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Emergent Z2 symmetry near a charge density wave multicritical point
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We consider the critical behavior associated with incommensurate unidirectional charge-density-wave order-
ing in a weakly orthorhombic system subject to uniaxial strain as an experimentally significant example of
U (1) × U (1) multicriticality. We show that, depending on microscopic details, the phase diagram can have
qualitatively different structures which can involve a vestigial metanematic critical point, a pair of tricritical
points, a decoupled tetracritical point, or (at least at mean-field level) a bicritical point. We analyze the emergent
symmetries in the critical regime and find that these can—at least in some cases—involve an emergent Z2 order
parameter symmetry.
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I. INTRODUCTION

From an electronic structure perspective, ErTe3 is very
nearly tetragonal, but from a structural perspective, due to
the presence of a glide plane, it is intrinsically orthorhombic
[1]. Below a well-characterized transition temperature, Tc, it
exhibits unidirectional incommensurate charge-density-wave
(CDW) order with ordering wave vector along the orthorhom-
bic c axis. In the presence of an in-plane unidirectional applied
stress s in excess of a modest critical value, s∗ (or, more
generally, anisotropic in-plane strain greater than some critical
value), the CDW ordering wave vector rotates by π/2 to lie
along the a axis [2–4]. Moreover, for temperatures slightly
above Tc, the nematic susceptibility (as inferred from the
elastoresistance) as a function of strain is strongly peaked at
s = s∗ [3]. These observations motivate us to reconsider the
possible multicritical phase diagrams relevant to this general
situation in which there are two distinct U (1) order parameters
(associated with breaking of translational symmetry in the two
directions).

From a symmetry perspective, the two CDW states found
for ErTe3 are fundamentally distinct; this is an inescapable
consequence of the orthorhombic crystal structure. For in-
stance, while the magnitudes of the ordering wave vectors
in the two directions are similar, they are not identical [3].
Similarly, the magnitude of the slope of Tc with respect to s
is different for the two states [3]. Nonetheless, we identify
circumstances when, in a sense that we will define precisely,
there is an emergent Z2 symmetry under exchange of the two
order parameters that characterizes the critical regime—i.e.,
the system behaves as if it were truly tetragonal at a critical

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

value of the stress, s = s�, and for T close to an appropriate
critical point.

Specifically, we consider a Landau-Ginzburg-Wilson ef-
fective field theory with two complex scalar order parameters,
φ1 and φ2, corresponding to the two components of the CDW
order. We will consider the solution of this problem in the
multicritical regime first in the context of Landau mean-field
theory. Then, more qualitatively (and conjecturally) we will
discuss the true three-dimensional critical fluctuations.

For simplicity, we will start by treating the case in which
the system is actually tetragonal, in which case, for vanishing
applied stress (s = 0), there is a set of discrete (point-group)
symmetries which interchange φ1 ↔ φ2 and at the same time
interchange coordinates, x ↔ y [5]. We will then analyze the
effects of including small terms consistent with an orthorhom-
bic point group symmetry. In Figs. 1 and 2 we show the
possible structures of the phase diagram that come from a
saddle-point (Landau mean-field) solution of the model in
various ranges of couplings for the tetragonal system and the
weakly orthorhombic system, respectively.

The effective field theories from which these results are
derived are defined in Sec. II. The mean-field treatment and
the considerations concerning the true asymptotic critical
phenomena are discussed in Secs. III and IV, respectively.
In Sec. V, the results are discussed with emphasis on the
existence (or not) of additional emergent symmetries in the
asymptotic near-critical regime.

II. EFFECTIVE FIELD THEORY

The effective (Landau-Ginzburg-Wilson) field theory in
the neighborhood of a multicritical point for two unidirec-
tional incommensurate CDW orders is described by a classical
effective Hamiltonian density

H[φ1, φ2] = H + H̃ = V + K + Ṽ + K̃, (1)
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FIG. 1. Mean-field phase diagrams in the Z2-symmetric (tetragonal) cases discussed in Sec. III A: (a) bicritical point, (b) tetracritical point,
(c) decoupled tetracritical point, (d) O(4)-symmetric tetracritical point, (e) tricritical points, and (f) vestigial nematic. Thin and thick black
lines denote, respectively, continuous and first-order transitions.

where H = V + K contains all the terms that are consistent
with the point group symmetry of a tetragonal system (D4h)
and an assumed emergent translational symmetry in all three
directions (R3), while H̃ = Ṽ + K̃ contains the additional
terms that are allowed when (either due to applied strain or
the intrinsic crystal structure) the point-group symmetry is
reduced to that of an orthorhombic system (D2h) [6]. In this
treatment, because the CDW is assumed to be incommensu-
rate, translations also act on the order parameter fields, such
that, under translation by a, the order parameters transform as
φ1(r) → φ1(r + a)eiQxax and φ2(r) → φ2(r + a)eiQyay (where
Qx,y are the CDW ordering wave vectors in the x and y
directions, respectively), while any point group element that
exchanges x and y also exchanges φ1 and φ2. In the field-
theoretic description, the translational symmetries in the x
and y directions discussed above are manifested as internal
U (1) symmetries associated with the order parameter fields,
φ1 and φ2, while the Z2 symmetry under exchange of φ1 and
φ2 requires the simultaneous exchange of x and y.

Here V + Ṽ is the effective potential, which we will ex-
press as a polynomial in powers of φ1 and φ2, keeping
explicitly terms only to the lowest necessary order, while
K + K̃ are the lowest-order gradient terms. Explicit expres-
sions for these various terms in the effective Hamiltonian
follow:

V = μ

2
[|φ1|2 + |φ2|2] + u

4
[|φ1|2 + |φ2|2]2 + γ

2
|φ1|2|φ2|2,

K = κL

2
[|∂xφ1|2 + |∂yφ2|2] + κT

2
[|∂yφ1|2 + |∂xφ2|2]

+ κ⊥
2

[|∂zφ1|2 + |∂zφ2|2], (2)

Ṽ = μ̃

2
[|φ1|2 − |φ2|2] + ũ

4
[|φ1|4 − |φ2|4],

K̃ = κ̃L

2
[|∂xφ1|2 − |∂yφ2|2] + κ̃T

2
[|∂yφ1|2 − |∂xφ2|2]

+ κ̃⊥
2

[|∂zφ1|2 − |∂zφ2|2]. (3)

In most cases, we assume u >
√

ũ2 + γ 2, κL > |κ̃L|, κT >

|κ̃T |, and κ⊥ > |κ̃⊥|. However, when we consider the tricritical
phase diagrams in Figs. 1(e) and 2(e), we will consider u
slightly negative, in which case terms of order at least φ6

are required for thermodynamic stability. Similarly, we shall
see that, for the special case γ = 0, higher order terms are
necessary (at mean-field level) to fully determine the phase
diagram; where such higher-order terms enter our discussion
we will introduce them explicitly.

In general, all the coefficients appearing in these expres-
sions are functions of the temperature, T , and if we apply
stress to the system, of the stress tensor, sab. In an otherwise
tetragonal system, all the coefficients with a tilde vanish in
the absence of shear strain and are odd functions of the shear
stress, sB1g = sxx − syy, while the coefficients that do not carry
tildes are even functions of all other components [7].

III. MEAN-FIELD ANALYSIS

In a mean-field analysis, we look for field configurations
that minimize H[φ1, φ2]. As K + K̃ is minimized by any
uniform field configuration, this means finding the minima of
V + Ṽ .

(a) (b) (c) (d) (e) (f)

FIG. 2. Mean-field phase diagrams in the non-Z2-symmetric (orthorhombic) cases discussed in Sec. III B: (a) bicritical point, (b) tetra-
critical point, (c) decoupled tetracritical point, (d) O(4)-symmetric tetracritical point, (e) tricritical points, and (f) vestigial metanematic. Thin
and thick black lines denote, respectively, continuous and first-order transitions. Dashed ovals indicate regimes of approximate emergent Z2

symmetry. Gray lines are the corresponding phase boundaries from Fig. 1.
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A. Z2 symmetric case

The mean-field phase diagram in the stress-temperature
plane for the simple case in which the underlying problem
is tetragonal is shown in Fig. 1—also see, e.g., Refs. [8–10].
In making this figure, we have taken μ and μ̃ to be linear in T
and s, respectively, μ = μ0[T − T0] and μ̃ = μ̃0s, and have
ignored the T and s dependence of all other parameters. In
particular, this means we have set ũ = 0. Figures 1(a), 1(b),
and 1(c) follow directly from minimizing V in Eq. (2), while
Figs. 1(d), 1(e), and 1(f) involve consideration of additional
terms.

The various cases are as follows.
Figure 1(a). For u > 0 and γ > 0 there is a bicritical

point at μ̃ = μ = 0. There is a first-order line between two
unidirectional phases that occurs along the half line μ̃ = 0
with μ < 0. The phase boundaries between the unidirectional
ordered phases and the disordered high-temperature phase
correspond to μ̃ = ±μ with μ � 0.

Figure 1(b). For u > 0 and −2u < γ < 0 there is a tetra-
critical point at μ = μ̃ = 0. For μ̃ > 0, there is a transition
from a disordered state for μ > |μ̃| to a state in which |φ2| >

|φ1| = 0 at μ < |μ̃|. There is then a further transition to a state
with coexisting bidirectional order (but with φ2 dominant)
at μ = −|μ̃|(2u − |γ |)/|γ |. For μ̃ < 0, the phase boundaries
follow the corresponding lines, but with the roles of φ1 and φ2

interchanged.
Figure 1(c). For u > 0 and γ = −u, the system has the

special feature of exhibiting a “decoupled” tetracritical point
in which the two phase boundaries pass through each other
without changing slope. At mean-field level, this corresponds
to a third degree of fine-tuning, requiring tuning three param-
eters, μ, μ̃, and γ .

Figure 1(d). For u > 0 and γ = 0, V exhibits an enhanced
O(4) symmetry. Here there is no coexistence region. However,
there is no latent heat associated with crossing the phase
boundary at μ < 0 between the two phases (as μ̃ changes
sign) so the transition is not conventionally first order despite
the fact that the order parameter changes direction abruptly.
Indeed, as is discussed in Ref. [11], in this case, the nature
of the phase diagram below the multicritical point depends on
higher order terms in powers of φ j . Specifically, the tetracriti-
cal phase diagram shown in Fig. 1(d) arises if we include next
order terms

V → V + u6

6
[|φ1|2 + |φ2|2]3 + γ6

3
[|φ1|2 + |φ2|2]|φ1|2|φ2|2

(4)

with γ6 < 0 (and with u6 > |γ6|/2 to preserve stability).
Again, at mean-field level, this form of multicriticality in-
volves an additional degree of fine-tuning relative to a generic
tetracritical point.

Figure 1(e). For u < 0 the transition at zero stress is nec-
essarily first order. Generically the expansion in powers of φ

is not justified at a first-order transition unless the transition
is only weakly first order, as happens near a tricritical (or
bicritical) point [12]. Thus, in Fig. 1(e), we have shown the
phase diagram that results from a case where u changes sign
in the vicinity of a putative bicritical point. Specifically, we
have included an implicit (linear) T dependence of u taking

the form u = −u∗ + u′μ, so that u < 0 but of small magnitude
as μ → 0, but u > 0 for μ > μ∗ ≡ u∗/u′. To ensure the sta-
bility of the free energy, we are forced to include higher-order
terms in the effective potential as in Eq. (4). To be concrete,
we have taken γ > 0. Now, in the vicinity of the point at
which, for u > 0, there would have been a bicritical point,
we instead find a pair of tricritical points at μ = μ∗ and
μ̃ = ±μ�.

Figure 1(f). We show a phase diagram that cannot be
derived at mean-field level from a Hamiltonian of the form
shown, although a phase diagram of this sort—with a “ves-
tigial nematic” phase—can arise from fluctuation effects, as
discussed below and in Refs. [13] and [14]. To obtain this sort
of phase diagram in mean-field theory, we need to add in an
additional nematic order parameter, N , which transforms as
B1g (x2 − y2) under the point group symmetry of the tetrago-
nal crystal. To the same order as we have considered so far,
this involves

V → V + α̃N + μN
2

N 2 + w̃

3
N 3 + 1

4
N 4

+ λ

2
N [|φ1|2 − |φ2|2], (5)

where the nematic field has been normalized in such a way
that the quartic coupling is equal to 1 and where α̃ and w̃ both
vanish by symmetry in the absence of strain. To obtain the
phase diagram in Fig. 1(f), we have assumed that μN changes
sign at a temperature slightly above the putative bicritical
point and, in projecting the phase diagram onto the μ − μ̃

plane, we have taken μN = −μ∗
N + μ′

Nμ, with μ∗
N small

and positive. Coefficients of terms odd in N vary linearly with
μ̃: α̃ = α̃′μ̃ and w̃ = w̃′μ̃. Now there is a nematic critical
point at μ̃ = 0 and μ = μ∗ ≡ μ∗

N /μ′
N , while the two critical

end points (where the CDW ordering temperatures intersect
a first-order line) occur at a smaller value of μ which (for
example) is at μ = μ∗[λμN /(1 + λμ′

N )] in the limit μ̃ → 0.

B. Emergent Z2 symmetry: Orthorhombic case

We now consider modifications to the mean-field phase di-
agrams that result from considering a system which is weakly
orthorhombic, i.e., where H̃ �= 0 even for s = 0. Since at
mean-field level we can neglect the gradient terms, to quartic
order there are only two terms that break the Z2 symme-
try under exchange φ1 ↔ φ2: the quadratic term, μ̃, and the
quartic term, ũ. Rescaling the order parameter fields such that
φ1 → Zφ1 and φ2 → Z−1φ2 with Z = [(u + ũ)/(u − ũ)]−1/8

preserves the form of the potential V + Ṽ , but with shifted
parameters:

μ → [(Z4 + 1)μ + (Z4 − 1)μ̃]/(2Z2),

μ̃ → [(Z4 − 1)μ + (Z4 + 1)μ̃]/(2Z2),

u →
√

u2 − ũ2, (6)

γ → γ + u −
√

u2 − ũ2,

ũ → 0.

We see therefore that (to the extent that we can neglect
higher order terms in powers of φ j) the theory possesses an
emergent Z2 symmetry under the exchange of φ1 and φ2 and
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μ̃ → −μ̃. In this sense, it behaves as if it were tetragonal
whether it is or not. Of course, the fact that this is not a
true symmetry will be reflected in the presence of higher
order terms, such as ũ6[|φ1|2 + |φ2|2][|φ1|4 − |φ2|4], which do
not vanish under the rescaling transformation. Consequently,
while an appropriate coordinate transformation in the T − s
plane will make the phase diagram of the orthorhombic sys-
tem look like that of a tetragonal system close enough to
criticality that higher order terms in V + Ṽ can be ignored,
further from criticality, where the higher order terms begin to
play a role, the emergent Z2 symmetry will be increasingly vi-
olated, as reflected in the schematic phase diagrams in Fig. 2.

The situation is somewhat subtle for the tricritical case in
Fig. 2(e) since higher order (at least sixth) terms play a role
in the phase diagram near criticality. Thus the extent to which
this system exhibits an approximate Z2 symmetry can depend
on other assumptions.

The case of the vestigial nematic, Fig. 2(f), needs to be
handled separately. In the first place there is not, strictly
speaking, a nematic phase defined by a spontaneously broken
symmetry, since the symmetry in question is explicitly broken.
This is reflected in the presence of odd terms α̃ and w̃ in
the effective potential in Eq. (5), where now no symmetry
requires that μ̃, α̃, and w̃ all vanish simultaneously. Thus
the first-order line immediately below the critical point cor-
responds to a line of metanematic transitions (where the value
of N jumps discontinuously—typically from a negative to
a positive value). The critical point at the end—what was
formerly the nematic critical point—is now analogous to the
critical point that terminates the liquid-gas coexistence line in
the phase diagram of water or other common liquids.

That the vicinity of the critical point possesses an emergent
Z2 symmetry can be seen by making a shift of the order
parameter, N → N + N̄ , where N̄ = −w̃/3 is chosen to
cancel the third order term—this is again analogous to Landau
theory for the liquid-gas transition [15]. Then, with proper
rescaling of N , this replaces Eq. (5) with an expression of the
same form, but with w̃ = 0. The metanematic critical point
at μ = μ∗ and μ̃ = μ̃∗ ≡ −α∗/α′ thus has the same form as
in the tetragonal case. However, as shown in the figure, the
critical end points (where the CDW transitions end on the
metanematic line) are split by order λN̄ , thus spoiling the Z2

symmetry as one moves away from the critical point.

IV. FLUCTUATION EFFECTS

Mean-field theory tends to work remarkably well in
metallic systems—presumably because the effective range of
interactions is relatively long. The coupling of the nematic
component of the order parameter to the strain field tends to
further reduce fluctuation effects (see Ref. [16] and references
therein). It is, nonetheless, interesting in a more general con-
text to analyze what of the above structure survives (or may
even be enhanced by) fluctuation effects in the true asymptotic
critical regime.

The most basic question to be addressed is the stability
of the various mean-field phase diagrams to fluctuations. The
issue concerning the stability of O(N ) × O(N ) [or more gen-
erally O(N ) × O(M )] multicritical points has been addressed
in several different ways, notably through the use of the ε

expansion [17], the functional renormalization group [18],
and, more recently, using conformal bootstrap to address
the problem directly in three dimensions [19,20]. Generaliz-
ing the O(2)2 symmetries discussed so far to O(N ) × O(M )
would make no qualitative difference to our mean-field analy-
sis, but is useful in discussing effects of fluctuations; however,
we will also return to the N = M = 2 case which is of partic-
ular interest.

In the context of the ε expansion, there are three fixed
points (in addition to the always unstable Gaussian fixed
point) which correspond to the decoupled tetracritical point, a
higher symmetry O(2N ) symmetric multicritical point, and an
interacting “biconical” fixed point. However, for given N , only
one of these is ever stable with the other two being unstable—
i.e., the other two require at least one additional parameter
to be fine-tuned (in addition to the usual two associated with
“stable” multicritical points).

A number of conclusions can been reached based on
nonperturbative lines of analysis [21]. For N = 1, the O(2)
symmetric fixed point, familiar from studies of the Ashkin-
Teller model, is stable [22]. This is one of the most remarkable
examples of an emergent symmetry. However, it is generally
accepted that the O(2N ) symmetric fixed point is (at least
weakly) unstable for all N > 1 [23,24].

For N = 2 the situation is somewhat subtle. Certainly, the
decoupled fixed point is stable for N � 2. As viewed from
the perspective of the ε expansion, this suggests that this is
the only stable multicritical point, which among other things
would imply that there is no stable O(N ) × O(N ) bicritical
point with N � 2. Recently, however, initial evidence has
emerged from conformal bootstrap of the existence of an ad-
ditional stable conformal field theory that might correspond to
the long-sought bicritical point. We will return to this below.

We now comment on the tricritical scenario. From the fact
that there is no stable bicritical fixed point in the context of the
ε expansion, it was suggested by Aharony et al. [25–27] that it
was likely to be fluctuation-driven first order. This further led
to the suggestion that a mean-field bicritical phase diagram
should instead exhibit two tricritical points and thus be of the
form shown in Figs. 1(e) and 2(e).

The tricritical points in this case are readily characterized
since d = 3 is the upper critical dimension and so they should
exhibit mean-field behavior up to logarithmic corrections.
Clearly, each tricritical point involves the ordering of only one
of the CDW components, so there can be no question of an
emergent Z2 symmetry.

Another possible form of a phase diagram with a fluctu-
ation driven first-order transition is that corresponding to a
vestigial nematic phase, as in Figs. 1(f) and 2(f). It has been
shown [14] that such a vestigial nematic phase arises from
fluctuations in a sufficiently layered (quasi-2D) system with
N > 2 and strong arguments suggest that this is true as well
for N = 2. There thus appear to be circumstances in which
this form of a phase diagram arises organically from CDW
fluctuations, without need to introduce an explicit nematic
order parameter. (See also Refs. [28] and [13].)

In this case the critical point in question is in the 3D Ising
universality class. For the tetragonal case, this is obvious in
that there is an Ising symmetry—which corresponds to the
Z2 symmetry under exchange φ1 ↔ φ2—that is broken below
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the critical point. But in the orthorhombic case, the analogy
with the liquid-gas critical point is more apt, in that there is
no actual broken symmetry associated with the first-order line
below the critical point. However, the present discussion puts
a somewhat different perspective on this familiar problem—
there is an emergent Z2 symmetry at the critical point which
is broken along the first-order line below the critical point.
Correspondingly, there is presumably a Widom line, at which
the emergent Z2 symmetry is best defined, that extends above
the critical point and which should be observable as a peak in
the nematic susceptibility [3].

The conformal bootstrap offers a new approach to identi-
fying possible critical phenomena—especially in 3D [19,20].
There is not yet any systematic classification of all possible
3D conformal field theories, but (in many cases) where such
field theories have been identified and characterized from
this approach, these provide important complements to the
ε expansion and other more familiar approaches to critical
phenomena. For instance, the perturbative stability of the de-
coupled O(2) × O(2) tetracritical point can be corroborated
by knowing precisely the critical exponents of the O(2) criti-
cal point [21].

In this context, it is interesting to note that there is pre-
liminary indication of the existence of at least one additional
stable theory with O(2) × O(2) symmetry, distinct from the
decoupled theory [29–31]. The results here are not defini-
tive and the identification of the physical meaning of this
additional critical theory—if it indeed exists—is also not
established. It is tempting, however, to identify this as the
long-sought bicritical theory. In this context, it is interesting
to note that the theories bootstrapped in these works actually
have a higher, [O(2) × O(2)] � Z2 symmetry, and so would
correspond to a critical point with emergent Z2 symmetry
under exchange of the two order parameters.

Finally, there is an issue concerning the presence or ab-
sence of an emergent SO(3) spatial rotational symmetry at
criticality. This is a feature of an O(2)-symmetric critical
point, such as occurs along the narrow solid phase bound-
aries in the figures. In particular, by appropriate rescaling of
the length scales in the x, y, and z directions, the system at
criticality—even on an underlying orthorhombic lattice—can
be described by an SO(3) rotationally symmetric effective
field theory. The same analysis can be applied to the tricritical
points or to the nematic or metanematic critical points, such
as those illustrated in Figs. 1(f) and 2(f). It would presumably
be true at a bicritical point of the sort shown in Figs. 1(e) and
2(e), if such a critical point indeed arises.

In contrast, it is easy to see that rotational symmetry does
not emerge at the decoupled tetracritical points, because of
the presence of an effective “spin-orbit coupling” that reflects
the fact that the broken symmetries involved are spatial sym-
metries. Specifically, even in the tetragonal case, while the
effective field theory for φ1 can be made rotationally sym-
metric by rescaling x, y, and z appropriately, to achieve the
same result for φ2 requires interchanging the scale factors for
x and y. In addition, if the system is orthorhombic, there is
a different scale required for the magnitude of fluctuations of
φ1 and φ2 and for the z coordinate that enters the two theories.
Thus, even at criticality, there is only C2 rotational symmetry
for the orthorhombic system, while for the tetragonal case the

C4 rotational symmetry is represented as a further symmetry
under φ1 ↔ φ2 and x ↔ y.

V. DISCUSSION

The analysis in the present paper was motivated by the
observation of an apparent bicritical phase diagram with an
emergent tetragonal symmetry (signaled by a strong peak in
the elastoresistivity near said multicritical point) in ErTe3, a
weakly orthorhombic, quasi-two-dimensional (layered) ma-
terial with unidirectional CDW order whose direction can
be reoriented with the application of uniaxial stress. Further
studies of this material with the goal of exploring the behavior
closer to the putative bicritical point would certainly be inter-
esting. In particular, many of the theoretically most interesting
issues concern fluctuation effects not captured by mean-field
theory, while at present it is not clear whether the experiments
approach close enough to criticality to be sensitive to such
effects.

It is worth noting that similar considerations apply to sys-
tems with unidirectional spin density waves as well, with the
modification that in that case the order parameter symmetries
associated with the two order parameter fields are richer than
in the present case. For instance, for a commensurate unidi-
rectional collinear antiferromagnet—i.e., the (0, π ) − (π, 0)
“stripe” antiferromagnet seen in the Fe-based superconductors
[32]—the two order parameters’ fields (to the extent that spin-
orbit coupling is negligible) are three-component fields, so the
relevant symmetry is O(3) × O(3) with, for tetragonal sys-
tems, an additional Z2 under exchange. Many other examples
exist, with other symmetries or near symmetries, including
materials with still lower point-group symmetry, in various
strongly interacting electronic materials.

The analysis—with suitable modifications— is also of
possible relevance to unconventional superconductors under
circumstances in which by tuning some nonthermal parame-
ter, e.g., pressure or alloy concentrations, the system can be
tuned from a regime in which there is one form of super-
conducting order to a regime in which there is another. Here,
again, one expects a multicritical phase diagram at the point at
which the two forms of superconductivity have the same Tc.
An example of this is an apparent change from an extended
s-wave to a d-wave superconductor that appears as a function
of chemical substitution in Ba1−xKxFe2As2 [33].

From a theory perspective, it remains to determine whether
or not a stable bicritical point not accessible from the ε ex-
pansion exists, what are the best experimental tests of the
existence of an emergent Z2 symmetry in the critical regime,
and more generally how to nail down the topology of the
phase diagram in the asymptotic multicritical regime where
mean-field considerations are insufficient.
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