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Generic Mott-Hubbard phase diagram for extended Hubbard models without Umklapp scattering
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We determine the ground-state phase diagram for the 1/r-Hubbard model with repulsive nearest-neighbor
interaction at half band filling using the density-matrix renormalization group method. Due to the absence
of Umklapp scattering, the phase diagram displays finite regions for the three generic phases, namely, a
Luttinger liquid metal for weak interactions, a Mott-Hubbard insulator for dominant Hubbard interactions, and a
charge-density-wave insulator for dominant nearest-neighbor interactions. Up to moderate interaction strengths,
the quantum phase transitions between the metallic and insulating phases are continuous, i.e., the gap opens
continuously as a function of the interaction strength. We conclude that generic short-range interactions do not
change the nature of the Mott transition qualitatively.
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I. OVERVIEW

After a short introduction in Sec. I A, we present in Sec. I B
the generic Mott-Hubbard phase diagram for extended Hub-
bard models without Umklapp scattering, the central result
of our work. The corresponding model and its ground-state
properties are discussed in the remainder of this paper, as
outlined in Sec. I C.

A. Introduction

The Mott transition is one of the long-standing problems in
condensed-matter many-body physics [1–3]. As formalized in
the Hubbard model [4–6], an electronic system with a single
band of width W and a purely local interaction of strength
U will be a metal for weak interactions, W � U , and an
insulator for strong interactions, U � W . As argued by Mott
early on [7], there must be a metal-to-insulator transition,
generically at Uc ≈ W when the two energy scales are com-
parable, irrespective of magnetic or charge order.

The quantitative analysis of a quantum phase transition
in an interacting many-particle system is notoriously diffi-
cult. Concomitantly, analytical solutions are scarce even for
the simplest models and in one spatial dimension [2,8,9].
Numerical approaches in finite dimensions are hampered
by finite-size effects, so that the calculation of ground-state
quantities is also best performed for one-dimensional model
systems. In one dimension, the numerical density-matrix
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renormalization group (DMRG) method provides accurate
data for large enough systems with of the order of a hundred
lattice sites and particles [10–14].

In some respects, one-dimensional systems behave quali-
tatively differently from their three-dimensional counterparts.
Most importantly, they generically display the perfect-nesting
instability because the two Fermi points at half band filling
are connected by half a reciprocal lattice vector. Umklapp
scattering turns the system into an insulating one as soon as
the (effective) interaction of the particles becomes finite [15].
Therefore Uc = 0+ is the generic situation [2,8,9], in contrast
to Mott’s expectations. Correspondingly, the phase diagram
for the one-dimensional Hubbard model does not contain
a finite metallic region. When the Hubbard model is ex-
tended by the inclusion of a nearest-neighbor interaction, the
ground-state phase diagram becomes more varied, but one can
only study quantum phase transitions between Mott-Hubbard,
charge-density-wave (CDW) insulator, and bond-order-wave
(BOW) insulator phases [16–18]. For more information on
density waves in strongly correlated quantum chains, see
Ref. [19].

To avoid Umklapp scattering at weak coupling, one can in-
vestigate models with only right-moving electrons that display
only one Fermi point. A known example is the 1/r-Hubbard
model with its linear dispersion relation within the Brillouin
zone [2,20,21]. Indeed, as indicated analytically [20,22] and
recently corroborated using the DMRG method [23], the crit-
ical interaction strength for the Mott transition is finite in the
1/r-Hubbard model.

Therefore we can study the competition of the metallic
and insulating phases and the corresponding quantum phase
transitions using the extended 1/r-Hubbard model in one
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FIG. 1. Phase diagram of the one-dimensional extended 1/r-
Hubbard model; energies are in units of the bandwidth, W = 1. Solid
circles, estimates for the critical interaction, Ūc, with error bounds;
solid curves, spline interpolations through the solid circles as guides
to the eye; dotted line, Hartree-Fock (HF) result for the transition
between metal and charge-density-wave insulator.

dimension. The resulting phase diagram should be generic in
the sense that each phase covers a finite region in the ground-
state phase diagram, as is expected for a three-dimensional
system (d = 3) at half band filling without Umklapp scatter-
ing.

We shall argue that for the extended 1/r-Hubbard model
the transitions between metallic and insulating phases are
continuous in the sense that the gap opens continuously as
a function of the interaction parameters. However, in the limit
of high spatial dimensions, d → ∞, quantum Monte Carlo
(QMC) simulations for the dynamical mean-field theory prob-
lem indicate that the Mott transition is discontinuous even for
the bare Hubbard model: The preformed gap for U > Uc,1

becomes visible when the quasiparticle peak in the metallic
phase vanishes at Uc,2 > Uc,1 [24]. It remains to be clarified
whether the Mott transition in the Hubbard model is generi-
cally continuous or discontinuous in finite dimensions larger
than one dimension.

B. Phase diagram

The phase diagram in Fig. 1 depicts the central result of our
work. It shows the generic Mott-Hubbard phase diagram for
extended Hubbard models without Umklapp scattering. De-
rived for the special case of the extended 1/r-Hubbard model,
the phase diagram displays finite regions for the generic
phases of an interacting electron system with a single half-
filled band of width W ≡ 1 and with tunable local interaction
U and nearest-neighbor interaction V .

As can be argued using weak-coupling and strong-coupling
perturbation theory, there should be a metallic phase at weak

interactions, U,V � W , that becomes unstable, turning into
a Mott-Hubbard insulator for dominant Hubbard interaction,
U � V,W , or turning into a charge-density-wave (CDW)
insulator for dominant nearest-neighbor interactions, V �
U,W . The critical interactions for the corresponding quantum
phase transitions should be finite, the competing interactions
being of the same order of magnitude.

Indeed, when the Coulomb interactions are dominant,
U,V � W , the separation line between the Mott-Hubbard
insulator and the CDW insulator should be V = U/2. The
corresponding line is included as a dashed line in Fig. 1. For
large U,V , we find Vc(U ) � U/2, with small deviations in
favor of the Mott-Hubbard insulator. For this reason, we only
show the phase diagram for U � 1.6. A bond-order wave
might separate the two insulating phases, as is found in the
one-dimensional extended Hubbard model [16–18]. Therefore
the line separating the Mott-Hubbard insulator and charge-
density-wave insulator should be taken as a guide to the eye
only.

In this paper we focus on the transitions between the
metallic Luttinger liquid and the two insulating phases. We de-
termine Vc(U ) for fixed 0 � v = V/U � 0.7 with increment
�v = 0.1 and for fixed U = 0.2; for the meaning of the error
bars in Fig. 1, see Sec. IV.

We note the following.
(i) In the absence of a nearest-neighbor interaction, the

Mott-Hubbard transition is known to occur at Uc(V = 0) = 1
[2,20] which is well reproduced using the DMRG method
[23]. The repulsive nearest-neighbor interaction increases
the critical interaction strength; that is, the inclusion of the
nearest-neighbor interaction stabilizes the metallic phase. Ap-
parently, the additional repulsive nearest-neighbor interaction
softens the two-particle scattering potential that is purely local
in the bare Hubbard model. As a major result we find that
the Mott transition remains continuous in the presence of
a nearest-neighbor interaction. We presume that short-range
interactions that decrease as a function of the particle distance
will not fundamentally alter this behavior.

(ii) The transition from the Luttinger liquid metal to the
charge-density-wave insulator is fairly common in the sense
that even Hartree-Fock theory qualitatively reproduces the
transition for not-too-large interactions. In Fig. 1, the corre-
sponding Hartree-Fock prediction is shown as a dotted line.
As usual, Hartree-Fock theory overestimates the stability of
the ordered state and thus underestimates the critical in-
teraction, V HF

c,CDW(U ) < Vc,CDW(U ). Since the metallic phase
extends well beyond the line V = U/2, there is no indication
for a bond-order wave that might separate the Luttinger liquid
and the charge-density-wave insulator.

We use a third-order spline interpolation through the data
points to draw the phase transition lines in Fig. 1. The solid
curves depict continuous quantum phase transitions in the
sense that the gaps open and close continuously at the same
critical interaction when the transition is approached from the
metallic and insulating sides, respectively.

The endpoint of both solid curves where all three phases
meet deserves special attention. Unsurprisingly, finite-size
corrections are most severe in this region of phase space, and
the study of the region around the tricritical point is cumber-
some and beyond the scope of our presentation.
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C. Outline

Our work is organized as follows. In Sec. II we define
the Hubbard model with long-range electron transfers and
on-site and nearest-neighbor Coulomb interactions. We in-
troduce the ground-state properties of interest, namely, the
ground-state energy, the two-particle gap, the momentum dis-
tribution, and the density-density correlation function from
which we determine the Luttinger parameter in the metallic
phase and the CDW order parameter. In Sec. III we present
results for the ground-state properties and discuss their finite-
size dependencies and extrapolations to the thermodynamic
limit where appropriate.

In Sec. IV we focus on the Mott-Hubbard transition in
the presence of a nearest-neighbor interaction. We propose
and discuss several methods to extract the critical interaction
strength for the Mott transition based on the ground-state
energy, the two-particle gap, the Luttinger parameter, and the
structure factor whereby we study the Mott transition at fixed
v ≡ V/U in the range 0 � v � 0.7 (increment �v = 0.1) in
units of the bandwidth, W ≡ 1. In addition, we address the
Mott transition as a function of V for fixed U = 0.2 and
U = 1.7.

Short conclusions (Sec. V) close our presentation. The
Hartree-Fock calculations for the CDW transition are col-
lected in the Appendix.

II. HUBBARD MODEL WITH LINEAR DISPERSION

A. Hamiltonian

In this paper, we address the 1/r-Hubbard model [2,20]
with nearest-neighbor interactions

Ĥ = T̂ + UD̂ + VV̂ (1)

on a ring with L sites (where L is even). We discuss the kinetic
energy and the Coulomb interaction terms separately.

1. Kinetic energy

The kinetic energy describes the tunneling of electrons
with spin σ = ↑,↓ along a ring with L sites,

T̂ =
L∑

l,m=1
l 
=m;σ

t (l − m)ĉ+
l,σ ĉm,σ , (2)

t (r) = (−it )
(−1)r

d (r)
,

d (r) = L

π
sin

(
πr

L

)
. (3)

The creation and annihilation operators ĉ+
l,σ , ĉl,σ for an elec-

tron with spin σ = ↑,↓ on lattice site l obey the usual
anticommutation relations for fermions.

In Eq. (3), d (l − m) is the chord distance between the sites
l and m on a ring. In the thermodynamic limit and for |l −
m| � L fixed, we have d (l − m) = (l − m) + O(1/L2), and
the decay of the electron transfer amplitude between the two
sites is inversely proportional to their distance (“1/r-Hubbard
model”).

Since L is even, we have antiperiodic electron transfer
amplitudes because d (L + r) = −d (r). Therefore we must

choose antiperiodic boundary conditions

ĉL+l,σ = −ĉl,σ (4)

for the operators, too. With these boundary conditions, the
kinetic energy operator is diagonal in Fourier space,

Ĉ+
k,σ = 1√

L

L∑
l=1

eikl ĉ+
l,σ ,

ĉ+
l,σ = 1√

L

∑
k

e−iklĈ+
k,σ ,

k = (2m + 1)π

L
, m = −L

2
, . . . ,

L

2
− 1, (5)

so that

T̂ =
∑
k,σ

ε(k)Ĉ+
k,σĈk,σ , ε(k) = tk. (6)

The dispersion relation of the 1/r-Hubbard model is linear.
We set

t = 1

2π
(7)

so that the bandwidth is unity, W ≡ 1.
In this paper, we focus on the case of a paramagnetic

half-filled ground state where we have the same number of
electrons per spin species, N↑ = N↓, that equals half the num-
ber of lattice sites, Nσ = L/2 (σ = ↑,↓).

Equation (6) shows why Umklapp scattering is absent in
the 1/r-Hubbard model, so that the Mott transition occurs
at finite interaction strengths. For noninteracting electrons at
half band filling, all states from k = −π are filled up to the
single Fermi point at kF = 0. A scattering of particles from
the opposite “Fermi” point, k− = −π , requires high energies
because a gap of �B = W has to be overcome for small mo-
mentum transfers, and a scattering energy of half of that gap
is required for momentum transfers of half a reciprocal lattice
vector, q = π . Therefore, in the field-theoretical limit [25],
the 1/r-Hubbard model reduces to a bare g4 model because
all other scattering processes, especially Umklapp scattering,
are gapped. Corrections to the field-theory predictions are
expected to be exponentially small for small interactions; see,
e.g., Sec. IV C for the Luttinger parameter.

2. Coulomb interaction

The Coulomb interaction is parametrized by two terms in
Eq. (1). The on-site (Hubbard) interaction [4–6] acts locally
between two electrons with opposite spins,

D̂ =
L∑

l=1

n̂l,↑n̂l,↓, n̂l,σ = ĉ+
l,σ ĉl,σ , (8)

where n̂l,σ counts the number of electrons with spin σ on site
l and n̂l = n̂l,↑ + n̂l,↓ counts the number of electrons on site l .
The corresponding operators for the total number of electrons
with spin σ = ↑,↓ are denoted by N̂σ = ∑

l n̂l,σ , and N̂ =
N̂↑ + N̂↓.

To discuss the influence of the extended nature of
the Coulomb interaction, we consider the case of pure
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nearest-neighbor interactions,

V̂ =
L∑

l=1

(n̂l − 1)(n̂l+1 − 1), (9)

where we disregard the long-range parts of the Coulomb
interaction for distances |l − m| � 2. The model in Eq. (1)
describes the “extended” 1/r-Hubbard model with on-site
interaction U and nearest-neighbor interaction V .

As we shall show in this paper, the Mott-Hubbard transi-
tion at half band filling remains continuous in the presence
of short-range interactions. For not-too-large interactions and
for V � U/2, the model contains a transition from the Lut-
tinger liquid metal to the Mott-Hubbard insulator. For larger
nearest-neighbor interactions, the model eventually describes
transitions from the metallic state to a charge-density-wave
(CDW) insulator. For strong interactions, U � W , the model
contains a transition from the Mott-Hubbard insulator to the
CDW insulator around V ≈ U/2.

We study several values for the ratio v = V/U , namely,
v = 0, 0.1, 0.3, 0.4, 0.5, 0.6, 0.7 for weak to strong nearest-
neighbor interactions. Since we scan the value of U , we must
limit the number of values for v to keep the numerical effort
within bounds when we include systems up to Lmax = 80
lattice sites; when finite-size effects are well behaved, e.g., for
the ground-state energy, we limit our investigations to L = 64.
Moreover, we scan V for fixed U = 0.2 and U = 1.7 to study
the Mott transition as a function of the nearest-neighbor inter-
action.

3. Particle-hole symmetry

Under the particle-hole transformation

ĉl,σ �→ ĉ+
l,σ , n̂l,σ �→ 1 − n̂l,σ , (10)

the kinetic energy remains unchanged,

T̂ �→
L∑

l,m=1
l 
=m;σ

t (l − m)ĉl,σ ĉ+
m,σ

=
L∑

l,m=1
l 
=m;σ

[−t (m − l )]ĉ+
l,σ ĉm,σ = T̂ , (11)

because t (−r) = −t (r). Furthermore,

D̂ �→
L∑

l=1

(1 − n̂l,↑)(1 − n̂l,↓) = D̂ − N̂ + L, (12)

and

V̂ �→ V̂ . (13)

Therefore Ĥ (N↑, N↓) has the same spectrum as Ĥ (L −
N↑, L − N↓) − U (2L − N ) + LU , where N = N↑ + N↓ is the
particle number.

B. Ground-state properties

We are interested in the metal-insulator transition at half
band filling where the metallic Luttinger liquid for weak in-
teractions turns into a paramagnetic Mott insulator for large

interactions at some finite value Uc(V ) when V is small
enough or it turns into a CDW insulator for strong nearest-
neighbor interactions. The metal-insulator transition can be
inferred from the finite-size extrapolation of the ground-state
energy and of the two-particle gap [23]. Alternatively, the
Luttinger parameter [26] and the finite-size extrapolation of
the structure factor at the Brillouin zone boundary permit
us to determine the critical interaction strength. Moreover,
the charge-density-wave state can be monitored by the CDW
order parameter. In this section, we also introduce the mo-
mentum distribution for finite systems that is also accessible
via the DMRG method.

1. Ground-state energy and two-particle gap

We denote the ground-state energy by

E0(N, L;U,V ) = 〈�0|Ĥ |�0〉 (14)

for given particle number N , system size L, and interaction
parameters U,V . Here, |�0〉 is the normalized ground state of
the Hamiltonian (1). We are interested in the thermodynamic
limit, N, L → ∞ with n = N/L fixed. We denote the ground-
state energy per site and its extrapolated value by

e0(N, L;U,V ) = 1

L
E0(N, L;U,V ),

e0(n;U,V ) = lim
L→∞

e0(N, L;U,V ), (15)

respectively.
The two-particle gap is defined by

�2(L;U,V ) = μ+
2 (L;U,V ) − μ−

2 (L;U,V ), (16)

where

μ−
2 (L;U,V ) = E0(L, L;U,V ) − E0(L − 2, L;U,V ),

μ+
2 (L;U,V ) = E0(L + 2, L;U,V ) − E0(L, L;U,V ) (17)

are the chemical potentials for adding the last two particles
to half filling and the first two particles beyond half filling,
respectively.

Due to particle-hole symmetry, we have

μ−
2 (L;U,V ) = 2U − μ+

2 (L;U,V ), (18)

so that

�2(L;U,V ) = 2μ+
2 (L;U,V ) − 2U (19)

and

�2(U,V ) = lim
L→∞

�2(L;U,V ) (20)

in the thermodynamic limit. We always consider the spin
symmetry sector S = Sz = 0. For this reason, we study the
two-particle gap rather than the single-particle gap.

The two added particles repel each other, so that, in the
thermodynamic limit, they are infinitely separated from each
other. Therefore we have

�2(U,V ) = 2�1(U,V ), (21)

where �1(U,V ) is the gap for single-particle excitations. For
finite systems, we expect the interaction energy

eR(L;U,V ) = �2(L;U,V ) − 2�1(L;U,V ) = O(1/L) > 0
(22)
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to be positive, of the order 1/L. We verified that the interaction
energy vanishes in the thermodynamic limit for the case V =
0 [23].

2. Momentum distribution

We also study the spin-summed momentum distribution in
the ground state at half band filling, N = L,

nk (L;U,V ) = 〈�0|n̂k,↑ + n̂k,↓|�0〉
=

∑
l,m;σ

eik(l−m)Pl,m;σ (23)

with n̂k,σ = Ĉ+
k,σ

Ĉk,σ
and the single-particle density matrix

Pl,m;σ = 〈�0|ĉ+
l,σ ĉm,σ |�0〉. Due to particle-hole symmetry we

have

nk (L;U,V ) = 1 − n−k (L;U,V ) (24)

at half band filling. Therefore it is sufficient to study wave
numbers from the interval −π < k < 0.

In our previous work, we showed that a bound state forms
at the lower band edge in the bare 1/r-Hubbard model right at
the Mott transition. The nature of this bound state is not well
understood and certainly deserves further studies. Its presence
gives rise to a Fano resonance in the spectral function that
is discernible in the slope of the momentum distribution at
the band edge. Unfortunately, this specific feature cannot be
used to trace the Mott-Hubbard transition in the extended
1/r-Hubbard model because the bound state apparently moves
away from the band edge for V > 0, erasing the Fano reso-
nance shape in the slope of the momentum distribution at the
band edge.

3. Density-density correlation function and Luttinger parameter

Lastly, we address the density-density correlation function
at half band filling, N = L,

CNN(r, L;U,V ) = 1

L

L∑
l=1

(〈n̂l+r n̂l〉 − 〈n̂l+r〉〈n̂l〉), (25)

where 〈· · · 〉 ≡ 〈�0| · · · |�0〉. The limit L � r � 1 for
U,V � W is also accessible from field theory [25,27,28],

CNN(r � 1;U,V ) ∼ −K (U,V )

(πr)2
+ A(U,V )(−1)r

r1+K [ln(r)]3/2
+ · · · ,

(26)
where A(U,V ) is a constant that depends on the interaction
but not on the distance r.

We extract the Luttinger exponent K (U,V ) from the struc-
ture factor,

C̃NN(q, L;U,V ) =
L−1∑
r=0

e−iqrCNN(r, L;U,V ), (27)

where the wave numbers are from momentum space, q =
(2π/L)mq, mq = −L/2,−L/2 + 1, . . . , L/2 − 1. By con-
struction, C̃NN(q = 0, L;U,V ) = 0 because the particle num-
ber is fixed, N = L in the half-filled ground state. In the
thermodynamic limit, the structure factor C̃NN(q, L;U,V ) re-
mains of the order unity even in the CDW phase because

we subtract the contributions of the long-range order in the
definition (25).

The transition to a charge-density-wave insulator can be
monitored from the CDW order parameter. In this paper, we
do not study the standard CDW order parameter,

D(L;U,V ) = 1

L

∣∣∣∣∣
L−1∑
r=0

(−1)r (〈n̂r〉 − 1)

∣∣∣∣∣ � 1. (28)

Instead, we include all short-range contributions and address

Nπ (L;U,V ) = 1

L

L−1∑
r=0

(−1)r 1

L

L−1∑
l=0

(〈n̂r+l n̂l〉 − 1). (29)

When the charges are distributed homogeneously, 〈n̂l〉 = 1,
we have Nπ (L;U,V ) = C̃NN(π, L;U,V )/L, and the order pa-
rameter vanishes in the metallic phase. More generally, in the
thermodynamic limit we have Nπ (U,V ) = (D(U,V ))2. In the
1/r-Hubbard model with its long-range electron transfer, it is
advantageous to analyze Nπ (L;U,V ) to facilitate a reliable
finite-size analysis.

When Eq. (26) is employed, it follows that the Luttinger
parameter for finite systems,

K (L;U,V ) = L

2
C̃NN(2π/L, L;U,V ), (30)

can be used to calculate the Luttinger parameter in the ther-
modynamic limit,

K (U,V ) = lim
L→∞

K (L;U,V )

= π lim
q→0

C̃NN(q;U,V )

q
, (31)

where we denote the structure factor in the thermodynamic
limit by C̃NN(q;U,V ). Using Eq. (31), the Luttinger exponent
can be calculated numerically with very good accuracy [29].
The Luttinger parameter can be used to locate the metal-
insulator transition in one spatial dimension.

III. GROUND-STATE PROPERTIES

Before we investigate the Mott transition for the half-filled
extended 1/r-Hubbard model in more detail in the next sec-
tion, we present DMRG results for the ground-state energy,
the two-particle gap, the momentum distribution, the structure
factor, and the CDW order parameter. For the numerical cal-
culations we employ a DMRG code that permits the treatment
of an arbitrary quantum system with long-ranged complex
interactions. It uses non-Abelian symmetries and optimization
protocols inherited from quantum information theory [30].
The accuracy is controlled via the dynamic block-state selec-
tion (DBSS) approach [31,32], where the a priori value for
the truncation errors was set to 10−6. Further technical details
of the DMRG implementation can be found in Ref. [23]. Note
that our finite-size scaling analysis requires very accurate data.
We obtain those by imposing strict accuracy settings in our
DMRG code and by restricting the largest system size to
Lmax = 80 to limit the truncation errors.
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A. Ground-state energy

For V = 0, the ground-state energy per site for finite sys-
tem sizes is given by (n = N/L, where N is even) [2,20,23]

e0 = 1

4
n(n − 1) + U

4
n (32)

− 1

2L

(N/2)−1∑
r=0

√
1 + U 2 − 4U (2r + 1 − L/2)/L

with the abbreviation e0 ≡ e0(N, L;U,V = 0).
In the thermodynamic limit and at half band filling, n = 1,

the ground-state energy per site becomes particularly simple,

e0(n = 1;U � 1,V = 0) = −1

4
+ U

4
− U 2

12
,

e0(n = 1;U � 1,V = 0) = − 1

12U
. (33)

The analytic expressions (32) and (33) are useful for a com-
parison with numerical data at V = 0.

For finite V , we can use first-order perturbation theory for
weak interactions, U,V � 1, to find

ePT
0 (U,V ) = −1

4
+ U

4

(
1 − 8v

π2

)
+ O(U 2) (34)

with v = V/U in the thermodynamic limit and at half band
filling. Note that Eq. (34) holds for all v, as long as U,V � 1.

We display the ground-state energy per site at half band
filling, e0(L, L;U,V ), as a function of the inverse system
size (L = 8, 16, 24, 32, 48, 64) and various values of U in
Figs. 2(a) (v = 0.1), 2(b) (v = 0.3), and 2(c) (v = 0.5). For
the extrapolation to the thermodynamic limit, we use the al-
gebraic fit function

e0(L, L;U,V ) = e0(n = 1;U,V ) + a0(U,V )

(
1

L

)γ0(U,V )

,

(35)
where e0(n = 1;U,V ) denotes the numerical estimate for the
ground-state energy density in the thermodynamic limit and
a0(U,V ) and γ0(U,V ) are the two other fit parameters. This
extrapolation scheme is appropriate for V = 0 [23] because
the ground-state energy per site scales with (1/L)2 for U 
= 1
and with (1/L)3/2 for U = Uc(V = 0) = 1, as follows from
Eq. (32). More generally, we assume for all (U,V )

γ0(U,V ) =
{

2 for U 
= Uc(V )
3
2 for U = Uc(V ).

(36)

Here, we follow the common notion that the ground-state
energy density displays generic (1/L)2 finite-size corrections
if the model is not critical. When the holon dispersion dis-
plays a square-root divergence at low energies for Uc(V ), the
exponent is reduced to γ0(Uc(V ),V ) = 3/2, as in the case of
the bare 1/r-Hubbard model. These exponents apply for very
large system sizes. We shall discuss the finite-size modifica-
tions in detail in Sec. IV.

The extrapolated ground-state energies are shown in
Fig. 3 together with the exact result for V = 0. For small

(a)

(b)

(c)

FIG. 2. Ground-state energy per lattice site at half band filling,
e0(L, L;U,V ), for the extended 1/r-Hubbard model as a function of
1/L for L = 8, 16, 24, 32, 48, 64 and various values for U for (a) v =
0.1, (b) v = 0.3, and (c) v = 0.5. The solid curves are fits to the
algebraic fit function (35). The intercept of the extrapolation curves
with the ordinate defines the extrapolation estimate e0(n = 1;U,V )
in the thermodynamic limit.
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FIG. 3. Ground-state energy per lattice site at half band filling
in the thermodynamic limit, e0(n = 1;U,V ), for the extended 1/r-
Hubbard model from the extrapolation to the thermodynamic limit
in Fig. 2. The dashed lines represent first-order order perturbation
theory (PT) for v = V/U = 0.3, 0.5, 0.7; see Eq. (34). The solid
curve is the exact result for V = 0, e0(n = 1;U,V = 0); see Eq. (33).

interactions, the nearest-neighbor interaction in the particle-
hole-symmetric form decreases the ground-state energy be-
cause the Hartree contribution at half band filling is subtracted
in the definition of the interaction, and the Fock contribution
is negative because of the exchange hole. Therefore the linear
term in the interaction (U/4)(1 − 8v/π2) [see Eq. (34)] is
smaller in the presence of a nearest-neighbor interaction.

At large interactions, the ground-state energy approaches
zero, limU→∞ e0(n = 1;U,V = vU ) = 0, as long as the
charge density wave is absent. In the presence of a CDW,
the ground-state energy is negative and proportional to U ,
e0(U � 1,V ) = U (1/2 − v). Therefore the ground-state en-
ergy displays a maximum for v = 0.6 and v = 0.7 because its
slope as a function of U is positive for small interactions and
negative for large interaction strengths in the CDW phase.

B. Two-particle gap

For V = 0 the two-particle gap is known exactly for all
system sizes [2,20,23],

�2(L;U � 1,V = 0) = U − 1 + 2

L
+

√
(U − 1)2 + 4U

L
.

(37)

In the thermodynamic limit, we find

�2(U � 1,V = 0) = 2(U − 1). (38)

The gap opens linearly above the critical interaction strength,
Uc(U,V = 0) = 1. Equation (37) shows that the finite-size
data approach the value in the thermodynamic limit

�2(L;U,V ) = �2(U,V ) + a2(U,V )

(
1

L

)γ2(U,V )

(39)

with γ2(U 
= Uc,V = 0) = 1, γ2(U = Uc,V = 0) = 1/2.

More generally, we assume for all (U,V )

γ2(U,V ) =
{

1 for U 
= Uc(V )
1
2 for U = Uc(V ).

(40)

As for the ground-state energy, these exponents apply for very
large system sizes. We shall discuss the finite-size modifica-
tions in more detail in Sec. IV.

In Fig. 4 we show the DMRG results for �2(L;U,V ) as
a function of 1/L for L = 8, 16, 24, 32, 48, 64 and various
values of U for v = 0.1 [Fig. 4(a)], v = 0.3 [Fig. 4(b)], and
v = 0.5 [Fig. 4(c)]. The curves are fits to the algebraic func-
tion in Eq. (39). The fits in Fig. 4 are seen to agree very well
with the data, showing a steep decrease of the finite-size gap
as a function of inverse system size. This indicates that large
system sizes are required to obtain reasonable gap extrapola-
tions.

The extrapolated gaps �(U,V ) are shown in Fig. 5 as
a function of U for v = 0, v = 0.1, v = 0.3, and v = 0.5.
Apparently, the nearest-neighbor interaction not only shifts
the critical interaction to higher values, but also reduces the
size of the gap in the Mott insulating phase. The extrapo-
lated gaps becomes smaller as a function of V ; that is, the
nearest-neighbor interaction reduces the tendency to form a
Mott-Hubbard insulator. Note that gaps from finite-size ex-
trapolations are least accurate close to the transition, so that
they tend to “smear out” sharp transitions. For an elaborate
discussion, see Ref. [23].

At first sight, the increase of the critical interaction is
counterintuitive because one might argue that an additional
repulsive nearest-neighbor Coulomb interaction should fa-
vor the insulating state, not the metallic state. From a
wave-mechanical viewpoint, however, the repulsive nearest-
neighbor interaction softens the two-particle scattering poten-
tial. Figuratively speaking, particles that are scattered by the
weaker nearest-neighbor interaction V do not experience the
stronger on-site interaction U . For a quantitative analysis, see
Sec. IV.

When v = V/U is small, the change in the critical inter-
action strength is also small, and one might think of using
perturbation theory around the bare 1/r-Hubbard model. To
test this idea, we consider

C(L;U,V ) = e0(L, L;U,V ) − e0(L, L;U,V = 0)

V
. (41)

In the limit V → 0, leading-order perturbation theory gives

lim
V →0

C(L;U,V ) = CNN(r = 1, L;U,V = 0), (42)

where CNN(r = 1, L;U,V = 0) is the nearest-neighbor
density-density correlation function at half band filling for the
bare 1/r-Hubbard model at finite system sizes L; see Eq. (25).
As an example, for v = 0.3 and U � 0.7, we find that
CNN(r = 1, L;U,V = 0) agrees fairly well with C(L;U,V )
from Eq. (41). Around the Mott transition, however, the cor-
rections become sizable, more noticeably for larger systems.
Therefore low-order perturbation theory around the limit V =
0 cannot be used to determine the critical interaction strength
Uc(V ) reliably.
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(a)

(b)

(c)

FIG. 4. Two-particle gap �2(L;U,V ) for the extended 1/r-
Hubbard model as a function of inverse system size for L =
8, 16, 24, 32, 48, 64 and various values of U for (a) v = 0.1, (b) v =
0.3, and (c) v = 0.5. The solid curves are fits to the algebraic fit func-
tion (39). The intercept of the extrapolation curves with the ordinate
defines the extrapolation estimate �2(U,V ) for the two-particle gap.

C. Momentum distribution

In Fig. 6 we show the momentum distribution from DMRG
calculations at half band filling for L = 64 sites and various

FIG. 5. Two-particle gap �2(U,V ) for the extended 1/r-
Hubbard model as a function of U for v = 0.1 (red solid circles),
v = 0.3 (green solid circles), and v = 0.5 (purple solid circles), ex-
trapolated from finite-size data with up to L = 64 sites. The solid line
is the exact result in the thermodynamic limit for V = 0, �2(U,V =
0) = 2(U − 1); see Eq. (38).

values of U for v = 0.1, v = 0.3, and v = 0.5 [Figs. 6(a),
6(b), and 6(c), respectively]. For small interactions, the mo-
mentum distribution resembles that of a Fermi liquid with all
states −π < k < 0 occupied and all states 0 < k < π empty.
For small U , low-energy scattering processes are limited to
the vicinity of the sole Fermi point kF = 0. Indeed, in the
field-theoretical limit, U,V � 1, the model reduces to a bare
g4 model of only right-moving particles [25]. This “noninter-
acting Luttinger liquid” displays a jump discontinuity at kF.

However, the 1/r-Hubbard model is defined on a lattice,
and the bandwidth is finite. Consequently, the second Fermi
point at kF,2 = −π starts to play a role when U becomes large,
of the order of half the bandwidth. States near kF,2 are depleted
more quickly as a function of U than those deeper in the
Brillouin zone. Therefore, as seen in Fig. 6, the momentum
distribution develops a maximum around k = −π/2, with a
corresponding minimum around k = π/2.

These considerations show that the Luttinger parameter
must deviate from unity, K (U,V ) < 1, for all (U,V ), even
though corrections to unity are (exponentially) small for
U,V � 1. Therefore the momentum distribution is a contin-
uous function in the (extended) 1/r-Hubbard model for all
U,V > 0.

In contrast to the case V = 0 [23], there is no Fano reso-
nance discernible in the slope of the momentum distribution
at k = −π as the slope is always positive at k = −π . This
indicates that the bound state for V = 0 moves away from
the band edge for finite V > 0 and thus cannot be detected
in the momentum distribution. Consequently, we cannot use
the resonance to locate the metal-insulator transition in the
extended 1/r-Hubbard model.

D. Structure factor and CDW order parameter

Lastly, we show the structure factor from DMRG calcula-
tions in Fig. 7 for v = 0.1, v = 0.3, and v = 0.5 [Figs. 7(a),
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(a)

(b)

(c)

FIG. 6. Momentum distribution nk (L;U,V ) from DMRG calcu-
lations at half band filling for the extended 1/r-Hubbard model for
L = 64 sites and various values of U for (a) v = 0.1, (b) v = 0.3,
and (c) v = 0.5.

7(b), and 7(c), respectively] for the extended 1/r-Hubbard
model at system sizes L = 16, 64 below (left panels) and
above (right panels) the Mott transition. It is seen that the
finite-size effects are fairly small but larger systems permit
a much better resolution in momentum space. In comparison

(a)

(b)

(c)

FIG. 7. Structure factor C̃NN(q, L;U,V ) for the extended 1/r-
Hubbard model for L = 16, 64 below (left panels) and above (right
panels) the Mott transition for (a) v = 0.1, (b) v = 0.3, and (c) v =
0.5.

with the exact result for the noninteracting system,

C̃NN(q, n = 1;U = 0,V = 0) = |q|
π

, (43)
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(a)

(b)

FIG. 8. (a) CDW order parameter Nπ (L;U,V ) for the extended
half-filled 1/r-Hubbard model as a function of 1/L (L � 80) for
v = 0.7 and various U values. Curves are a second-order polynomial
fit in 1/L; see Eq. (44). (b) Extrapolated CDW order parameter
Nπ (U,V = 0.7U ) as a function of U . The curve is an algebraic fit
to the data in the vicinity of the CDW transition [see Eq. (45)] with
Uc(v = 0.7) = 0.6, N0 = 1, and 2ν = 0.3.

we see that the local interaction reduces the charge fluctu-
ations. This is expected because the suppression of double
occupancies likewise reduces the number of holes and the
charges are more homogeneously distributed in the system.
Therefore the charge correlations become smaller when we
compare the left and right panels in the same row.

The nearest-neighbor interaction counters the effect of
the Hubbard interaction because nearest-neighbor pairs of
a double occupancy and a hole are energetically favorable.
Therefore the charge correlations increase when we go from
Fig. 7(a) to Fig. 7(c) in the left or right row, even though U
also increases from Fig. 7(a) to Fig. 7(c).

When the nearest-neighbor interaction increases beyond
a certain threshold value Vc(U ), the ground state dis-
plays charge-density-wave order. In Fig. 8(a) we show the
charge-density-wave order parameter Nπ (L;U,V = 0.7U )
[see Eq. (29)] as a function of 1/L for various values of
U , and the extrapolated result Nπ (U,V = 0.7U ) into the

thermodynamic limit using a second-order polynomial fit in
Fig. 8(b),

Nπ (L;U,V ) = Nπ (U,V ) + N1(U,V )

L
+ N2(U,V )

L2
. (44)

Apparently, the CDW order parameter is continuous over the
CDW transition. Close to the transition, U � Uc(V ),

Nπ (U,V ) = N0[U − Uc(V )]2ν, (45)

where ν is the critical exponent for the CDW order parameter
D(U,V ). Note that we pass the CDW transition for a fixed
ratio v = U/V .

To make use of Eq. (45), the critical interaction Uc(V ) must
be known. In addition, the region of validity of Eq. (45) is
unknown a priori. Typically, one has to study system param-
eters close to the transition to obtain a reliable estimate for
ν. Therefore very large system sizes might be necessary to
reach the scaling limit, and we have to be satisfied with the
result from Fig. 8(b) that the CDW transition at v = 0.7 is
continuous with exponent ν � 1/2.

IV. MOTT TRANSITION

In this section we determine the critical value for the
Mott transition in the extended 1/r-Hubbard model. We in-
vestigate the two-particle gap, the ground-state energy, the
Luttinger parameter, and the structure factor at the Brillouin
zone boundary to locate the critical interaction strength Uc(V ).
The Mott transition remains continuous for all V/U .

A. Two-particle gap

In our previous work [23], we showed that the exponent
γ2(U ) = γ2(U,V = 0) sensitively depends on U in the vicin-
ity of the Mott-Hubbard transition, and the critical interaction
for the 1/r-Hubbard model, Uc(V = 0) = 1, was obtained
with an accuracy of 1‰.

To illustrate this result for the bare 1/r-Hubbard
model, in Fig. 9 we show the extrapolated gap expo-
nent γ2(U ) ≡ γ2(U,V = 0) using the analytic expression
(37) for various combinations of system sizes in the
range L = 8, 16, 24, 32, 48, 64, 80, 96, 128, 256, 512, 1024,

2048, 4096.
The extrapolation of finite-size data does not permit us

to reproduce the jump discontinuity in Eq. (37). Instead, we
observe a continuous curve as a function of the interaction
with a minimum close to criticality. The minimal value for
γ2(U ) depends on the selected range of system sizes. The gap
exponent in the thermodynamic limit [see Eq. (40)] cannot
be reproduced from finite-size studies, but it is approached
systematically with increasing system size. Furthermore, it
can be seen from Fig. 9 that the inclusion of smaller system
sizes such as L = 8, 16 leads to stronger deviations so that the
smallest system sizes should be discarded. Note, however, that
the position of the minimum and thus the critical interaction
strength are very well reproduced in all cases. Therefore the
minimum of γ2(U,V ) permits us to locate the Mott transition
Uc(V ) fairly accurately.

In Fig. 10 we display the exponent γ2(U,V ), as obtained
from the fit of the finite-size data in the range 16 � L � 80 to
the algebraic function in Eq. (39). Also shown in the figure are
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FIG. 9. Extrapolated gap exponent γ2(U ) = γ2(U,V = 0)
using the analytical expression of the two-particle gap
in Eq. (37). Various system sizes are used, in the range
L = 8, 16, 24, 32, 48, 64, 80, 96, 128, 256, 512, 1024, 2048, 4096.

the quartic fits around the minima, which lead to the critical
interactions Uc,gap(V ) listed in Table I. Note that the curves
flatten out for increasing v, so that it becomes more difficult
to determine accurately the minima for v → 0.5.

The comparison with the exact value for V = 0 shows that
the gap exponent γ2(U,V ) provides a fairly accurate estimate
for the critical interaction. The same accuracy can be obtained
when using the ground-state energy exponent γ0(U,V ), as we
shall show next.

B. Ground-state energy

As seen from Eq. (36), the 1/L corrections to the ground-
state energy density also permit us to locate the Mott transition
in the extended 1/r-Hubbard model, in the same way as
with the two-particle gap. In Fig. 11 we show the exponent

FIG. 10. Exponent γ2(U,V ) for the two-particle gap in the ex-
tended 1/r-Hubbard model as a function of U for various values of
v = V/U , based on system sizes 16 � L � 80. The minimum of the
curve determines Uc,gap(V ).

TABLE I. Critical interaction strengths for the extended 1/r-
Hubbard model, as obtained from the two-particle gap, the ground-
state energy, the Luttinger parameter, and the structure factor for
systems with 16 � L � 80 lattice sites. For V = 0, the exact result
in the thermodynamic limit is known [20], Uc(V = 0) = 1.

V/U Uc,gap(V ) Uc,gs(V ) Uc,LL(V ) Uc,sf (V ) U c(V )

0 1.009 1.000 1.033 0.965 1.002
0.1 1.024 1.022 1.056 0.984 1.021
0.2 1.055 1.056 1.090 1.018 1.055
0.3 1.109 1.116 1.144 1.075 1.111
0.4 1.202 1.221 1.243 1.175 1.210
0.5 1.425 1.500 1.540 1.456 1.480
0.6 0.828 0.838 0.883 0.876 0.856
0.7 0.587 0.600 0.616 0.611 0.604

γ0(U,V ), as obtained from the fit of the finite-size data in the
range 16 � L � 80 to the algebraic function in Eq. (35). Also
shown in the figure are the quartic fits around the minima,
which lead to the critical interactions Uc,gs(V ) listed in Table I.

The critical interaction strengths obtained from the minima
of γ0(U,V ) agree very well with the exact result at V = 0
and with the values obtained from the gap exponent γ2(U,V )
with deviations in the low percentage range. Therefore we can
be confident that we found reliable estimates for the critical
interaction strength for the Mott transition.

C. Luttinger parameter

As an alternative way to locate the Mott transition, we
monitor the Luttinger parameter and determine Uc(U,V ) from
the condition [25]

K (Uc(V ), v) = 1
2 (46)

for fixed ratios v = V/U ; see also Ref. [23].
In Fig. 12 we show the Luttinger parameter K (L;U,V )

from DMRG calculations for the extended 1/r-Hubbard

FIG. 11. Exponent γ0(U,V ) for the ground-state energy of the
extended 1/r-Hubbard model as a function of U for various values
of v = V/U , based on system sizes 16 � L � 80. The minimum of
the curve determines Uc,gs(V ).
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FIG. 12. Luttinger parameter K (L;U,V ) from DMRG calcula-
tions for the extended 1/r-Hubbard model with nearest-neighbor
interaction V = 0.3U as a function of U for system sizes L =
8, 16, 24, 32, 48, 64 including a second-order polynomial extrapo-
lation to the thermodynamic limit (TDL). The intersection of the
extrapolation with Kc = 1/2 determines Uc(V ).

model with nearest-neighbor interaction V = 0.3U as a
function of U for system sizes L = 8, 16, 24, 32, 48, 64
including a second-order polynomial extrapolation to the ther-
modynamic limit. The intersection of the extrapolation into
the thermodynamic limit with Kc = 1/2 determines Uc(V ). To
obtain a reliable estimate for the intersection, either we can
use the two data points closest to the transition and perform
a linear interpolation, in this case U = 1.1 and U = 1.2, or,
alternatively, we use a four-parameter fit of the whole data set
that employs the information that the Luttinger parameter de-
viates from unity by exponentially small terms for U,V → 0,

K (U,V ) = a + b tanh(c + dU ) (47)

to fit the extrapolated data for finite values of U to a continu-
ous curve which is parametrized by a, b, c, d that depend on
v. Then, we solve Eq. (46) for Uc,LL(V ). The results are also
listed in Table I.

Alternatively, we could have solved Eq. (46) for each sys-
tem size and extrapolated the resulting system-size-dependent
critical interaction strengths to the thermodynamic limit.
Since the results deviate more strongly from the exact
value for V = 0, we refrain from pursuing this approach
further.

As seen from Table I, the critical values from the Luttinger
parameter systematically overestimate the correct interaction
strengths by some 3%. A similar effect was found for the
charge-density-wave transition in a one-dimensional model
for spinless fermions with nearest-neighbor interactions (the
“t-V model”) [26]. Apparently, much larger systems are re-
quired to overcome this systematic error. We do not apply
correction factors for a better fit, but use the critical interaction
strengths Uc,LL(V ) as an upper bound to the exact value Uc(V ).

FIG. 13. Structure factor C̃π (L;U,V ) at q = π as a function of
1/L for various values of U for the extended 1/r-Hubbard model
with nearest-neighbor interaction V = 0.3U for system sizes L =
8, 16, 24, 32, 48, 64. Curves are second-order polynomial extrapo-
lations to the thermodynamic limit; see Eq. (48).

D. Structure factor and CDW order parameter

For the 1/r-Hubbard model, the finite-size corrections to
the structure factor C̃π (U,V ) ≡ C̃(π ;U,V ),

C̃π (L;U,V ) = C̃π (U,V ) + C1(U,V )

L
+ C2(U,V )

L2
, (48)

and the CDW order parameter Nπ (L;U,V ) [see Eq. (44)]
permit us to locate the critical interaction strength. In Fig. 13
we show the structure factor for v = 0.3 and various val-
ues of U as a function of inverse system size for L =
8, 16, 24, 32, 48, 64.

As can be seen from the figure, the coefficient in 1/L
changes its sign at the critical interaction strength,

C1(Uc,sf (V ),V ) = 0. (49)

To see this more clearly, in Fig. 14(a) we show the coefficient
C1(U,V ) as a function of U for v = 0.1, v = 0.3, and v = 0.5
and fit the data to a Fano resonance,

CFano
1 (U,V ) = a(V ) + b(V )

[qF(V )	(V ) + U − Uc(V )]2

[	(V )]2 + [U − Uc(V )]2
.

(50)

Analogously, we find the critical interaction strengths in the
CDW phase from the 1/L corrections to the CDW order
parameter (29) [see Eq. (44)] in Fig. 14(b).

As in our study of the 1/r-Hubbard model [23], a bound
state that interacts with the continuum shows up in physical
quantities and thus contributes a Fano resonance to various
physical quantities, with weight of the order 1/L. Using the
Fano resonance formula and the conditions C1(Uc,sf ,V ) =
0 = N1(Uc,sf ,V ), the 1/L corrections of the structure factor
and the CDW order parameter provide the estimate Uc,sf (V )
for the critical interaction. The resulting data are listed for
various v in Table I.

The critical interaction strength Uc,sf (V ) systematically un-
derestimates the exact value for the Mott transition by a few
percent. Together with the critical interaction strength from
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(a)

(b)

FIG. 14. (a) Finite-size coefficient C1(U,V ) of the structure fac-
tor as a function of U for the extended 1/r-Hubbard model for
v = 0.1 and v = 0.3 (inset: v = 0.5). (b) Finite-size coefficient
N1(U,V = 0.7U ) for the CDW order parameter; see Eqs. (29) and
(44). Curves are fitted Fano resonance curves; see Eq. (50).

the Luttinger parameter Uc,LL(V ), we thus can set tight limits
to Uc(V ).

E. Critical interactions for fixed interaction ratios

In Table I we collect the results for the critical
interaction strengths Uc(V ) obtained from the analysis
of the two-particle gap, the ground-state energy, the
Luttinger parameter, and the structure factor for v =
V/U = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, as obtained from
Secs. IV A–IV D. We observe the following.

(i) The arithmetic average of the four values, U c, repro-
duces the exact result at V = 0 with an accuracy of a few per
mille.

(ii) The values for Uc,gs(V ) are close to the average for
all V , with a deviation below 2%. Therefore the ground-state
exponent alone provides a reliable estimate for Uc(V ) in all
cases.

(iii) The estimates Uc,LL(V ), using the Luttinger param-
eter, and Uc,sf , using the structure factor, systematically
overestimate and underestimate, respectively, the critical in-
teraction strength for the transition from the Luttinger liquid

to the Mott-Hubbard insulator. Therefore they provide natural
bounds to Uc(V ) for v � 0.5.

(iv) The transitions to the CDW insulator at v = 0.6, 0.7
can be determined fairly accurately from all four approaches
individually.

In Fig. 1, we connect the data points for U c(V ) using a
third-order spline interpolation. Error bars at the data points
result from the overestimates and underestimates listed in
Table I. In Fig. 1 we also include the results from the analysis
for the Mott transition between the Luttinger liquid and the
CDW insulator at fixed U = 0.2, as we discuss next.

F. Transitions at fixed Hubbard interaction

Lastly, we study the metal-to-insulator transition at fixed
Hubbard interaction U as a function of V , namely for U = 0.2
and U = 1.7.

1. Transition from Luttinger liquid to CDW insulator

At U = 0.2, we find a transition from the Luttinger liquid
metal to the CDW insulator at Vc(U = 0.2) = 0.29 ± 0.01.
The analysis follows the route outlined in Secs. IV A–IV E
and will not be repeated here. We increase V in steps of
�V = 0.02 around the transition.

Using the coefficient γ0 from the ground-state energy (see
Sec. IV B), we find Vc,gs(U = 0.2) = 0.286; the coefficient γ2

from the two-particle gap in Sec. IV A leads to Vc,gap(U =
0.2) = 0.280; and the Luttinger parameter of Sec. IV C leads
to Vc,LL(U = 0.2) = 0.298, almost identical to the values
from the structure factor (see Sec. IV D). This leads to the
average value quoted above.

Due to the absence of perfect nesting in the dispersion
relation, it requires a finite interaction strength V to stabilize
the CDW phase even at U = 0. Qualitatively, Hartree-Fock
theory leads to the same result. Hartree-Fock theory system-
atically overestimates the stability of the CDW phase and thus
underestimates Vc(U ); see Fig. 1. The analytical approach
can be improved by including second-order corrections to
Hartree-Fock theory; see, e.g., Refs. [26,33]. This is beyond
the purpose of our present analysis.

2. Transition from Mott-Hubbard to CDW insulator

At U = 1.7, not included in the phase diagram in Fig. 1,
we have a brief look at the transition from the Mott-Hubbard
insulator to the CDW insulator. The results for the two-particle
gap are shown in Fig. 15. They are corroborated by the behav-
ior of the order parameter quantities Cπ and Nπ . The analysis
of the parameters γ0 and γ2 leads to quantitatively identical
but less accurate results.

For the one-dimensional extended Hubbard model it is
known that the critical interaction is larger than U/2. For
the extended 1/r-Hubbard model we also find Vc = 0.87 ±
0.01 > 1.7/2 = 0.85 for the onset of the CDW. When ex-
pressed in units of the bandwidth, the offset of δc(U ) =
Vc(U ) − U/2 agrees almost quantitatively with the value
obtained from DMRG and QMC calculations for the one-
dimensional extended Hubbard model, δc(U = 1.7) ≈ 0.02;
see Ref. [34].
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(a)

(b)

FIG. 15. (a) Two-particle gap for the extended 1/r-Hubbard
model at U = 1.7 for various values of V as a function of 1/L for
L = 8, 16, 32, 64, 80. (b) Extrapolated two-particle gap as a function
of V .

The shift δc(U ) can be determined analytically using
higher-order strong-coupling perturbation [35]. Unfortu-
nately, this program cannot be carried out for the extended
1/r-Hubbard model because the exact ground state is not
known for the effective spin model which is a linear com-
bination of the Heisenberg model with nearest-neighbor
interaction and the Haldane-Shastry model with 1/r2 ex-
change interaction [36,37]. A variational strong-coupling
approach that employs the Baeriswyl wave function [38,39]
cannot be carried out analytically either because it requires
the evaluation of 〈T̂ 3〉 in the Gutzwiller-projected Fermi sea.

In the one-dimensional extended Hubbard model, there is
a bond-order-wave phase below a critical interaction strength
Utri that separates the Mott-Hubbard and CDW insulators
[16–18]. For U > Utri, the transition from the Mott-Hubbard
insulator to the CDW insulator is discontinuous. As can be
seen from Fig. 15, we also find indications for the exis-
tence of a bond-order-wave phase. The charge gap of the
Mott-Hubbard insulator closes around Vc(U = 1.7) ≈ 0.87
and reopens beyond Vc(U = 1.7) with a small value. The
extrapolation of the gap remains linear as a function of 1/L

even at V = 0.88, as seen in Fig. 15(a). For larger values of
V , the gap drastically increases, and the extrapolation displays
a 1/L2 behavior for large L. The same behavior of the gap was
observed for the one-dimensional extended Hubbard model at
U = 2W [17,18], where it was numerically shown in detail
that as a function of V the Mott-Hubbard insulator turns into a
bond-order-wave insulator before the CDW phase eventually
takes over.

Further investigations are necessary to corroborate the ex-
istence of a bond-order-wave phase in the vicinity of the CDW
transition also for the extended 1/r-Hubbard model. Note,
however, that we do not expect a bond-order wave as an inter-
mediate phase for small interactions because in the extended
1/r-Hubbard model the metallic Luttinger liquid overrides a
conceivable bond-order wave.

V. CONCLUSIONS

In this paper we applied the density-matrix renormal-
ization group (DMRG) method to the half-filled extended
1/r-Hubbard model where the decay of the electron transfer
amplitudes is proportional to the inverse chord distance of
two lattice sites on a ring. The model describes a linear dis-
persion within the Brillouin zone and thus provides an ideal
case to study the Mott-Hubbard transition because it lacks
Umklapp scattering. Therefore the metal-to-insulator transi-
tions occur at finite interaction strengths. Consequently, all
generic phases, namely Luttinger liquid metal, Mott-Hubbard
insulator, and charge-density-wave insulator, occupy a finite
region in the (U,V ) ground-state phase diagram; see Fig. 1.

Mapping the quantum phase transition boundaries for the
specific model is one of the main achievements of this work.
To this end, we use DMRG data for up to L = 80 sites
to calculate the ground-state energy, the two-particle gap,
the momentum distribution, the Luttinger parameter, and the
structure factor. The finite-size behavior of the ground-state
energy, of the two-particle gap, and of the structure factor
permit us to determine the critical interaction parameters
for the instability of the Luttinger liquid metal, which turns
into the Mott-Hubbard insulator and the charge-density-wave
insulator, respectively. Moreover, we monitor the Luttinger
parameter, which also signals the breakdown of the Luttinger
liquid metal at a metal-to-insulator transition. We tested the
validity of our analysis against exact results for V = 0, for
which analytic results for the ground-state energy and the gap
exist for all interactions U and system sizes L.

The phase diagram in Fig. 1 shows that the nearest-
neighbor interaction and the Hubbard interaction counteract
each other. On the one hand, the Mott transition shifts to
larger values; that is, a weak-to-moderate nearest-neighbor
interaction stabilizes the Luttinger liquid metal. Apparently,
the two-particle scattering interaction becomes smoother in
position space and renders the total interaction less effective.
On the other hand, as can readily be understood from classical
considerations, the Hubbard interaction opposes the formation
of a charge-density wave because, by definition, a CDW aug-
ments the particle density on the same lattice site.

In contrast to the “standard” extended Hubbard model
in one dimension, the absence of Umklapp scattering and
the competition of both interactions leads to an extended
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metallic region in the phase diagram. The extrapolations sug-
gest that there is a tricritical point where all three phases
touch. It will be interesting to analyze this region in phase
space with higher accuracy, i.e., more data points in the (U,V )
parameter space close to (Utri,Vtri ) ≈ (1.5, 0.75), and larger
system sizes, L > 80. Moreover, a conceivable bond-order
wave above the tricritical point between the Mott insulator and
charge-density-wave insulator should be investigated in more
detail. These tasks are left for future studies.
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APPENDIX: HARTREE-FOCK THEORY

1. CDW Hartree-Fock Hamiltonian

In Hartree-Fock theory, we decouple the two-particle inter-
action as follows:

D̂HF = D̂H =
∑

l

〈n̂l,↑〉n̂l,↓ + n̂l,↑〈n̂l,↓〉 − 〈n̂l,↑〉〈n̂l,↓〉,

(A1)

V̂ HF = V̂ H + V̂ F, (A2)

V̂ H =
∑

l

(〈n̂l〉 − 1)(n̂l+1 − 1) + (n̂l − 1)(〈n̂l+1〉 − 1)

−(〈n̂l〉 − 1)(〈n̂l+1〉 − 1), (A3)

V̂ F =
∑
l,σ

〈ĉ+
l,σ ĉl+1,σ 〉ĉl,σ ĉ+

l+1,σ + ĉ+
l,σ ĉl+1,σ 〈ĉl,σ ĉ+

l+1,σ 〉

−〈ĉ+
l,σ ĉl+1,σ 〉〈ĉl,σ ĉ+

l+1,σ 〉. (A4)

Here, where 〈Â〉 denotes the ground-state expectation value of
the operator Â,

〈Â〉 ≡ 〈�0|Â|�0〉, (A5)

with |�0〉 as the ground state of the Hartree-Fock Hamiltonian
ĤHF; see below. We make the CDW ansatz for the order
parameter

〈n̂l,σ 〉 = 1
2 (1 + (−1)l�) (A6)

with the real CDW parameter � � 0 and introduce the abbre-
viation

B = 〈ĉ+
l,σ ĉl+1,σ 〉 = ib. (A7)

Particle-hole symmetry implies that B is purely complex at
half band filling, i.e., b is real. Note that we disregard a
possible bond-order wave (BOW) by assuming that B does
not alternate from site to site.

With these abbreviations, we can rewrite the Hartree-Fock
interaction at half band filling as

D̂H = L

4
(1 − �2) + �

2

∑
l,σ

(−1)l n̂l,σ , (A8)

V̂ H = L�2 − 2�
∑
l,σ

(−1)l n̂l,σ , (A9)

V̂ F = 2Lb2 + ib
∑
l,σ

[ĉ+
l,σ ĉl+1,σ − ĉ+

l+1,σ ĉl,σ ]. (A10)

The resulting single-particle problem defines the Hartree-
Fock Hamiltonian for a possible CDW ground state

ĤHF = T̂ + UD̂H + V (V̂ H + V̂ F). (A11)

It has to be solved self-consistently; that is, � must be chosen
such that the ground state fulfills Eq. (A6).

2. Diagonalization of the Hartree-Fock Hamiltonian

In the CDW phase, the Hartree-Fock Hamiltonian is identi-
cal for both spin species, ĤHF = ∑

σ ĤHF
σ . Dropping the spin

index, we must diagonalize

Ĥsf =
∑

k

ε(k)Ĉ+
k Ĉk +

(
U

2
− 2V

)
�

∑
l

(−1)l n̂l

+ib
∑

l

[ĉ+
l ĉl+1 − ĉ+

l+1ĉl ] + C (A12)

for spinless fermions (“sf”), where C = UL/8(1 − �2) +
LV �2/2 + LV b2. In momentum space, the Hamiltonian reads

Ĥsf = C +
′∑
k

[(ε(k) + b(k))Ĉ+
k Ĉk

+ (ε(k + π ) − b(k))Ĉ+
k+πĈk+π ] (A13)

+
(

U

2
− 2V

)
�

′∑
k

(Ĉ+
k Ĉk+π − Ĉ+

k+πĈk ),

where the prime on the sum indicates the k-space region
−π < k < 0 and b(k) = −2bV sin(k) � 0.

We diagonalize Ĥsf with the help of the linear transforma-
tion

Ĉk = ckα̂k − skβ̂k,

Ĉk+π = skα̂k + ckβ̂k, (A14)

where we abbreviate ck ≡ cos(ϕk ) and sk = sin(ϕk ). The
mixed terms in Ĥsf vanish when we demand

tan(2ϕk ) = − (2V − U/2)�

b(k) + (ε(k) + ε(k + π ))/2
� 0. (A15)

The diagonal terms result in

Ĥsf =
′∑
k

Eα (k)α̂+
k α̂k + Eβ (k)β̂+

k β̂k + C (A16)
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for the Hartree-Fock quasiparticle Hamiltonian, and we obtain

Eα (k) = 1
2 (ε(k) + ε(k + π )) − s(k),

Eβ (k) = 1
2 (ε(k) + ε(k + π )) + s(k) (A17)

for the dispersion relations for the lower and upper quasipar-
ticle bands, where

s(k) =
√[

2V − U

2

]2

�2 +
[

b(k) + ε(k) − ε(k + π )

2

]2

(A18)

is positive so that Eα (k) < Eβ (k) for all −π < k < 0. There-
fore the ground state contains only α particles,

|�0〉 =
∏

−π<k<0,σ

α̂+
k,σ |vac〉, (A19)

where we reintroduced the spin index.

3. Self-consistency equations and CDW transition

The self-consistency equations (A6) and (A7) become

� = �

∫ 0

−π

dk

π

2V − U/2

s(k)
(A20)

and

b = −
∫ 0

−π

dk

2π

sin(k)[b(k) + (ε(k) − ε(k + π ))/2]

s(k)

in the thermodynamic limit. The set {� = 0, b = −1/π} pro-
vides the solution for noninteracting particles.

Within Hartree-Fock theory, the CDW transition is contin-
uous. We seek a solution for � = 0+ and b = −1/π so that
Vc(U ) must obey the equation

1

2Vc(U ) − U/2
=

∫ π

0

dk

π

1

1/4 + 2Vc(U ) sin(k)/π
. (A21)

Using MATHEMATICA [40], and with the abbreviation ac =
8Vc/π , we find

1

ac − 2U/π
= π√

1 − a2
c

− 2√
1 − a2

c

arctan

(
ac√

1 − a2
c

)
.

(A22)

This equation must be solved numerically for given U . The
resulting curve V HF

c (U ) is shown in Fig. 1.
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