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Kaleidoscope of phases tuned by global dipole orientations in the Hubbard model
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We investigate the emergence of a myriad of phases in the strong coupling regime of the dipolar Hubbard
model in two dimensions. By using a combination of numerically unbiased methods in finite systems with
analytical perturbative arguments, we show the versatility that trapped dipolar atoms possess in displaying a
wide variety of many-body phases, which can be tuned by changing the collective orientation of the atomic
dipoles. We further investigate the stability of these phases to thermal fluctuations in the strong coupling regime,
highlighting that they can be accessed with current techniques employed in cold atoms experiments on optical
lattices. Interestingly, both quantum and thermal phase transitions are signaled by the behavior of density-density
and local moment-local moment correlations, which are available through quantum gas microscopy for cold
atoms to be used as probes for the onset of different phases.
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I. INTRODUCTION

Experiments with ultracold atoms on optical lattices [1–4]
have stimulated the search for new paradigms in many-body
physics, especially due to the possibility of controlling and
engineering quantum macroscopic states [5]. A recent exper-
imental advance is the manipulation of atoms or molecules
with (electric or magnetic) dipoles [6–12]. For example, 52Cr
atoms with a large magnetic moment (6μB, with μB being
the Bohr magneton) form Bose-Einstein condensates (BEC’s)
below Tc � 700 nK [13]; larger magnetic moments, ∼12μB,
were later obtained with Er2 molecules [14]. The first quan-
tum degenerate dipolar Fermi gas was realized [15] with
161Dy atoms cooled down to 20% of the Fermi temperature,
TF ≈ 300nK; also, Fermi surface deformation was observed
in Er atoms [16]. An ultracold dense gas of fermionic
potassium-rubidium (40K-87Rb) polar molecules was also
generated [17], which paved the way to trap them into 2D
and 3D optical lattices [18]; and two-component Er dipolar
fermionic gas with tunable interactions was prepared with
collisional stability in the strongly interacting regime [10].

The interest in dipolar atoms stems from their long-ranged
and anisotropic interactions, such that they can be direc-
tionally repulsive or attractive. This adds extra richness to
the diversity of collective states of atoms in an optical lat-
tice [19,20]. For instance, quantum magnetism of high-spin
systems has been experimentally studied with bosonic [21,22]
and fermionic [23] atoms, as well as with molecules [24]
in optical lattices, and the ability to design quantum spin
Hamiltonians with cold atoms may lead to the development
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of error-resilient qubit encoding and to topologically protected
quantum memories [25]. In addition, since one of the motiva-
tions to study cold atoms in optical lattices is the possibility
of emulating condensed matter models [1–4], a detailed in-
vestigation of effects due to dipolar interactions is clearly of
interest.

The study of dipolar physics with trapped atoms and
molecules has experienced an increased interest in recent
years [11,26]. Indeed, several studies suggest that new phe-
nomena may emerge, such as p-wave pairing [27,28] and dif-
ferent density-wave patterns [29–38], some of which are an-
alyzed through analogies with liquid-crystals. The increased
stability in recent experiments allowed for observing super-
solid behavior in dipolar quantum gases [39–41]. Another
remarkable experiment progress comes from imaging, as site-
resolved correlations were measured for molecules [24] and
dipolar bosons [12].

The extended Hubbard Model was realized in different
platforms, such as semiconductor dipolar excitons confined in
a GaAs quantum well [42], with spin valley isospins arising
in chiral-stacked twisted double bilayer graphene [43], and on
semiconductor quantum dots [44,45]. Due to the long-range
nature of dipolar interactions, the extended Hubbard Model
emulated by dipolar fermionic [10] and bosonic [12,46] atoms
on optical lattices differ from the previous ones, not only
because interactions go beyond near-neighbor sites, but also
because of its dependence on the dipole direction, opening up
the possibility for new phases to emerge.

Considering the aforementioned rich variety of phenom-
ena, here we present a study of the dipolar Hubbard model
in two dimensions. The layout of the paper is as follows. In
Sec. II, we discuss the model and methodology used to extract
its physical properties. In Sec. III, we discuss ground-state
properties for different polarization directions, extracted from
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FIG. 1. (a) Schematic representation of the lattice populated by
the magnetic dipoles, which possess global coinciding orientation.
The two different site colors represent the two hyperfine states, and
the phase depicted is the Mott phase (see text). (b) Definition of the
polar angles describing the direction of the magnetic dipoles, shown
as a thick (red) arrow.

Lanczos diagonalizations; finite-size effects are also probed,
aided by analyses both in the atomic limit (i.e., t = 0) and
through perturbation theory. Some thermal effects are dis-
cussed in Sec. IV. Last, Sec. V summarizes our findings.

II. MODEL AND METHODS

We consider spinful atoms (i.e., a mixture of atoms in two
hyperfine states) on an optical lattice. The system is described
by the Hamiltonian,

Ĥ = − t
∑
〈i,j〉,σ

(ĉ†
iσ ĉjσ + H.c.) + U

∑
i

n̂i↑n̂i↓ +
∑
i 	=j

Vij n̂i n̂j,

(1)

where ĉiσ (ĉ†
iσ ) denotes the particle annihilation (creation) op-

erator and n̂i the number operator at site i. The sums run over
sites of a square optical lattice, with 〈i, j〉 denoting nearest
neighbor sites; σ =↑,↓ denotes the two hyperfine states, and
t is the hopping integral. An external field aligns the dipoles
parallel to the unit vector d̂, specified by the usual polar angles
θ and ϕ, taking ẑ perpendicular to the square lattice; see
Fig. 1(b). The dipolar interaction is then written as

Vij = V

r3
ij

[1 − 3(r̂ · d̂)2], (2)

where V (proportional to the square of the dipole moments)
is the strength of the interaction, rij ≡ i − j is a vector joining
sites on the lattice, and r̂ is its unit vector. The interaction
of two atoms in the same optical well, U , is the sum of two
contributions: one is the usual onsite repulsive interaction,
tunable through a Feshbach resonance; the other comes from
the dipolar interaction, whose behavior at small distances is
limited by the finite size of the atoms [6,47].

The ground-state properties of the Hamiltonian [Eq. (1)]
are analyzed with the Lanczos method [48–50] on a 4 × 4
lattice with periodic boundary conditions, in the subspace of
half filling; translational symmetry and total spin projection
are also incorporated in the bases used. In line with experi-
ments in the absence of dipolar interactions, here we consider
the case U = 8t , which is also convenient since finite-size
effects are small in the strong-coupling regime – more on
this below. The finite lattice size we use forces us to truncate
the dipolar interaction beyond second neighbors. Nonetheless,
anisotropy and competition between attractive and repulsive

couplings are preserved. We also perform strong-coupling
analyses [51,52], complemented by simulated annealing [53],
to check the consistency of exact diagonalization results and
to consider the effects of thermal fluctuations; details will be
presented in Secs. III, IV, and in the Appendix.

Here we borrow the attribute spin familiar from the con-
densed matter context, to denote atomic species.

Accordingly, we define:
(i) spin-spin correlation functions,

Cs(r) ≡ 〈m̂0m̂r〉, m̂r = n̂r↑ − n̂r↓, (3)

(ii) connected density-density correlation functions,

Cd (r) ≡ 〈n̂0n̂r〉 − 〈n̂0〉〈n̂r〉, n̂r = n̂r↑ + n̂r↓, (4)

(iii) connected local moment-local moment (from now on
referred to as moment-moment) correlation functions,

Cm(r) ≡ 〈
m̂2

0m̂2
r

〉 − 〈
m̂2

0

〉〈
m̂2

r

〉
; (5)

this latter quantity is most readily accessible in experi-
ments [54–57], and, as we will see, carries the signature of
both quantum and thermal phase transitions. Density-density
correlation functions are also available in quantum gas mi-
croscopy and were used to characterize the different phases in
recent experiments with dipolar bosonic Erbium atoms [12].

III. ZERO-TEMPERATURE PHASE DIAGRAM

In this section we discuss the zero-temperature phase tran-
sitions induced by the variation of both the polarization, θ and
ϕ, and the strength of the dipolar interaction, V ; we will also
compare results for U = 0 and in the strong coupling regime.

A. Phase diagram—ϕ = 0

Let us first fix the direction of polarization and vary the
strength of the dipolar interaction, V . Figures 2(a) show the
correlation functions for the isotropic case, θ = ϕ = 0: spin
correlations consistent with a Néel-like arrangement (a1) are
completely suppressed at VCB ≈ 3.1, beyond which density
correlations (a2) develop. The system therefore goes from a
Mott phase, in which each species occupies one sublattice,
to a checkerboard charge density wave (cbCDW) phase, in
which only one of the sublattices is occupied by both species;
see cartoons in Fig. 2(d). It is interesting to compare this with
the usual extended Hubbard model (EHM), in which case the
interaction is cut off at the nearest-neighbor site [58–62], such
that V EHM

c = U/4 in the atomic limit, separating the Mott
and CDW phases. In the presence of diagonal interactions of
strength Vd , the cbCDW phase is stabilized for VCB > V EHM

c +
3Vd ; that is, additional repulsion along the diagonals favors the
Mott phase. Panel (a3) shows the moment-moment correlation
function, which captures the increase of fluctuations at the
critical point. The sharp drop in the local moment is respon-
sible for the sharpness of Cm(r) at the transition; see below.
By contrast, when the dipoles point along the x̂ direction
[Figs. 2(b)] the transition is from a Mott phase to a striped
phase, at a smaller Vc than for the isotropic case; the direction
of the stripes is that of the dipoles, since arranging them
head-to-tail lowers the energy and skipping a row costs less
energy than placing them on adjacent rows. As a result,
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FIG. 2. Panels (a) and (b) show the dependence of the different correlation functions with the dipolar interaction strength, V/t , for dipoles
perpendicular (a) and parallel (b) to the lattice; panels (c) show the dependence with the polar angle θ/π , at fixed V/t . Each curve is for a
fixed distance, r, as indicated in panel (b2). These correlation functions are obtained with Lanczos diagonalization on a 4 × 4 lattice. Panel
(d) shows the phase diagram V/t × θ/π for U/t = 8 and ϕ = 0: data points are Lanczos diagonalization results (full lines guide the eye) for
t = 1, while the dashed line corresponds to the atomic limit (t = 0).

nearest-neighbor spin correlations are now anisotropic in the
Mott phase: in strong coupling, the effective nearest neighbor
exchange interaction Jν,eff = 4t2/(U − Vν ), ν = x, y, pos-
sesses Vx < 0 and Vy > 0, so that attraction weakens magnetic
correlations. By the same token, local moment fluctuations are
also anisotropic, since vertically one has doublon-holon pairs
while horizontally one has doublon-doublon pairs, the latter
being less prone to fluctuations than the former.

Since the nature of the CDW state depends on the po-
larization angle, we now probe the phase transitions driven
by changing the direction of the dipoles within the xz plane
(ϕ = 0), while V is kept fixed. Figures 2(c) show that with
increasing θ the cbCDW phase gives way to a Mott phase
(with anisotropic correlations), and further increase in θ drives
the system to another CDW phase, now with stripes along the
x̂ direction (XS); see the horizontal dashed line in Fig. 2(d).
This intervening Mott phase disappears at some critical Vc,
which is not very sensitive to the hopping presence for a
fixed U/V in the physically relevant domain of U � t . This
is revealed by comparing with the size-independent strong
coupling results for the cbCDW, Mott, and striped phases
listed in the Appendix; see black-dashed lines in Fig. 2(d).
Note that for V < VCB ≈ 3.1t no cbCDW state is formed,
and the smaller V gets, the closer to the plane the direction
of polarization must get to reach the XS phase; interestingly,
below VH ≈ 1.5t no CDW is formed.

B. Phase diagram—θ × ϕ

To relax the constraint of polarization within the xz plane,
we may take advantage of the fact that the atomic limit (i.e.,
t → 0) captures, to a very good approximation, the essence of
the phase diagrams [as discussed in connection with Fig. 2(d)]
and in what follows we start by describing the t = 0 limit.
We then discuss how quantum fluctuations (t 	= 0) affect the

θ × ϕ phase diagram by employing second-order perturbation
theory and considering the behavior of the different correla-
tion functions.

1. Atomic limit t = 0

A systematic search for the ground state in the atomic
limit may start by setting U = 0 and looking for minima of
the Fourier transform of the dipolar potential between two
particles,

Vq = 1

L2

∑
i,j

eiq·rij Vij, (6)

where L is the linear lattice size, and qα = 2nαπ/L, with
α = x, y, and nα = 0, . . . , L; we set the lattice spacing to
unity. Figure 3 shows Vq for several dipole orientations (θ, ϕ).
For (θ, ϕ) = (0, 0), Vq is minimized for qmin = (π, π ), which
corresponds to a cbCDW state also at U = 0, as expected from
the analyses of Sec. III A.

For dipoles in the plane, θ = π/2, if ϕ = 0 the minima are
at qmin = (0, π ), thus giving rise to x̂-oriented stripes; see the
inset of Fig. 2(d). Similarly, if ϕ = π/2 instead, the minima
are at qmin = (π, 0), thus giving rise to ŷ-oriented stripes. For
dipoles still in the plane, but oriented along a lattice diagonal,
ϕ = π/4, there is a degeneracy larger than before: the minima
are located at qmin = (δ, 2π − δ) [or, equivalently, to qmin =
(2π − δ, δ)], with δ ∼ 2π/L, in addition to qmin = (0, 0); as
we will see below, these correspond to phase-separated distri-
butions. Finally, Fig. 3(e) corresponds to dipoles at an angle of
π/4 above the plane and with projections on the plane lying
along the lattice diagonals: these lead to qmin = (3π/2, π/2)
[or, equivalently, to qmin = (π/2, 3π/2)] which corresponds
to a diagonally striped, or tilted CDW phase; see Fig. 16 in
the Appendix.
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FIG. 3. Fourier transform of the dipolar potential, Eq. (6), for dipoles oriented along the (a) (0,0), (b) (π/2, 0), (c) (π/2, π/2),
(d) (π/2, π/4), and (e) (π/4, π/4) directions, and for a 32 × 32 lattice. The wavevectors are in units of the inverse lattice spacing.

We now discuss how qmin evolves as one changes θ (or
ϕ) for a fixed ϕ (or θ ). As it can be seen from Fig. 4(a), for
ϕ = 0, the minima at qmin = (π, π ) (cbCDW configuration)
changes to qmin = (0, π ) (X-striped) as the angle θ increases
above θ ≈ 0.15, in agreement with the results discussed in
Sec. III A. Interestingly, for θ = π/4, between the Y-striped
phase [qmin = (π, 0)] and the X-striped phase [qmin = (0, π )]
the variation of ϕ induces different wave-vectors qmin for
0.15 � ϕ � 0.33 [see Fig. 4(b)], suggesting that multiple
tilted CDW phases are stabilized as ground states.

FIG. 4. Wave-vectors qmin = (qx
min, qy

min ) as a function of (a) θ

for ϕ = 0 and (b) ϕ for θ = π/4.

Our next step is to check the stability of these prospective
ground states at half-filling with respect to (i) lattice size, (ii)
dipolar interaction cutoff range, and (iii) the presence of an
onsite interaction, U . We fix (θ, ϕ) = (π/4, π/4) and com-
pare three different configurations: Mott insulator, cbCDW,
and the tilted-CDW configuration associated with qmin =
(π/2, 3π/2); see Fig. 16 in the Appendix. Figure 5 shows that
for U/V = 0 and U/V = 2.2, increasing the system size does
not change the nature of the ground state. When the cutoff
in V is set at the second nearest neighbor, as in Figs. 5(a1)
and 5(a2), the energy is independent of system size (for sizes

FIG. 5. Size dependence of the energy per number of particles
for (θ, ϕ) = (π/4, π/4); (a) U/V = 0 and (b) U/V = 2.2. In pan-
els (a1) and (b1), the dipolar interaction is cut off beyond second
neighbors, while in panels (a2) and (b2), the full range compatible
with the lattice size is taken into account. The corresponding wave-
vectors for the cbCDW and tilted-CDW states are q = (π, π ) and
q = (π/2, 3π/2), respectively. Panel (c) shows the dependence of E
with U/V for the full-ranged interactions case in a 20 × 20 lattice.
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FIG. 6. Ground-state phase diagrams in terms of θ/π and ϕ/π obtained in the atomic limit for (a) U/V = 3.08, (b) U/V = 2.67, (c) U/V =
2.22, and (d) U/V = 1.00. Striped phases along the x̂ (XS) and x̂ (YS) directions, checkerboard CDW (cbCDW), phase-separated phases (PS),
Mott insulating phase, and different diagonally striped phases are present (remaining colors that are not annotated, see Fig. 7).

larger than the cutoff). Allowing for long-range dipolar inter-
actions, with V reaching all sites in the lattice, as displayed in
Figs. 5(b1) and 5(b2), the energies clearly converge fast with
L, and they are shifted to larger values when compared with
the short-ranged V data of Figs. 5(a1) and 5(a2). Figure 5(c)
shows that, within the atomic limit approximation, decreasing
U/V takes the system from a Mott insulator (for U/V � 1.0)
to a tilted-CDW phase (for U/V � 1.0). For this particular
choice of (θ, ϕ) = (π/4, π/4), Vx = Vy and the anisotropy
comes from longer ranged interactions, therefore larger values
of V , i.e., smaller U/V are necessary to tilt the CDW. The
presence of a tilted-CDW configuration as the ground state
for (θ, ϕ) = (π/4, π/4) is consistent with the analyses of Vq,
as shown in Fig. 3(e). A similar diagonally striped phase was
recently observed at (θ, ϕ) = (0.28π, π/4) for 168Er dipolar
bosonic atoms trapped on an optical lattice [12].

From now on in this section, we set again a cutoff on V
up to second-nearest neighbor and let the dipole direction
change in the presence of a nonzero onsite repulsion. Fig-
ures 16 and 19 (Appendix) show the configurations which the
analyses of Vq suggest as the most likely ground states. By
comparing the energy of the different classical states listed in
the Appendix, we note from Eqs. (A6) that the last term in
the energy of all phase-separated (tilted-PS) states vanish as
L → ∞, so that all the PS states become degenerate in the
thermodynamic limit.

Let us now consider very weak dipolar interactions. In this
U � V limit, the Mott phase is the ground-state configuration
for all directions (θ, ϕ). As V is increased and U/V < 5.33,
striped phases start forming around (θ = π/2), where attrac-
tive dipolar interactions are present along the x̂ (or ŷ) direction
while still being repulsive along ŷ (or x̂). This energetically
favors stripes along x̂ (or ŷ), which we denote by XS (or YS);
their regions of stability in the θ × ϕ plane are shown in Fig. 6,
for the different values of U/V considered, increasing in size
as U/V decreases.

Increasing V further we reach U/V = 2.71 where a phase-
separated phase [(PS), see illustration in Fig. 19] appears, as
shown in Fig. 6(b), for U/V = 2.67. When θ ≈ π/2, the av-
erage dipolar interaction is attractive, and the phase-separated

states compete with both XS (YS) and the Mott state. For
θ = π/2, an XS-diagonally striped–PS transition takes place,
with the intervening diagonally striped phase being small for
this value of U/V . The PS state has the global minimum
energy within the range ϕcx < ϕ < ϕcy, since the components
of the dipolar interaction are attractive, i.e., Vx,Vy,Vd1 < 0
(see their definition in the Appendix), thus favoring particle
condensation. In this range of U/V , the PS competes with
the Mott phase as the dipole direction deviates from θ = π/2.
The Mott-PS transition occurs in a horizontal line of the phase
diagram whose critical value of θ is given by

θc1 = arcsin

⎡
⎢⎣±

√√√√(
2

3
+ U

3V

√
2

1 + 2
√

2

)⎤
⎥⎦, (7)

where ± respectively correspond to the critical θ for θ < π/2
and θ > π/2; again, note that θc1 is independent of ϕ. For
U/V > (1 + 2

√
2)/

√
2 ≈ 2.71, Eq. (7) yields sin θc1 > 1 so

that the PS phase is suppressed, with the Mott state dominat-
ing the whole region ϕcx < ϕ < ϕcy of the phase diagram.

Figure 6(c), where U/V = 2.22, shows the presence of a
cbCDW region. Starting from the isotropic case, θ = 0, when
the GS is the cbCDW configuration, the transition to the Mott
state takes place at θc2, given by

θc2 = arcsin

⎡
⎢⎣±

√√√√2

3
+

( √
2

2 − 4
√

2

)
2U

3V

⎤
⎥⎦, (8)

where the ± apply to θc2 > π/2 or θc2 < π/2, respectively.
The cbCDW phase starts to form at U/V = (4

√
2 − 2)/

√
2 ≈

2.586, as above this value θc2 is complex. Within the atomic
limit, θc2, separating the Mott and cbCDW phases, is inde-
pendent of ϕ giving rise to the straight horizontal line phase
boundaries in Fig. 6(c).

As U/V is reduced, as shown in Figs. 6(a)–6(d), one can
observe a suppression of the Mott phase and the correspond-
ing expansion of all other phases. As discussed in Figs. 5(a)
and 5(c), U � V leads to the formation of tilted CDW phases
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FIG. 7. Ground-state phase diagram in terms of U/V and ϕ/π obtained in the atomic limit. Panels (a1) to (a4) show phase diagrams for
different values of θ in the regime of parameters that diagonally striped phases are energetically favored (see text). Panels (b1–b5) show the
density profile of the 5 diagonally striped phases that are stabilized when the parameter ϕ increases for θ/π = 0.28 and L = 16.

and strong suppression of the Mott phase. Figure 6(d) shows
that for U/V = 1 different types of diagonally striped phases
arise.

To better understand the nature and the formation of the
diagonally striped phases, we analyze phase diagrams in the
U/V versus ϕ/π plane in the regime where they are en-
ergetically favored within the atomic limit approximation,
shown in Fig. 7. Starting from θ/π = 0.22 [Fig. 7(a1)], a
small increase in the polar angle, to θ/π = 0.25 [Fig. 7(a2)]
changes the ground state from a cbCDW to a tilted CDW
phase around ϕ/π = 0.25 and U/V � 1, in agreement with
Figure 6(d). Moving the azimuthal angle away from ϕ/π =
0.25 induces other diagonally striped phases, with density
profiles and wave vectors q shown in Figs. 7(b1)–7(b5).
Tilting the polar angle further in the xy plane enhances the
anisotropic nature of the dipolar interactions, expanding the
range of the diagonally striped phases in the (U/V, ϕ/π )
parameter space. Consequently, the Mott phase shrinks and
the XS and YS phases are pushed to smaller ϕ and ϕ/π

closer to 1/2, respectively. XS and YS phases become more
stable at larger U/V , also collaborating to the reduction of
the Mott phase. The box in Fig. 7(a3) highlights a region
of the phase diagram where different phases are present.
For θ/π = 0.28, U/V ≈ 1.2 marks the frontier between the
Mott and tilted CDW phases around ϕ/π = 0.25. Sweep-
ing ϕ/π will take the system to go through a cascade of
phases: XS phase [with q = (0, π )] → q = (π/4, 5π/4) →
q = (3π/8, 11π/8) → q = (π/2, 3π/2) (below U/V = 1.2)
or Mott phase (above U/V = 1.2) → q = (5π/8, 13π/8)
→ q = (3π/4, 7π/4) → YS phase [with q = (π, 0)]. In the
Appendix, we show that longer-range dipolar interactions do

not change the nature of the tilted CDW states within this
parameter regime. Instead, their effects on the phase diagram
are quantitative. Specifically, while longer-range interactions
energetically favor CDW phases over XS (or YS) phases, they
do slightly broaden the region in the phase diagram where
Mott states are stabilized.

One must comment on how these results are affected by
a finite L. We recall [see Eqs. (A6)] that while the energies
per particle in the atomic limit for the Mott, XS (or YS),
and cbCDW states are independent of the system size, L,
the PS states have contributions proportional to 1/L, due to
“interface” contributions [see Fig. 19]. Therefore, in a finite
system, PS states with different orientations may be formed
due to the anisotropic nature of the dipolar interaction. For
instance, the strip in which the XPS (or YPS) phase is stable
when L → ∞ shrinks to a small lobe emerging from the
striped phases when, say L = 4. By contrast, the boundaries
involving non-PS phases are hardly affected by a finite L.

A parallel with recent experiments with magnetic Erbium
atoms in an optical lattice [12] emulating the extended Bose-
Hubbard is in order. Although the experiment was realized
with hard-core bosons, where no double occupations are
present, similar phases were identified, namely, checkerboard
at (θ, ϕ) = (0, 0) and XS at (θ, ϕ) = (π/2, 0).

2. Perturbation theory—t � V,U

Let us now discuss how a small hopping (t � V,U ) affects
the atomic-limit phase diagrams, resorting to perturbation
theory. The correction to the atomic-limit energies up to
second-order perturbation theory, E (2), is described by the
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effective Hamiltonian [51]

〈
φi

0

∣∣Ĥeff

∣∣φ j
0

〉 = 〈
φi

0|K̂
∣∣φ j

0

〉 + ∑
m>0

〈
φi

0

∣∣K̂|φm〉〈φm|K̂∣∣φ j
0

〉
E0 − Em

, (9)

where Em and |φm〉 are the respective eigenvalues and eigen-
states of Ĥat, Ĥat|φm〉 = Em|φm〉. Ĥeff is therefore an operator
which acts in the subspace of the degenerate ground states of
Ĥat, {|φi

0〉}, and the perturbation K̂ is the hopping term of the
dipolar Hubbard model.

The correction E (2) is the lowest energy of Ĥeff . The
cbCDW and the XS(YS) atomic-limit ground states form a
subspace that is twofold degenerate in each case, so Ĥeff is a
2 × 2 diagonal matrix. The diagonal term, E (2), is obtained by
considering all possible processes described by the hopping
term in Eq. (9) with certain intermediate states. For exam-
ple, for the cbCDW configuration, this corresponds to states
with one site breaking the checkerboard pattern, as shown in
Fig. 2(d). The sum over all second-order processes then leads
to a correction that scales with the number of sites,

E (2)
cbCDW

N
= 2t2

U − 4Vx − 3Vy + 4Vd1 + 4Vd2

+ 2t2

U − 4Vy − 3Vx + 4Vd1 + 4Vd2
, (10)

and

E (2)
XS(YS)

N
= 2t2

U + 4Vx(y) − 3Vy(x) − 4Vd1 − 4Vd2
(11)

for the XS(YS) states. The typical intermediate states |φm〉
associated with the XS ground state is also illustrated in
Fig. 2(d). On the other hand, the atomic-limit Mott states form
a macroscopically degenerate subspace, and Ĥeff becomes an
anisotropic SU(2) Heisenberg Hamiltonian [51,52]

Ĥeff = Jx

∑
i

�̂Si · �̂Si±x̂ + Jy

∑
i

�̂Si · �̂Si±ŷ − N

4
(Jx + Jy), (12)

where the exchange couplings Jx = 4t2/(U − Vx ) and Jy =
4t2/(U − Vy) depend on the dipolar angles θ and ϕ. For Jx and
Jy > 0, the ground state of Ĥeff exhibits an antiferromagnetic
order [63]. Here we use linear spin-wave theory [64] to deter-
mine the ground-state energy of Ĥeff , E (2)

MottAFM, for different
values of θ and ϕ.

By comparing the second-order energies,

EMott = E (0)
Mott + E (2)

Mott, (13)

EcbCDW = E (0)
cbCDW + E (2)

cbCDW, (14)

and

EXS(YS) = E (0)
XS(YS) + E (2)

XS(YS), (15)

we have established that the main effect of the hopping is to
enlarge the region dominated by the Mott phase in the θ × ϕ

diagram; see Fig. 2(d). The critical angle θc2 associated with
the Mott-cbCDW transition decreases in comparison with the
atomic-limit case. Further, due to the presence of anisotropic
AFM correlations, θc2 acquires a small dependence on ϕ, as
can be seen from Fig. 8(b); that is, the effect of finite hopping
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FIG. 8. Panel (a) shows how the XS(YS)-MottAFM transition
lines are affected in second-order perturbation theory for U = 100t
(full red lines) and U = 8t (dashed red lines). Results for the atomic
limit are also presented. Panels (b) show the results for the cbCDW-
MottAFM transition for U/t = 100 (b1) and U/t = 8 (b2).

is to introduce oscillations of negligible amplitudes on the
border between the cbCDW and Mott phases. In addition, the
lobes of the θ × ϕ phase diagram dominated by the XS and
YS phases shrink as we decrease the value of U to U/t = 8;
see Fig. 8(a).

3. Lanczos results—U = 8t

We now turn to the correlation functions computed with
the Lanczos method for U = 8t . Figure 9 shows spin and
density correlation functions for θ = π/4 as a function of
ϕ/π obtained by means of Lanczos diagonalization. The
ground state goes from the XS to the Mott phase around
ϕ/π = 0.12 and then to YS phase at ϕ/π = 0.38, which is
consistent with the t = 0 phase diagram presented in Fig. 6.
Figures 10(a2) and 10(b2) show that for the XS (YS) phase
Cm(1, 0) [Cm(0, 1)] is nonzero whereas Cm(0, 1) [Cm(1, 0)]
remains zero, therefore moment-moment correlations alone
can distinguish these two phases. For the cbCDW and Mott
phases, however, both Cm(1, 0) and Cm(0, 1) are nonzero, one
can resort to the local moment to separate between these two
phases. For the transitions occurring as one varies ϕ for fixed
θ = π/4, Fig. 10(a1) shows that the local moment 〈m2〉 is
close to saturation in the Mott phase, but sharply decreases
in the striped phases; a similar behavior occurs as θ varies

FIG. 9. Lanczos data for the dependence of (a) spin and (b) den-
sity correlation functions with ϕ for U = 8t , V = 3.6t , and θ = π/4.
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FIG. 10. Dependence of the local moment and moment-moment
correlations with the angle (a) ϕ for θ = π/4 and (b) θ for ϕ = 0. In
both cases, we consider U/V � 2.22 [U = 8t , V = 3.6]. The results
are obtained with Lanczos diagonalization. Panel (b2) reproduces
Fig. 2(c3) for a better understanding of the results.

with fixed ϕ, as in Fig. 10(b1). Thus, a combination of local
moment and moment-moment correlations can determine the
nature of the phases. By contrast, Figs. 10(a2) and 10(b2)
[or Fig. 2(c3)] show that Cm(r) is peaked at the different
transitions for some specific directions r. Thus, the sharp
drop in the local moment is responsible for the sharpness of
Cm(r) at the transition. Although analyzing the local moment
and moment-moment correlations allows one to discern the
different phases at play, the changes in the values of the
moment-moment correlation that mark the phase transitions
might not be large enough to be experimentally detectable.

However, density correlations present sign changes and
have been successfully used to identify different phases in re-
cent experiments with dipolar bosons [12]. Figure 11 presents
color maps of the density-density correlation function for
U/t = 8 and V/t = 3.6 calculated at representative angles.
For isotropic interactions (θ = ϕ = 0), shown in Fig. 11(a),
the pattern clearly shows that the system is in the checker-
board phase. The cbCDW phase is the one where density
correlations show stronger dependence on V/t [Fig. 2(a2)] and

dipole orientation [Fig. 2(c2)], nonetheless it is the only case
with a positive value of Cd (1, 1), as well as negative values of
both Cd (1, 0) and Cd (0, 1). The Mott state is characterized by
small density-density correlation functions for all distances,
as shown in Figs. 2(a2), 2(b2), and 2(c2), in Fig. 9(b), and
also in the contour plot shown in Fig. 11(c).

The XS and YS phases present positive values of
Cd (2, 0) and negative values of Cd (1, 1), with the XS (YS)
phase presenting Cd (1, 0) > 0 (Cd (1, 0) < 0) and Cd (0, 1) <

0 (Cd (0, 1) > 0). Figures 2(b2) and 2(c2) and Fig. 9(b) show
that whenever striped phases are formed, density correla-
tions approach their saturation value Cd = ±1. Figures 11(b)
and 11(d) show the contour plots for systems in YS and XS
phases, respectively.

IV. THERMAL TRANSITIONS

Having characterized the ground-state phases and their
transitions in terms of the dipole orientations and magnitude
of the interactions, an important question, refers to the robust-
ness of these phases in the presence of thermal fluctuations.

To estimate the critical temperatures T α
c signaling the

onset of the different ordered classical phases, α, listed in
Eq. (A6), we use the parallel tempering [53] (or replica
exchange method) of the atomic Hamiltonian, Eq. (A1). In
summary, we use a Monte Carlo (MC) sampling of the occu-
pations of both species {↑ and ↓}, promoting random swaps
of site occupancies, complemented by random creation and
destruction of particles at different temperatures. These moves
are implemented to obey the detailed balance condition in a
particle-hole symmetric version of Eq. (A1). This guarantees
that, on average, one keeps 〈n̂↑〉 = 〈n̂↓〉 = 0.5. After a single
MC sweep, an attempt to swap the configurations related to
adjacent temperatures in a given range is induced and ac-
cepted with a probability

p = min{1, exp[−(βi − β j )(Ej − Ei )]}, (16)

where βi = 1/Ti is the inverse temperature of a given config-
uration i whose associated energy for the Hamiltonian (A1)
is Ei. Approaches like this have been extensively used to
obtain the ground state of models in which the free-energy

FIG. 11. Contour plots for the density-density correlation function obtained through Lanczos diagonalization for U/t = 8, V/t = 3.6, for
(θ/π, ϕ/π ) = (0, 0)(a), (1/4,0) (b), (1/4,1/4) (c), and (1/4,1/2). Colors are arranged in a symmetric logarithmic scale around zero wherein a
linear scale is drawn between the values ±0.1.
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FIG. 12. Parallel tempering data for density-density (top pan-
els) and moment-moment (bottom panels) correlation functions as
a function of temperature for (a) θ = π/2 and ϕ = 0 (XS phase),
(b) θ = ϕ = π/2 (YS phase), (c) θ = ϕ = 0 (cbCDW phase) and
(d) θ = ϕ = π/4 (Mott phase). Data are for 8 × 8 lattices with
U = 8 and U/V = 2.22.

landscape is rough, i.e., with many local minima. A canonical
example of such a scenario is of frustrated disordered spin
systems as given for the disordered classical Ising model used
to understand spin glass physics [65,66].

We typically use square lattices up to L = 32, and 20 000
MC sweeps, with approximately 300 different temperatures
chosen in a way to ensure that the range encompasses the
associated critical temperatures T α

c . A known difficulty of
the parallel tempering scheme is choosing the optimal set
of temperatures [65,67,68], which overcome the trapping
of metastable configurations when T → 0. Although sub-
optimal, we used a simple approach of evenly spaced ones,
which is more than sufficient to resolve the critical tempera-
tures associated with the onset of the different phases.

Similarly to the quantum version of the Hamiltonian,
Eq. (1), we present local correlations [Cd (r) and Cm(r)]
which help to identify the density distribution in all classical
phases. Figure 12 shows the temperature dependence of the
density-density and moment-moment correlation functions
for different polarization directions obtained through parallel
tempering.

As expected, the density correlations start at their ground-
state values consistent with XS and YS phases [Figs. 12(a1)
and 12(b1), respectively], and decrease in magnitude as T
increases. An estimate of the temperature scale marking
the onset of the ordered phases can be obtained from the
peak position of the moment-moment correlations, shown in
Figs. 12(a2) and 12(b2): they are the same for both XS and YS
phases, namely, T XS

c /U = T YS
c /U � 0.61, for U/V = 2.22.

For these values of U and V , we estimate from Figs. 12(c1)
and 12(c2) the ordering temperature for the cbCDW phase
as T/U ∼ 0.1, which lies in a range in parallel tempering
simulations which are hindered by trapped metastable config-

FIG. 13. Temperature dependence of the density structure factor
for the stripe phases XS in (a) and YS in (b) obtained via parallel
tempering of the atomic-limit Hamiltonian. We select two channels
with q = (π, 0) in (a1) and (b1), whereas (a2) and (b2) display
the q = (0, π ) results. Vertical lines depict the peak position of
the temperature-dependent moment-moment correlation functions,
signaling the thermal transition. We fix the interaction ratio U/V to
2.22.

urations. Nonetheless, we can infer an upper bound T cbCDW
c <

T XS
c , which is valid for different values of the ratio U/V (<

5.33). One can understand this result by noticing that charge
gaps are larger for the striped phases than for the cbCDW
phase, thus leading to higher critical temperatures.

Finally, for polarizations leading to the Mott phase, such as
θ = ϕ = π/4 shown in Figs. 12(d1) and 12(d2), the atomic
limit also displays a critical temperature associated with the
onset of a homogeneous density ordering, though without any
manifest spin order, which is absent in this regime due to the
vanishing exchange couplings when t → 0.

To complement this analysis and describe a fully developed
order, we also compute the associated density structure factor,

Nq = 1

L2

〈∑
i,j

eiq·(i−j)n̂in̂j

〉
MC

, (17)

which becomes an extensive quantity in the presence of a
given charge order with wave-vector q, and is also used to
characterize different phases in experiments [12].

As an example, we report in Fig. 13 the comparison of
Nq for two striped phases, XS (θ = π/2 and φ = 0) and
YS (θ = φ = π/2) in Figs 13(a) and 13(b), respectively.
We note that the structure factor has a symmetric role for
different channels: while for XS the q = (0, π ) channel dis-
plays an extensive behavior at low temperatures, q = (π, 0)
reflects this corresponding behavior for the YS phase. For
very low temperatures, however, the aforementioned trapping
of metastable configurations occurs, preventing the observa-
tion of a fully formed plateau; this, in turn, signals that the
correlation length for this ordering has reached the linear
size of the system. Nonetheless, the critical temperatures T XS

c
and T YS

c lie well above the temperatures where these prob-
lems begin to occur. As an estimation, we also display as
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FIG. 14. Temperature dependence of the q = (π, π ) density
structure factor for ẑ oriented dipoles. The extensive behavior at low
temperatures signals the onset of the cbCDW order. As before, the
vertical line depicts the peak position of the temperature-dependent
moment-moment correlation functions. We choose the ratio of inter-
actions U/V = 1.

a vertical line in these panels the thermal peak-positions of
the moment-moment correlation functions (as in Fig. 12),
which are very close to the regime where the curves for
different system sizes start displaying an extensive behavior.
Conversely, for the channels q = (π, 0) [Fig. 13(a1)] and q =
(0, π ) [Fig. 13(b2)] for the XS and YS phases, respectively,
Nq is approximately independent of the system size, thus
confirming the nature of the density periodicity. Last, we per-
formed similar parallel tempering simulations for the case of
isotropic interactions, i.e., θ = ϕ = 0, where the ground state
of Eq. (A1) displays cbCDW order. Figure 14 shows the tem-
perature dependence of the q = (π, π ) channel for the density
structure factor: As for the stripe phases, this quantity displays
an extensive onset at low temperatures, which is close to the
peak position of the corresponding moment-moment correla-
tions, thus signaling the checkerboard nature of the density
distribution.

Summing up, the estimates for the critical temperatures
for the ordering of the XS, YS and cbCDW phases are gath-
ered in Fig. 15; they clearly show that the striped phases
are more robust, with higher critical temperatures than the
cbCDW phase for all U/V . We recall that for U/V > 5.33
the ground state is a Mott “insulator” for all polarization
directions.

V. SUMMARY

We have established that dipolar fermionic atoms in an
optical lattice provide a setup in which Mott and density-
wave states can be stabilized by controlling the direction of
polarization. These density-wave states may be anisotropic
(stripelike) or occupy one of the sublattices; in addition, one
may also find anisotropic phase-separated phases. Depending
on the strength of the dipolar interaction and on the polar
angle, a rotation of the polarization around the ẑ axis can
switch between the density-wave states through a succession
of diagonally striped phases. Our results are based on exact
diagonalizations of a dipolar Fermi-Hubbard Hamiltonian on
a 4 × 4 lattice at half-filling, in the regime of strong onsite re-

FIG. 15. Critical temperature for the XS (θ = π/2 ϕ = 0), YS
(θ = ϕ = π/2) and cbCDW (θ = ϕ = 0) phases as a function of
U/V . Filled markers at T = 0 denote the atomic limit results when
L → ∞ (see Sec. III), associated with the onset of the Mott insulat-
ing phase for the corresponding dipole orientations.

pulsion. In this regime, finite-size effects are not too drastic, as
evidenced by the comparison with predictions obtained in the
atomic limit (hopping t → 0), aided by simulated annealing.
The use of moment-moment [54–57] and density-density [12]
correlations have proven to be powerful tools to probe dif-
ferent phases in experiments with ultracold atoms so that
our theoretical predictions for these quantities should provide
guidance in the experimental search for these phases with
fermionic atoms.

Recent experiments with bosonic dipolar atoms at half-
filling [12] found striped and checkerboard phases for the
same dipole orientation as the ones obtained here. These sim-
ilarities between the density patterns in bosonic and fermionic
systems can be justified, to some extent, by the fact that the
experiments were carried out under the constraint of hard-core
bosons (i.e., site occupations 0 or 1). On the other hand, the
spin degrees of freedom may favor an AFM phase over one
with accumulated atoms along the diagonals, as observed in
Ref. [12].
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APPENDIX: ATOMIC LIMIT

In this Appendix, we provide additional results of the dipo-
lar Hubbard model in the atomic limit (t = 0),

Ĥat = U
∑

i

n̂i↑n̂i↓ +
∑
i 	=j

Vij n̂i n̂j, (A1)

where up to next-nearest neighbors Vij becomes

Vx ≡ V (1 − 3 sin2 θ cos2 ϕ), (A2)

Vy ≡ V (1 − 3 sin2 θ sin2 ϕ), (A3)

Vd1 ≡ V

23/2

[
1 − 3

2
sin2 θ (1 + sin 2ϕ)

]
, (A4)

Vd2 ≡ V

23/2

[
1 − 3

2
sin2 θ (cos 2ϕ + sin 2ϕ)

]
. (A5)

We have considered the atomic limit on L × L lattices so
that the range of interactions can be extended to neighbors

separated by up to ∼L/2; due to the periodic boundary
conditions, sites separated by a distance larger than this limit
would actually be nearer. We have checked that taking L = 40
is sufficient to highlight the most significant charge-ordered
phases and that the interactions beyond L ∼ 40 hardly change
the patterns.

The eigenstates of Eq. (A1) are product states (classical
states), and the ground state (GS) is the one which minimizes
the energy for the given values of U , V , θ , and ϕ. For in-
stance, when U � V , double occupancies are suppressed due
to the high-energy penalty U , and the GS corresponds to a
Mott insulator. Physical intuition together with analyses of the
Fourier transform of the dipolar potential can be used to set
up other possible GS classical states; see, e.g., Figs. 2, 16,
and 19.

To illustrate how we set up the different classical states
considered in this work, we consider as an example the case
in which the dipoles are at θ = π/4 and 0.1 < ϕ/π < 0.35.
In this regime of parameters, the analysis of the Fourier trans-
form of Vi, j suggests that CDW-ordered phases characterized
by multiple wave vectors (i.e., qmin, see Fig. 4) can be stabi-
lized as the ground state of Eq. (A1). The ordered states are
built in such a way that they are characterized by an extensive
density structure factor, Nq, at the channel q. Figure 16 shows

FIG. 16. Panels (a)–(m) show the spatial density profile of the ordered phases considered in this work. The phases are labeled by the wave
vector q defining the dominant density structure factor, Nq [see Eq. (17)].
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FIG. 17. Panel (a) shows the characteristic wave-vector, q, of the
ground state as a function of ϕ for U/V = 1; we plot the values of q
along the path Y = (0,−π ) → S = (−π/2, −π/2) → X = (π, 0)
of the first Brillouin zone. We consider the cases in which the range
of dipolar interactions are cutoff: up to second nearest-neighbors
(with cutoff) and up to L/2 (without cutoff). Panel (b) shows the
energy of some diagonally striped phases as a function of U/V
for ϕ/π = 0.2, the corresponding ordered phases are illustrated in
Fig. 16. We consider θ/π = 0.28 and L = 16 in both panels.

some ordered phases for unit cell L = 16; see, in particular,
Figs. 16(e)–16(m).

By comparing the energies of the different configurations,
we establish the phase diagrams presented in Figs. 6 and 7. As
a complement to the discussion in Sec. III B 1, we analyze the
effect of the dipolar interaction’s long-range nature in stabiliz-
ing the diagonally striped phases. Figure 17(a) shows how the
characteristic wave-vector q of the GS evolves with ϕ for the
cases in which the interactions are (i) cut off up to the second
nearest-neighbor and (ii) the entire range is considered. The
results show that the longer-range interaction barely affects
the stabilization of the diagonally striped phases; see Fig. 18.

Further, we analyze the effect of the onsite interaction U by
comparing the energy of different diagonally striped phases
in Fig. 17(b). For the state characterized by q = (π/4, 5π/4),
we consider two possible density arrangements: one in which
all sites are either empty or doubly occupied and one in which
the ordered phase is characterized by empty, singly, and dou-
bly occupied sites; see Figs. 16(h) and 16(j), respectively. For
larger values of the onsite interaction (i.e., U/V � 0.6), the
ordered phase characterized by a pattern containing empty,
doubly, and (also) singly occupied sites have the lower energy,
as discussed in Sec. III B 1.

Finally, we present below the energies per particle at half-
filling (considering a cutoff up to second nearest-neighbor
sites) for the competing ground states for an L × L lattice with
periodic boundary conditions

E cbCDW
0

L2
= U

2
+ 2

(
Vd1 + Vd2

)
, (A6a)

EMott
0

L2
= Vx + Vy + Vd1 + Vd2 , (A6b)

FIG. 18. Panels (a) and (b) show the ground-state phase diagram
in terms of U/V and ϕ/π obtained in the atomic limit for the cases:
(a) without a cutoff and (b) with a cutoff up to the second nearest-
neighbors in the dipolar interactions. Color code for the different
phases follows the one in Fig. 7, and parameters are θ/π = 0.28 and
L = 16.

EXS
0

L2
= U

2
+ 2Vx, (A6c)

EYS
0

L2
= U

2
+ 2Vy, (A6d)

Ed1S
0

L2
= U

2
+ (Vx + Vy + 2Vd1), (A6e)

Ed2S
0

L2
= U

2
+ (Vx + Vy + 2Vd2), (A6f)

Ed3S
0

L2
= 3U

8
+

(
3Vx

2
+ Vy

2
+ Vd1 + Vd2

4

)
, (A6g)

Ed4S
0

L2
= 3U

8
+

(
Vx

2
+ 3Vy

2
+ Vd1 + Vd2

4

)
, (A6h)

Ed5S
0

L2
= 5U

16
+

(
3Vx

4
+ 5Vy

4
+ 11Vd1

8
+ 3Vd2

8

)
, (A6i)

Ed6S
0

L2
= 5U

16
+

(
5Vx

4
+ 3Vy

4
+ 11Vd1

8
+ 3Vd2

8

)
, (A6j)

ExPS
0

L2
= U

2
+ 2

(
Vx + Vy + Vd1 + Vd2

)
(A6k)

− 1

L
4(Vy + Vd1 + Vd2), (A6l)
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EyPS
0

L2
= U

2
+ 2

(
Vx + Vy + Vd1 + Vd2

)
(A6m)

− 1

L
4(Vx + Vd1 + Vd2), (A6n)

Ed1PS
0

L2
= U

2
+ 2

(
Vx + Vy + Vd1 + Vd2

)
(A6o)

− 1

L
4(Vx + Vy + 2Vd2), (A6p)

Ed2PS
0

L2
= U

2
+ 2

(
Vx + Vy + Vd1 + Vd2

)
(A6q)

− 1

L
4(Vx + Vy + 2Vd1), (A6r)

where xPS and yPS denote x̂- and ŷ-oriented phase-separated
states [Fig. 19], the energies d1S and d2S correspond to the
configuration shown in Figs. 16(e) and 16(f), respectively,
while energies dS3-6S correspond to the configurations shown
in Figs. 16(i)–16(m). Last, d1PS and d2PS denote ±π/4-
oriented phase-separated states; see bottom panels in Fig. 19.

FIG. 19. Some phase-separated (PS) configurations for a 16 ×
16 lattice.
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