of zeros and their multiplicities is the same for both wave-
functions. These zeros are in general dependent on {ri}; the
real-space coordinates should be understood as fixed in the
discussion below. Let us choose one of the zeros k0, which
has the corresponding complex coordinates k(i)

0 = k(i)(k0). As
k → k0, we have

Uk(i) (r1, . . . , rN ) ∝ (
k(i) − k(i)

0

)p = (
εμνω(i)

μ [kν − (k0)ν]
)p

.

(E27)

Combining this with Eq. (E26) and taking the limit k → k0,
we must have

εμνω(1)
μ δkν

εμνω
(2)
μ δkν

= constant, (E28)

for all δkν = kν − k0,ν . This is only possible if ω(1)
μ ∝ ω(2)

μ ,
which follows from successively setting δk = (1, 0) and δk =
(0, 1) in (E28). We have nowhere set the scale of zi and ω(i)

μ ,
so let us scale the vortex functions zi by a suitable complex
number such that ω(1)

μ = ω(2)
μ = ωμ and k1 = k2 = k. The

relationship (E24) now takes the form∣∣u(1)
k

〉 = e−ik·(r′
1−r′

2 )S̃k

∣∣u(2)
k

〉
. (E29)

We act with ∂k,

0 = i∂k
∣∣u(1)

k

〉 = ωμ

[
r′μ

1 − r′μ
2 − (

∂kμ S̃k
)
S̃−1

k

∣∣u(1)
k

〉
= (z1 − z2 − Tk)

∣∣u(1)
k

〉
, (E30)

where we set Tk = (∂kS̃k)S̃−1
k . We wish to show that Tk must

be diagonalizable. Suppose not, and consider a sufficiently
small region B of k space such that the eigenvalues of Tk,
λi(k), remain fixed in number and do not have crossings. Then
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we have a Jordan decomposition Tk = VkMkV −1
k where

M = diag
(
Mλ1 , Mλ2 , . . .

)
where Mλ =

⎛
⎜⎜⎝

λ 0 0 · · ·
1 λ 0 · · ·
0 1 λ · · ·
...

. . .

⎞
⎟⎟⎠.

(E31)

Let us focus on a single Jordan block of size D × D associated
to an eigenvalue λ(k). We assume and soon contradict D > 1.
Put |ũ(1)

k 〉 = Vk |u(1)
k 〉. Then in this block we have

0 = [z1(r) − z2(r)]ũ(1)
k,i (r) +

∑
j

Mi j (k)ũ(1)
k, j (r) (E32)

for 1 � i � D. For i = 1, using the Jordan form (E31) we have

0 = [z1(r) − z2(r) − λ(k)]ũ(1)
k,1(r). (E33)

such that whenever ũ(1)
k,1(r) �= 0, for k in our restricted region

B, we have z1(r) − z2(r) = λ(k) = λ. The equation for i = 2
yields

0 = [z1(r) − z2(r) − λ(k)]ũ(1)
k,2(r) + ũ(1)

k,1(r). (E34)

The result (E34), together with (E33), implies that D = 1 such
that M is diagonal: indeed, choose some r = r0 for which
ũ(1)

k0,1
(r0) �= 0. Then using (E33) we may set z1(r0) − z2(r0) −

λ(k) = 0 in (E34), which contradicts our assumption that
M has a Jordan block of size larger than 1. We may then
take M = diag(λ1(k), . . . , λN (k)). For any r for which the
density ρ(r) �= 0, which almost all r by assumption, there
is a neighborhood of r (by continuity) such that u(1)

ki (r) �= 0.
Using (E32) for this i we conclude z1(r) − z2(r) = λi(k), or
alternatively ∇r(z1(r) − z2(r)) = 0 for almost all r. Continu-
ous functions cannot differ only on measure zero sets of R2

so we must have ∇r(z1(r) − z2(r)) = 0 for all r such that
z1(r) − z2(r) differ only by a constant λ as claimed. �

We now conclude by restricting ωμ in systems with discrete
n > 2 fold rotation symmetry.

Proposition 4. Consider a vortexable band with discrete
translation symmetry z(r + a) = z(r) + ωμaμ, a finite contin-

uous and generically nonzero electron density, and Cn>2 fold
rotation symmetry. Then we can scale the vortex function such
that z(r + a) = z(r) + ax + i sign(�)ay.

Proof. Without loss of generality we measure r from a
center of rotation such that r → Cnr is the vector action of
rotations. From [P,Cn] = 0, we have that z(Cnr) is a vortex
function if z(r) is, such that z(Cnr) ∝ z(r) by uniqueness
(Prop. 3). Such one-dimensional representations of Cn are
labeled by an angular momentum m, modulo n, that counts
the minimum number of times z winds around 0 upon a 2π

rotation of r. Since z is injective as a consequence of (5), the
angular momentum must be ±1. We therefore conclude

z(Cnr) = e±2π i/nz(r). (E35)

We will soon see that the ± sign corresponds to chirality
sign(�). (This is reasonable because it flips under z → z and
is positive for z = x + iy.) Let us add a constant to z such that
z(r = 0) = 0. Then we have, using Prop. 1,

z(a) = ωμaμ. (E36)
Combined with (E35) we have

ωμ(Cna)μ = e±2π i/nωμaμ. (E37)

We claim that (E37) implies

ωμaμ = γ (ax ± iay) (E38)

for some constant γ . A geometric picture is helpful here.
Consider first the + sign in (E37). The complex vector ωμ can
be understood as a linear map R2 → C � R2 that commutes
with rotation symmetry (counterclockwise in both the domain
and codomain). If it is not equal to a constant γ times the
identity, then it has two distinct eigenvectors must be each
rotationally invariant, which is impossible. For the (−) rep,
we may use the same argument above after applying an orien-
tation reversal on one of the domain or codomain.

We now identify the ± sign in (E38) with sign(�). This
follows from sign(−iεμνωμων ) = ± for ω = (1 ±i)T and
the usage of Lemma 1. Then taking z → z/γ completes the
proof. �
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