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Spinless mirror Chern insulator from projective symmetry algebra
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It was commonly believed that a mirror Chern insulator (MCI) must require spin-orbital coupling, since
time-reversal symmetry for spinless systems contradicts with the mirror Chern number. So MCI cannot be
realized in spinless systems, which include the large field of topological artificial crystals. Here, we disprove
this common belief. The first point to clarify is that the fundamental constraint is not from spin-orbital coupling
but the symmetry algebra of time-reversal and mirror operations. Then, our theory is based on the conceptual
transformation that the symmetry algebras will be projectively modified under gauge fields. Particularly, we show
that the symmetry algebra of mirror reflection and time reversal required for MCI can be achieved projectively in
spinless systems with lattice Z2 gauge fields, i.e., by allowing real hopping amplitudes to take ± signs. Moreover,
we propose the basic structure, the twisted π -flux blocks, to fulfill the projective symmetry algebra, and develop a
general approach to construct spinless MCIs based on these building blocks. Two concrete spinless MCI models
are presented, which can be readily realized in artificial systems such as acoustic crystals.
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I. INTRODUCTION

The field of topological matter started with the discovery
of the quantum Hall effect or the Chern insulator (CI) [1–3].
A Chern insulator requires the breaking of time-reversal (T )
symmetry, which poses difficulty for its realization. For ex-
ample, a strong magnetic field is needed for the quantum
Hall effect [1]; and for the renowned Haldane model [3],
its delicate flux configuration is not easy to achieve in prac-
tical systems [4]. Later, a significant breakthrough is the
discovery of symmetry-protected topological insulators with-
out breaking T . The prominent ones include the T -invariant
topological insulator [5,6] and the mirror Chern insulator
(MCI) [7–9]. The T -invariant topological insulator has found
realization in many materials, which led to the boom of the
entire field in the past fifteen years [10–13]. Meanwhile, MCI
initiated the field of crystalline topological states, which is still
actively explored today [14–17].

There is a common wisdom regarding MCI: With T invari-
ance, MCI must require spin-orbit coupling (SOC) [7,18,19].
Hence, MCI can only be realized in spinful systems, but
not spinless systems. In other words, T -invariant spinless
MCI does not exist. Because of this, while MCI has been
realized in electronic systems of several materials [8,9,19],
it was believed to be forbidden for artificial systems, such
as acoustic/photonic crystals, electric-circuit arrays, and me-
chanical network systems, as these systems are intrinsically
spinless. Qualitatively different from the symmetry-protected
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topological many-body wavefunctions, the artificial crystals
can effectively simulate the topological band structures of
one Bloch particle by their high tunability. However, despite
the rapid growth of topological artificial crystals into a huge
and active field in recent years [20–30], MCI has never been
achieved in such systems so far.

In this paper, we overturn this common wisdom. We show
that spinless MCI does exist, and it can readily realized in
artificial systems such as acoustic crystals. This discovery is
made possible by advances in two aspects. First, we scrutinize
the fundamental requirement for a MCI and clarify that the
key factor is not SOC but the symmetry algebra. Explicitly, the
only necessary condition is that the mirror operator M must
satisfy M2 = −1 for MCI, provided that it commutes with T .
Second, for spatial symmetries such as M, the algebra can be
controlled by implementing lattice gauge field. Particularly,
we show that spinless MCI can be achieved by the simple Z2

gauge field, meaning that the hopping amplitudes are allowed
to take ± signs, which is something that can be readily en-
gineered in artificial crystals [25,31–36]. Under gauge fields,
symmetries would satisfy so-called projective algebra, which
can be designed to meet the requirement of MCI. The notion
of projective symmetry algebra was applied to physics ini-
tially in the study of quantum spin liquids [37]. Its profound
implications for topological states were only revealed very
recently [38–44], and some predictions have already been
successfully verified in experiments with acoustic crystals
[35,36,45,46]. Here, we find that distinct from the previous
cases, MCIs need an essentially different mechanism and
lattice design. We propose a general prescription to construct
MCIs based on a twisted π -flux block. We show that for any
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CI model, we can generate an associated spinless MCI using
the twisted blocks. We explicitly demonstrate our method via
two famous CI models, namely the triangular-lattice model
and the Hofstadter model. Our proposed MCI designs can be
easily realized in artificial crystals.

II. SYMMETRY ALGEBRAS OF MCI

Let us start by analyzing the symmetry algebra required
for MCI. There are 2D and 3D MCIs. For a 2D MCI, the
mirror symmetry is with respect to the 2D plane of the system.
For a 3D MCI, the mirror Chern number is defined on a 2D
subsystem, i.e., some mirror-invariant plane, in the Brillouin
zone. Hence, without loss of generality, we focus on 2D MCIs
for clarity.

We find that the fundamental symmetry condition for a
MCI is the following algebra [47]:

[T ,M] = 0, M2 = −1. (1)

To understand this, we first note that with the M symmetry,
states of the system can be separated into the mirror-even
and mirror-odd subspaces. Particularly, the momentum-space
Hamiltonian H(k) can be put into the block diagonal form

H(k) =
[

h+(k) 0
0 h−(k)

]
, (2)

in accord with the two eigenspaces of M. If the algebra (1)
holds, M has eigenvalues of ±i. For eigenstates |ψ±〉 with
M|ψ±〉 = ±i|ψ±〉, we observe that MT |ψ±〉 = T M|ψ±〉 =
T (±i|ψ±〉) = ∓iT |ψ±〉, since T is an anti-unitary oper-
ator involving complex conjugation. This just means that
T exchanges the two eigenspaces. Hence, we must have
uh∗

+(−k)u† = h−(k) for some unitary matrix u determined by
T , i.e., T transforms h±(k) into h∓(k). Assuming that H(k)
is gapped, we can calculate Chern numbers C± for h±(k),
respectively. Since T inverses the Chern number, h+(k) and
h−(k) must have opposite Chern numbers, C+ = −C−. Thus,
although the total Chern number C = C+ + C− = 0, each
block h± can have a nontrivial Chern number, and accordingly
C+ is defined as the mirror Chern number [7].

From the above reasoning, we see that the essence for
a nontrivial mirror Chern number is: T must exchange the
eigenspaces of M. For electronic systems with SOC, T =
iσ2K̂Î and M = iσ3 in the spin space of each electron, where
σ ’s are the Pauli matrices. Hence, the algebra in (1) is natu-
rally satisfied. In comparison, if M2 = +1 and [T ,M] = 0,
as for typical spinless systems, then T would preserve the
eigenspaces of M. This is because the eigenvalues ±1 of M
are real numbers that commutes with T . Although we still can
write H(k) into the block diagonal form (2) for eigenspaces of
±1, both h±(k) are invariant under T , and therefore they each
must have a zero Chern number, i.e., C± = 0.

We have some remarks before proceeding. First, contrary
to common perceptions, the relation T 2 = ±1 is not essential
for MCI, since T inverses the Chern number in both cases.
Second, it is clear from the analysis that the key factor here is
not SOC but the symmetry algebra, particularly, whether M2

equals +1 or −1.

III. PROJECTIVE SYMMETRY ALGEBRA

Although it seems from experience that spinless systems
always have M2 = +1, we show that with certain Z2 gauge
fields the condition in (1) can be realized as projective sym-
metry algebra in spinless systems.

Let us start with some general considerations on a mir-
ror symmetric system with a given Z2 gauge configuration.
The field is described by a chosen configuration of gauge
connections, i.e., signs ±1 of real hopping amplitudes. The
gauge-connection configuration in general is not invariant
under the spatial mirror reflection M, but will be changed
to another equivalent configuration (another gauge choice),
which is related to the original one by a Z2 gauge transfor-
mation G. G is specified by assigning a sign of +1 or −1 to
the basis at each site. Then, the physical mirror operator will
be represented as the combination

M = GM, (3)

namely the spatial reflection M followed by the gauge trans-
formation G. Since both M and G in real space are real
matrices, [M, T ] = 0 in (1) is trivially satisfied. Moreover,
since M2 = G2 = 1, to satisfy M2 = −1 in (1), we need the
anticommutation relation between G and M,

{G, M} = 0. (4)

The anticommutativity is equivalent to MGM−1 = −G,
which just means that M inverses all signs at all sites for
G. This observation is a guiding principle for the model
construction.

Let us consider a simple system consisting of only four
sites, as illustrated in Fig. 1. Positive and negative hopping
amplitudes are marked with blue and red colors, respectively.
For the model in Fig. 1(a), the Hamiltonian is given by

H = JRτ0 ⊗ σ1 + JIτ2 ⊗ σ2, (5)

where τ ’s and σ ’s be two sets of Pauli matrices, which respec-
tively operate on the row and column indices of the block. The
mirror reflection M = τ1 ⊗ σ0 through the dashed horizontal
line exchanges diagonal and antidiagonal hopping processes,
and therefore the gauge connections are changed. To re-
store the original gauge connections, the gauge transformation
G = τ3 ⊗ σ0 needed is specified in the middle of Fig. 1(a).
Obviously, M inverses G with {M, G} = 0. Hence, Eq. (4) is
satisfied, and the resulting projective symmetry algebra will
be (1) needed for the MCI, where

M = GM = iτ2 ⊗ σ0. (6)

On the other hand, the setup, H(b) = J1τ1 ⊗ σ0 + J2τ3 ⊗ σ1,
in Fig. 1(b) does not work. In the middle of Fig. 1(b), the
gauge transformation G′ = τ0 ⊗ σ3 is invariant under M, and
therefore [G′, M] = 0 rather than {G′, M} = 0, and we have
M′2 = +1 with M′ = τ1 ⊗ σ3 in this case.

The arrangement in Fig. 1(a) is referred to as a twisted
π -flux block, because, as shown in Fig. 1(c), it is a twist of a
π -flux rectangle with H(c) = −J1τ1 ⊗ σ3 + J2τ0 ⊗ σ1. It is
clear that both the π flux and the twist are essential for
achieving the symmetry algebra (1). In fact, there are eight
possible Z2 gauge-connection configurations on this twisted
π -flux block [see Figs. 2(b) and 2(c)], which are equivalent
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FIG. 1. Two four-site tight-binding models. Red and blue lines
denote negative and positive hopping amplitudes, respectively. The
dashed horizontal lines in (a) and (b) are the reference lines for the
spatial mirror refection M. The signs on the middle figures specify
the gauge transformations G and G′ for (a) and (b), respectively. The
tight-binding models are invariant under M followed by G or G′.
(c) The model in (a) is a twist of a rectangle with flux π . The π flux
is depicted by a thin gray tube.

to each other through some Z2 gauge transformations, and
therefore all can realize the projective algebra (1).

(a)

(b)

(c)

FIG. 2. (a) The equivalence mapping between the twisted π -flux
block and two complex hopping amplitudes. U is the unitary trans-
formation diagonalizing M. (b) Four twisted π -flux blocks with
M = iτ2 ⊗ σ0. (c) The other four with M = iτ2 ⊗ σ3.

IV. GENERAL METHOD FOR CONSTRUCTING
SPINLESS MCI

We develop a general method for constructing spinless
MCIs. Our construction is based on the twisted π -flux block.
Since the blocks in Figs. 2(b) and 2(c) are gauge equivalent,
it is sufficient to look into one of them. Consider the one in
Fig. 1(a) with the Hamiltonian (5) and mirror operator (6).

It is enlightening to view the model in the eigenspaces of
M, which can be achieved by performing the unitary transfor-
mation U = exp(−iτ1 ⊗ σ0π/4). Under the transformation,
M → UMU † = iτ3 ⊗ σ0. Now, τ3 corresponds to the index
of the two eigenspaces of M with eigenvalues ±i, and the
Hamiltonian is transformed into the block diagonal form

UHU † =
[

JRσ1 + JIσ2 0
0 JRσ1 − JIσ2

]
τ

. (7)

Meanwhile, T is transformed to be UT U † = −iτ1K̂, which,
as expected, exchanges the two diagonal blocks of the
Hamiltonian, i.e., the two eigenspaces of M. We refer to the
two diagonal blocks as eigenvalue layers. Then, JRσ1 ± JIσ2

can be interpreted as hopping amplitudes Je±iφ between two
lattice sites in each eigenvalue layer, as illustrated in Fig. 2(a).
The hopping phase and strength are explicitly given by

eiφ = (JR + iJI )/J, J =
√

J2
R + J2

I . (8)

It is important that starting from a spinless model with purely
real hopping amplitudes, we are able to convert it to a sys-
tem with complex hopping amplitudes. Conversely, for any
prescribed complex hopping amplitude, we can construct a
spinless twisted π -flux block such that one of its eigenvalue
layer realizes the amplitude. Note that the hopping phase is a
key ingredient for CI models. For instance, the Haldane model
is characterized by the second-neighbor hopping phase φ on a
honeycomb lattice [3,48,49]. For the Hofstadter model, each
square plaquette has a flux φ [50,51].

Based on this understanding, we have the following general
method to construct spinless MCIs from any CI model. Given
such a CI model HC (φ) with a characteristic phase eiφ , we
can construct a spinless MCI HMC (φ) protected by M and T
by the invertible mapping illustrated in Fig. 2(a). Specifically,
we take HC (φ) and HC (−φ) as two independent layers. Then,
we perform the mapping in Fig. 2(a) inversely, i.e., replace
each pair of complex hopping amplitudes with phases ±φ on
the two layers by a twisted π -flux block. The resultant bilayer
tight-binding model is just the wanted spinless MCI. For this
system, the mirror operator is M = iτ2 with τ ’s operating on
the layer degrees of freedom, and T = K̂.

The corresponding mapping for the momentum-space
Hamiltonians can be immediately constructed. Let hC (k, φ)
be the momentum-space Hamiltonian for HC (φ). Then, we
introduce

h±(k, φ) = 1
2 [hC (k, φ) ± hC (k,−φ)]. (9)

h+(k, φ) [h−(k, φ)] is an even (odd) function of φ. Since
hC (k, φ) and hC (k,−φ) are related by T symmetry, h+(k, φ)
[h−(k, φ)] are also even (odd) under T operation. Then, the
T -invariant Hamiltonian HMC (k, φ) for the bilayer MCI is
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FIG. 3. (a) The triangular-lattice CI model. Green, red, and
blue bonds denote complex, negative, and positive hopping am-
plitudes, respectively. The model is dimerized by δ along e2.
(b) The corresponding MCI model. Complex hopping amplitudes
in (a) are replaced by twisted π -flux blocks. (c) The spectrum of
the bilayer model with edges along e2. The parameter values are
chosen as t = 1, δ = 0.5, JR = J cos φ, JI = J sin φ with J = 2 and
φ = 2π/5 [52].

given by

HMC (k) =
[

h+(k, φ) −ih−(k, φ)
ih−(k, φ) h+(k, φ)

]
τ

. (10)

Finally, we should substitute φ by JR and JI according to
Eq. (8). Here, M = iτ2, and T = K̂Î with Î the inversion of
momenta.

In the above discussion, we have chosen the particular
twisted π -flux block in Fig. 1(a) to demonstrate our idea.
Other blocks in Figs. 2(b) and 2(c) can also be used. It is
not difficult to see that these eight blocks can be put into two
groups, with members in a group sharing the same represen-
tation of M: For those in Fig. 2(b), M = iτ2 ⊗ σ0; whereas
for Fig. 2(c), M = iτ2 ⊗ σ3. the detail of which is given in
Appendix A. It should be noted that if one uses more than one
kind of blocks in a single model, then these blocks should be
chosen from only one of the two groups to maintain the same
representation for M.

Nevertheless, we emphasize that generically chiral edge
states of the two mirror layers in Fig. 2(a) will be simulta-
neously excited in real space, since mirror reflection relates
two real-space layers.

V. CONCRETE MODELS

We demonstrate our theory by constructing two concrete
spinless MCIs from well-know CI models.

The first one is based on the triangular-lattice CI model
illustrated in Fig. 3(a). Let us denote the three bond vectors as
ea with a = 1, 2, 3. The hopping amplitudes along e1 are Jeiφ ,
and the phase eiφ characterizes the model. The other hopping
amplitudes are real, and those along the e3 bonds change signs
alternatively in the e2 direction. The hopping amplitudes along
e3 is t , and the hoppings along e2 have a dimerized pattern
with amplitudes t ± δ. If J > t and δ �= 0, the model can real-
ize a CI by tuning φ, and the Chern number C = ±1 as can be
seen in Appendix B. The corresponding spinless MCI model
is illustrated in Fig. 3(b). Following our general method, it is a
bilayer model with each original bond with phase φ replaced
by a twisted π -flux block, and the Hamiltonian is in the form

FIG. 4. (a) The Hofstadter model. The flux φ is 2π/5. Green,
red, and blue bonds denote complex, negative, and positive hop-
ping amplitudes, respectively. (b) The corresponding Hofstadter MCI
model. The green bonds are replaced by the four twisted π -flux
blocks in Fig. 2(b). (c) The spectrum of the MCI model with edges
along the y direction. The parameter values are chosen as t = J =
1, and accordingly Jn

R = J| cos 2nπ/5| and Jn
I = J| sin 2nπ/5| with

n = 1, 2, 3, 4 [52].

of (10), which is given in Appendix B. The spectrum with
the open boundary conditions for an edge along e2 is shown
in Fig. 3(c). We see a pair of left-handed and right-handed
topological edge bands, which correspond to the unit mirror
Chern number.

The second example is based on the renowned Hofstadter
CI model [50,51]. It is just a square-lattice model with flux φ

per square plaquette. Here, we choose φ = 2π/5. The unit
cells for the Hofstadter model and the corresponding MCI
model are illustrated in Figs. 4(a) and 4(b). We choose to
connect the two layers of the MCI by using the four different
twisted π -flux blocks in Fig. 2(b), so that the required flux in
each eigenspace layer of M can be realized. The model has
four energy gaps separating energy bands into five groups.
Ordered by energy, the mirror Chern numbers for these five
groups of bands are found as −1, −1, 4, −1, and −1, which
is given in Appendix C. The topological chiral edge bands
emerge accordingly, as shown in Fig. 1(c). Particularly, for
the middle two gaps, each hosts two left-handed and two
right-handed chiral bands, since the sums of mirror Chern
numbers below them are ±2, respectively.

VI. DISCUSSION

We have disproved the common belief that MCI must
require SOC and hence can only be realized in spinful sys-
tems. Essentially, we have clarified the most fundamental
symmetry requirement for MCIs and how Z2 gauge fields
can projectively modify the symmetry algebra to achieve the
requirement in spinless systems. Although we have focused
on 2D spinless MCIs, the discussion can be directly extended
to 3D spinless MCI models.

Our paper greatly broadens the experimental relevance
of MCIs. Our proposed spinless MCI models can be read-
ily realized in acoustic crystals with engineerable Z2 gauge
fields [32–36,36,45]. Particularly, an acoustic realization of
the twisted π -flux blocks is given in detail in Appendix D.
Other artificial crystals, such as cold atoms in optical lattices
[53,54] and electric-circuit arrays [26,27], may also be possi-
ble platforms for realizing our proposals.
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APPENDIX A: TWISTED π-FLUX BLOCK

The twisted π -flux block is essential for the construction
of mirror Chern insulators in the main text. Under the unitary
transformation U diagonalizing the projective representation
of mirror symmetry M, the Hamiltonian of twisted π flux
can be transformed into block diagonal form. Here we provide
the detailed analysis of the Hamiltonian for the twisted π -flux
block as shown in Fig. 2 of the main text.

The four twisted π -flux blocks in Fig. 2(b) are invariant
under M1 = G1M, where

G1 = τ3 ⊗ σ0, M = τ1 ⊗ σ0. (A1)

Obviously, they satisfy the anticommutation relation
{G1, M} = 0, and M1 = iτ2 ⊗ σ0. The operation of the
mirror symmetry M1 in this case is illustrated by Fig. 1(a) in
the main text. By the unitary transformation U = e−iπτ1⊗σ0/4

as given in the main text, M1 can be diagonalized
as UM1U † = iτ3 ⊗ σ0. For the block in Fig. 2(a), its
Hamiltonian can be written as

H = JRτ0 ⊗ σ1 + JIτ2 ⊗ σ2, (A2)

where JR and JI are positive. By the unitary transformation U ,
the Hamiltonian can be transformed as

UHU † =
[

JRσ1 + JIσ2

JRσ1 − JIσ2

]
. (A3)

Hence, the Hamiltonian UHU † contains two blocks, which
is represented in the right panel of Fig. 2(a). By the same
transformation, we collect the detailed mapping of the four
building blocks in Fig. 2(b) in the following as

H1 = JRτ0 ⊗ σ1 − JIτ2 ⊗ σ2

UH1U
† = (JRσ1 − JIσ2) ⊕ (JRσ1 + JIσ2), (A4)

H2 = JRτ0 ⊗ σ1 + JIτ2 ⊗ σ2

UH2U
† = (JRσ1 + JIσ2) ⊕ (JRσ1 − JIσ2), (A5)

H3 = −JRτ0 ⊗ σ1 + JIτ2 ⊗ σ2

UH3U
† = (−JRσ1 + JIσ2) ⊕ (−JRσ1 − JIσ2), (A6)

H4 = −JRτ0 ⊗ σ1 − JIτ2 ⊗ σ2

UH4U
† = (−JRσ1 − JIσ2) ⊕ (−JRσ1 + JIσ2). (A7)

The four transformed Hamiltonians contain two blocks, and
the first blocks represent the systems of two sites with the
hopping coefficients as Je−iφ , Jeiφ , Jei(π−φ), and Jei(π+φ), re-
spectively. Here, we have taken JR = J cos φ and JI = J sin φ.

The four twisted π -flux blocks in Fig. 2(c) are invariant
under M2 = G2M with

G2 = τ3 ⊗ σ3, M = τ1 ⊗ σ0, (A8)

FIG. 5. The operation of M2 = G2M.

by which we have

M2 = iτ2 ⊗ σ3, (A9)

and the algebra [T ,M2] = 0, M2
2 = −1 of Eq. (1) in the

main text is also satisfied. The operation of mirror symmetry
M2 is illustrated in Fig. 5, which is the second building block
of Fig. 2(c). Here, time-reversal symmetry is represented as
T = K with K the complex conjugation. The Hamiltonian can
be written as

H = JRτ3 ⊗ σ1 + JIτ1 ⊗ σ1. (A10)

Obviously, it satisfies [M2,H] = 0. By the unitary trans-
formation U = e−iπτ1⊗σ3/4, M2 can be diagonalized as
UM2U † = iτ3 ⊗ σ0. Similarly, the Hamiltonian is trans-
formed into diagonal blocks as

UHU † = (JRσ1 + JIσ2) ⊕ (−JRσ1 + JIσ2). (A11)

Note that time-reversal symmetry is now represented in the
eigenspace of M as

T = τ1 ⊗ σ3K. (A12)

Then, for the four twisted π -flux blocks in Fig. 2(c), the
Hamiltonians are transformed as

H5 = −JRτ3 ⊗ σ1 + JIτ1 ⊗ σ1

UH5U
† = (−JRσ1 + JIσ2) ⊕ (JRσ1 + JIσ2), (A13)

H6 = JRτ3 ⊗ σ1 + JIτ1 ⊗ σ1

UH6U
† = (JRσ1 + JIσ2) ⊕ (−JRσ1 + JIσ2), (A14)

H7 = JRτ3 ⊗ σ1 − JIτ1 ⊗ σ1

UH7U
† = (JRσ1 − JIσ2) ⊕ (−JRσ1 − JIσ2), (A15)

H8 = −JRτ3 ⊗ σ1 − JIτ1 ⊗ σ1

UH8U
† = (−JRσ1 − JIσ2) ⊕ (JRσ1 − JIσ2). (A16)

The first blocks of the Hamiltonians UH5,6,7,8U † are the sys-
tems of two sites with the hopping coefficients as Jei(π−φ),
Jeiφ , Je−iφ , and Jei(π+φ), respectively.

APPENDIX B: TRIANGLE-LATTICE MODEL

We give the detail of triangle-lattice model in the main
text here. The monolayer triangle-lattice model is illustrated
in Fig. 3(a). The three edges of each triangle are e1,2,3. The
hopping coefficient along each e1 is Jeiφ . There is the dimer-
ization along e2 with hopping amplitudes as t − δ and t + δ.
Each unit cell consists of two sites, and the unit vectors can
now be chosen as 2e2, e3. The hopping amplitude along e3 is
±t , where in Fig. 3(a) the signs ± are marked by blue and red
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(a) (b)

(c) (d)

FIG. 6. (a) The phase diagram of monolayer system when δ �=
0. (b) The phase diagram of monolayer system when t < J| sin φ|.
(c) and (d) are the energy spectra for the monolayer model with open
boundary conditions along e1 and e2, respectively. The parameters
in calculating (c) and (d) are set as t = 1, δ = 0.5, φ = 2π/5, and
J = 2.

lines, respectively. Hence, the Hamiltonian of the monolayer
triangular lattice is given as

hC (k, φ) =[2J cos(k · e1 − φ) + 2t cos k · e2]σ1

+ 2δ sin k · e2σ2 − 2t cos k · e3σ3.
(B1)

The gap of energy spectrum is closed if

t = J| sin φ|, or δ = 0. (B2)

For φ = 0, π and δ �= 0, the monolayer system has time-
reversal symmetry (TRS) and the Chern number is zero. When
varying φ, the Chern number remains zero until the gap
closes at t = J| sin φ|. Thus, the Chern number is nonzero as
t < J| sin φ|. The phase diagram is shown in Fig. 6(a). When
t < J| sin φ|, the gap closing condition δ = 0 separates two
nontrivial phases with different Chern numbers as indicated
in Fig. 6(b). The energy spectra in Figs. 6(c) and 6(d) are
calculated for the open boundary conditions along e1 and
e2, respectively. They demonstrate the topologically nontrivial
phase with chiral edge state.

By our general construction of the bilayer model in the
main text, the hopping amplitudes of inserted twisted π -phase
blocks are related to the complex hopping amplitude Jeiφ as

JR + iJI = Jeiφ. (B3)

Then, the Hamiltonian of this bilayer system can be directly
obtained from Eqs. (9) and (10) of the main text as

Htr(k) =
[

htr
+(k) −ihtr

−(k)
ihtr

−(k) htr
+(k)

]
, (B4)

where

htr
+(k) =(2JR cos k · e1 + 2t cos k · e2)σ1

+ 2δ sin k · e2σ2 − 2t cos k · e3σ3,

htr
−(k) =2JI sin k · e1σ1.

(B5)

FIG. 7. The spectrum of the monolayer system with t = J = 1,
and φ = 2π/5.

From the relation in Eq. (B3) and the phase diagram of mono-
layer system in Figs. 6(a) and 6(b), it is now clear that the
phases of bilayer system is irrelevant to JR in Fig. 3(b). When
t < |JI | and δ �= 0, the mirror Chern number is nonzero, which
signifies the existence of mirror Chern insulator.

APPENDIX C: HOFSTADTER MODEL WITH HIGH
CHERN NUMBER

The monolayer square lattice of Hofstadter model with
gauge flux φ = 2π/5 penetrating through each plaquitte is
illustrated in the upper subfigure of Fig. 4(a). The horizontal
hopping amplitude is t , while the vertical one is J . Then, the
monolayer Hamiltonian is written as

hHof
C =

⎡
⎢⎢⎢⎢⎣

J0(ky) t 0 0 te−ikx

t J1(ky) t 0 0
0 t J2(ky) t 0
0 0 t J3(ky) t

teikx 0 0 t J4(ky)

⎤
⎥⎥⎥⎥⎦, (C1)

where Jn = 2J cos(ky − nφ). The Chern numbers for the five
bands are obtained as

−1, −1, 4, −1, −1, (C2)

written from higher to lower energies, respectively. As shown
in Fig. 7, there are four energy gaps with the numbers of chiral
edge states as 1, 2, 2, 1 inside them, respectively.

By our construction of bilayer model, the Hamiltonian of
bilayer system for mirror Chern insulator can be written as

HHof(k) = τ0 ⊗ hHof
+ (k) + τ2 ⊗ hHof

− (k) (C3)

with

hHof
+ (k) =

⎡
⎢⎢⎢⎢⎣

f0(ky) t 0 0 te−ikx

t f1(ky) t 0 0
0 t − f2(ky) t 0
0 0 t − f3(ky) t

teikx 0 0 t f4(ky)

⎤
⎥⎥⎥⎥⎦,

and

hHof
− (k) =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 g1(ky) 0 0 0
0 0 g2(ky) 0 0
0 0 0 −g3(ky) 0
0 0 0 0 −g4(ky)

⎤
⎥⎥⎥⎥⎦,
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where f0(ky) = 2J cos ky, fn(ky) = 2Jn
R cos ky, and gn(ky) =

2Jn
I sin ky for n = 1, 2, 3, 4 with (Jn

R, Jn
I ) with n = 1, 2, 3, 4

given in Fig. 4.

APPENDIX D: THE SIMULATION WITH ACOUSTIC
SYSTEM

We review the realization of Z2 gauge field in acoustic
systems [32,33,35], followed by the proposal for simulating
our models as an application. The advantage of using arti-
ficial systems rests on the controllable hopping or coupling
terms. For example, if there is no coupling between two fixed
sites, just remove all the connecting materials between these
two sites. For traditional electronic systems, this could be
achieved by properly designing the local states with some
sorts of symmetries such that the energy integral vanishes.
To simulate electronic system by acoustic system, the eigen
oscillation mimics the electronic wave function in solid sys-
tems. In this way, the equation of motion for electrons is
simulated by the dynamic equation of the oscillation in acous-
tic system with the frequency playing the role of energy.
To be precise, lattice sites in solid systems are replaced by
acoustic resonators, while hopping between different sites is
realized by coupling between different resonators. By con-
necting the acoustic resonators with wave guides or coupling
tubes, the coupling amplitude can be easily controlled since
it is completely determined by the radius of wave guide or
coupling tube.

To control the sign of the coupling between different res-
onators, the dipolar mode far away from other modes of the
resonator is chosen, which resembles the atomic p orbital as
shown in Fig. 8. So, let us begin with the coupling between
two remote pz orbitals in solid system as shown in Figs. 8(a)
and 8(b). Assuming the coupling coefficient is t and the on-
site energy is ε0, the Hamiltonian of this small system can be
written as

H =
[
ε0 t
t ε0

]
(D1)

with two eigenstates

|±〉 = 1√
2

[
1

±1

]
(D2)

for E± = ε0 ± t , respectively. If t < 0, the low-energy state is
bonding state while the high-energy one is antibonding state
as shown by Fig. 8(a). The case for t > 0 is just opposite as
shown in Fig. 8(b). As to the acoustic resonator, the dipolar
mode manifests the sinusoidal distribution of air pressure
inside the resonator, which just mimics the wave function
of pz orbital. For hopping simulated by coupling different
resonators with wave guides, there is a physical picture here.
The wave guides introduce the perturbation to eigenmodes of
the resonators. In acoustic systems, the uniform distribution
of air pressure always has lower frequency or lower energy
than the sinusoidal distribution. Therefore, by considering the
perturbation from the wave guides in Fig. 8(c), the bonding
state has lower frequency than the antibonding one. From
the lesson of Fig. 8(a) that the coupling coefficient is neg-
ative if the bonding state has lower energy, we obtain the
effective coupling t < 0. Namely, there is a π hopping phase

(a) (b)

(c) (d)

FIG. 8. (a) and (b) illustrate π bonds formed by two pz orbitals
for t < 0 and t > 0, respectively. For t < 0, the bonding state has
lower energy, while the antibonding state has higher energy illus-
trated by the two right configurations of (a). The case for (b) is
opposite. (c) and (d) realize the effective coupling t < 0 and t > 0
in acoustic systems, respectively. The gray cubes denote the acoustic
resonators connected by the wave guides (green and yellow sticks),
and the positive and negative air pressures are marked with blue and
red colors.

for the connection structure of Fig. 8(c). The case of Fig. 8(d)
is just opposite to that of Fig. 8(c). In this way, the Z2 gauge
field can be readily realized in acoustic systems by properly
designing the connection structures.

The above strategy of controlling the coupling between
acoustic resonators, as a proven technology, has been widely
used in topological acoustic systems. We now turn to the
realization of our models. It is clear that once the building
blocks in Fig. 2 are simulated, our models are immediately
realized. We illustrate the realization of the building blocks
in Fig. 2(b) by Fig. 9, and the realization of building blocks
of Fig. 2(c) is just similar. In Fig. 9, the red and blue

(a) (b)

(c) (d)

FIG. 9. Realization of building blocks in Fig. 2(b) of the main
text. The red and blue links connecting different acoustic res-
onators represent the connection structures in Figs. 8(c) and 8(d),
respectively.

205126-7



SHAO, CHEN, WANG, YANG, AND ZHAO PHYSICAL REVIEW B 108, 205126 (2023)

connections between different acoustic resonators represent
the connection structures of Figs. 8(c) and 8(d), respectively.
As to the realistic experimental setup, the mature 3D-printing

technique with photosensitive resin has been demonstrated to
be a powerful method of realizing all these models in acoustic
systems.
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