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Correlation-driven nontrivial phases in single-bilayer kagome intermetallics
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Bilayer kagome compounds provide an exciting playground where the interplay of topology and strong
correlations can give rise to exotic phases of matter. Motivated by recent first-principles calculation on such
systems [Phys. Rev. Lett. 125, 026401 (2020)], reporting stabilization of a Chern metal with a topological nearly
flat band close to the Fermi level, we build minimal models to study the effect of strong electron-electron
interactions on such a Chern metal. Using appropriate numerical and analytical techniques, we show that the
topologically nontrivial bands present in this system at the Fermi energy can realize fractional Chern insulator
states. We further show that if the time-reversal symmetry is restored due to the destruction of magnetism by low
dimensionality and fluctuation, the system can realize a superconducting phase in the presence of strong local
repulsive interactions. Furthermore, we identify an interesting phase transition from the superconducting phase
to a correlated metal by tuning nearest-neighbor repulsion. Our study uncovers a rich set of nontrivial phases
realizable in this system and contextualizes the physically meaningful regimes where such phases can be further
explored.
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I. INTRODUCTION

The kagome lattice—built out of corner sharing triangles—
presents a rather interesting situation where both the itiner-
ancy of the electrons as well as the effect of electron-electron
interactions, can be frustrated. The frustration of the itinerant
electrons is manifested through the characteristic flat/nearly
flat bands in the various short-range tight-binding models on
the kagome lattice. When the Fermi energy lies in one of
these bands of narrow bandwidth then the electron-electron
interactions are expected to play a crucial role in determining
the ground state properties of the system. Together with this
effect, the presence of spin-orbit coupling in the nearly flat
noninteracting band at the Fermi energy may lead to a non-
trivial band topology [1–6]. This interplay of electron-electron
interactions and band topology poses outstanding challenges
and has been of much interest, for example, in the context of
fractionally filled Landau levels in the quantum Hall systems
[7–9] and Moire graphene [10,11] more recently. Interest-
ingly, a plethora of recently discovered metallic systems based
on the kagome motif [12–32] provide a wide material basis to
realize and explore this physics further.

A particularly interesting family of kagome based metallic
systems occurs in the binary intermetallics M3Sn2, where
M = Mn, Fe, Ni, Cu, and Co represents a transition metal
[12–23,33–35]. These materials form a three dimensional lay-
ered structure with the basic motif being a bilayer kagome of
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the M atoms, as shown in Fig. 1. The sought-after flat bands
have been observed in iron compounds [21], in cobalt systems
[36,37], and most recently in manganese based intermetallics
[38,39]. The interplay of strong correlations and topological
properties is manifested in a wide range of observed exotic
phenomena, such as the coexistence of magnetism and anoma-
lous Hall effect seen recently in manganese systems (along
with rare earths) [40], an exotic charge density wave order
and superconductivity seen in related antimony compounds
[25–27,41–43]. A variety of other observations including
skyrmions and topological Hall effect [44], hole pockets at
the Fermi surface [45], and spin waves [46] have further made
the field extremely intriguing.

An especially intriguing system in this family are the FeSn
compounds where the stacking arrangement can alter the na-
ture of both the magnetic properties of the ground state as
well as that of the itinerant electrons. For instance, when
the two kagome Fe3Sn layers in a bilayer motif are aligned
such that the Fe atoms in the two layers are right on top of
each other, the system is antiferromagnetic with strong spin
fluctuations and localized electrons [47–49]. On the other
hand when the two Fe3Sn layers are aligned such that Fe
atoms in the two layers form a star of David (see Fig. 1),
the system is ferromagnetic with a flat band near the Fermi
energy which is topological in nature making it susceptible
towards a host of exotic phenomena [14,50,51]. Given the
susceptibility of this latter system to a host of exotic phases
it forms the focus of our study in this paper. More specifically,
we focus on the single bilayer limit. As shown in one of our
previous works [51] cleavability of these compounds, allows
possible synthesis of single bilayer and its tunability, for ex-
ample, by using different substrates [33,50]. The situation is
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FIG. 1. Bilayer kagome lattice. A kagome bilayer lattice has a
tripartite structure with a unit cell containing six identical atoms
labeled (1-3) (bottom layer) and (1′-3′) (top layer) and shown by
different colors. Inter- and intra-unit-cell nearest-neighbor hoppings
can have different hopping strengths due to breathing anisotropy. The
lattice vectors are given by d1 = {1, 0}, d2 = { 1

2 ,
√

3
2 }. The recipro-

cal lattice vectors are given by b1 = {
√

3
2 , − 1

2 } 4π√
3
, b2 = {0, 1} 4π√

3
.

further promising as such epitaxial films have recently been
synthesized [52].

Although, the experiments and first-principles calcula-
tion for the bulk Fe3Sn2 [14,51] reveal a complicated band
structure close to the Fermi energy, interestingly, in the single-
bilayer limit, a simplified low-energy band structure separated
from the high-energy bands emerges. This allows for the
possibility of analyzing the low-energy physics of the sin-
gle bilayer systems using effective tight-binding models with
short-range electron-electron interactions [51]. In the bilayer
limit, the first-principles calculation [51] found the Fe based
system to be a Chern metal, while the Ni/Co based system to
be nonmagnetic. With these first-principles inputs, it will be
a worthwhile exercise to understand the possible interaction-
driven instabilities towards nontrivial phases in the nearly
flat bands of the spin-polarized Chern metal as well as the
nonmagnetic metal.

In this paper, we take up the above task within the frame-
work of a minimal symmetry allowed hopping Hamiltonian,
characterized by interlayer hybridization, intralayer breathing
distortion due to differently sized up and down triangles, and
interlayer potential difference. The microscopic many-body
model built up on this, hosting flat-bands is studied for both (a)
a low-energy Chern metal and (b) a low-energy nonmagnetic
metal, as shown in Fig. 2. Our analysis establishes that pos-
sible tuning of these parameters by substrate effect, strain as
well as gating, can give rise to a plethora of correlation-driven
exotic phases. For the Chern metal, when the two kagome
layers are weakly hybridized, the repulsive interactions in the
ferromagnetic flat-band can stabilize a 1/3 fractional Chern
insulator (FCI) state, while possibly stabilizing a 1/5 FCI state

FIG. 2. Effective low-energy physics. Ab initio studies lead to
two broad category of microscopically interesting systems (i) Chern
metals—which spontaneously breaks time-reversal symmetry and
have a partially filled flat band with a nonzero Chern number, and (ii)
nonmagnetic metals—a metallic phase which retains the complete
spin-orbit rotation symmetry.

in the limit of strong interlayer hybridization. On the other
hand, in the case of nonmagnetic metal, we discover a pairing
instability in the presence of strong onsite repulsion within
a t-J-V model calculation. The transition temperature of the
corresponding superconducting phase can be as high as about
30 K. Upon varying the strength of the repulsive interactions,
a transition to a correlated metallic phase is discussed which
can possibly host a chiral spin liquid akin to that found on the
triangular lattice in Ref. [53].

While our work is motivated by the bilayer physics of
Fe3Sn2, the analysis presented here is general in nature and
should be applicable to a range of bilayer kagome thin films.

II. LOW-ENERGY HAMILTONIANS FOR BILAYER
KAGOME METALS

A minimal symmetry allowed hopping Hamiltonian, con-
sisting of one Kramers doublet per site (Fig. 1), is given by

Htb =
∑
i j,σ

tσ
i j c

†
iσ c jσ − μ

∑
i

ni, (1)

where i and j refer to the sites on the bilayer kagome lattice,
ciσ (c†

iσ ) are the electron annihilation (creation) operators at
site i with spin σ =↑,↓ and ni = ∑

σ c†
iσ ciσ is the onsite elec-

tron number operator. tσ
i j denote various hopping amplitudes

(see Fig. 3), including an effective spin-orbit coupling term,
and μ is the chemical potential.

In this paper, we shall use this single orbital hopping
Hamiltonian Htb to study the competition between various
relevant phases. Such an approach has proved to be fruitful
in understanding a host of flat-band systems, e.g., in various
Moire structures [54]. It is worth noting that the above mini-
mal model has several parameters which in principle can be
tuned in the experiments on the bilayer kagome materials.
Below we list the important model parameters and mention
the range of their expected tunability from studies on closely
related material systems.
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FIG. 3. Hopping processes. The left and right panels depict the intralayer and interlayer hoppings for an up-spin electron in a bilayer
kagome system. The hoppings for the down-spin electrons can be obtained by switching the sign of λ. Note that all the kagome sites are
equivalent. Different colors have been used to highlight the tripartite structure.

(1) The nearest-neighbor hopping amplitude t (∼0.1 eV
for Fe3Sn2 [51], ∼0.2 eV for CoSn [37]) can possibly be tuned
using strain [55].

(2) The chemical potential μ which controls the filling
and can be changed, for example, using gating techniques and
chemical doping [24].

(3) A relative potential difference between the two layers
D breaks the inversion symmetry of the system and can be
used to model the choice of the substrate. Such effects may be
important in epitaxially grown films [56].

(4) The symmetry consistent breathing anisotropy be-
tween the up and the down triangles of each kagome layer,
shown as two differently shaded triangles in Fig. 1, which
gives rise to two different sized triangles. This effect is in-
corporated by scaling the intralayer inter-unit-cell hopping
amplitude by a factor r compared to the intra-unit-cell hop-
ping in the same layer. In experiments the ratio of the
intra-unit-cell and inter-unit-cell bond lengths can be ∼0.7
in some kagome compounds [57] and can also be tuned by
applying anisotropic pressure [58] or by the use of appropriate
substrates [59].

(5) The hopping amplitudes t⊥, t⊥1, and t ′
⊥1 model the var-

ious short-ranged interlayer hybridization strengths. While, t⊥
is expected to be around (∼0.3t) in bilayer FeSn compounds
[14,60], it can be tuned by the application of pressure [58] or
by applying an uniaxial strain.

(6) We model the effect of atomic spin-orbit coupling,
expected to be present in these intermetallics [51], by in-
cluding a nearest-neighbor intralayer hopping process with an
imaginary amplitude

iλ(c†
i↑c j↑ − c†

i↓c j↓), (2)

where j → i has an anticlockwise orientation over any tri-
angular motif. In a related system such a λ is known to be
∼30–40 meV [14,60,61] and about ∼0.1 eV in CoSn [37].

Before moving on to discuss the effect of electron-electron
interactions, we would like to discuss the salient features
of such a symmetry consistent tight-binding Hamiltonian. A
representative band structure obtained within our one-orbital-

per-site model is shown in Fig. 4. Most remarkable is the
occurrence of an isolated nearly flat band at the Fermi energy,
which captures the large density of states also seen from
the first-principles results for Fe3Sn2 [51]. In the absence of
spin-orbit coupling λ [Eq. (2)], the nearly flat band touches
the dispersing band at the K point of the Brillouin zone (BZ).
This degeneracy, however, is generically lifted for any finite
λ owing to the difference in the symmetries of the model
Hamiltonian in the presence and in the absence of the λ term
(details in Appendix A). In other words, for a nonzero λ, our
minimal tight-binding model is generically expected to host
an isolated nearly flat band. In the next section, we discuss the
role of interactions on this nearly flat tight-binding band.

A. Interactions

Short-ranged microscopic interactions on the low-energy
electrons are given by a generalized Hubbard model of the

FIG. 4. Representative band structure. A representative band
structure of the minimal symmetry allowed hopping Hamiltonian,
with the choice of t = 0.12 eV, r = 1.25, t⊥ = 0.06 eV, t1 =
−0.03 eV, t⊥1 = 0.05 eV, μ = −0.26 eV, and λ = 0.01 eV (see text
for further details). The corresponding band structure switching off
the spin-orbit coupling (λ = 0) is shown for comparison (in red).
The inset shows the high symmetry points and the reciprocal lattice
vectors in a hexagonal Brillouin zone.
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form

Hint = U
∑

i

ni↑ni↓ +
∑

i j

Vi jnin j, (3)

where ni↑(↓) is the electron number operator at site i with spin
up (down), while ni = ni↑ + ni↓ is the total electron number
operator at the site i. U is the onsite repulsive interaction
strength and Vi j represent the off-site nearest neighbor (both
intra- and interlayer) density-density interactions between the
electrons at sites i and j.

1. The ferromagnetic Chern metal

First-principles calculations suggest that the bilayer Fe3Sn2

should stabilize a ferromagnetic ground state [51]. Such a
ferromagnetic state can indeed be favored by the onsite term
in Eq. (3) as is demonstrated within the following mean-field
analysis [62]:

Uni↑ni↓ = U

2

(
ni↑ + ni↓ − 4

3
(Si · Si )

)
→ −4U

3
m · Si + · · · ,

(4)

where S(τ )
i = 1

2

∑
ss′ c†

isσ
(τ )
ss′ cis′ are the electron spin operators

with σ (τ ) being the Pauli matrices and m = 〈Si〉 is the uniform
mean-field magnetization which we take to be along the z axis,
i.e., mz = 1

N

∑
i〈Sz

i 〉 �= 0, mx = my = 0. While ignoring the
effect of the subdominant nearest-neighbor interactions Vi j ,
self-consistent mean-field calculations for tight-binding pa-
rameters presented in Fig. 4 indicate that U � t is sufficient to
completely spin polarize the bands close to the Fermi energy
(see Appendix B).

A few representative band structures deep in the ferromag-
netic phase, where the bands close to the Fermi energy are
fully spin polarized, are presented in Fig. 5. Figure 5(a) shows
a representative example in the weak interlayer hybridization
limit (see caption for the parameters), while Fig. 5(b) shows
an example in the strong interlayer hybridization limit (see
caption for the parameters). Remarkably, in both these limits,
the resultant low-energy bands are endowed with nontrivial
Chern numbers (C) as shown in the figure. These two classes
of band structures are robust over a finite window of λ �= 0
as well as other parameters. The two C = 1 bands in the
weak coupling limit, can almost exclusively be associated
with one of the kagome layers [63]; one band from each
of the kagome layers. Interestingly, however, on increasing
the interlayer hybridization, the two C = 1 bands undergo a
Dirac gap closing at the K ′ point [see Fig. 5(c)]. With further
increase in the interlayer hybridization the gap reopens giving
rise to a topologically trivial band and a C = 2 band at the
Fermi level.

In what follows, we shall devote our attention to the above
weak and strongly hybridized low-energy Chern bands of
reduced bandwidth to explore the effect of interactions on
the Chern metal. We note, however, that strong quantum
fluctuations arising specially from reduced dimensionality of
the bilayer may destabilize the ferromagnetic metal in favor
of a nonmagnetic one. This provides a completely different
starting point for exploring the effect of electron-electron
interactions on unpolarized nontopological flat bands. In the
next couple of sections, we shall consider these two different

FIG. 5. Weak and strong hybridization. (a) The low-energy tight-
binding bands in the weak interlayer coupling limit (r = 1.0, t⊥/t =
0.1, t1/t = −0.2, t⊥1/t = −0.1, t ′

⊥1/t = 0.0, λ/t = 1.0 and D/t =
0.1), denoted by Hamiltonian, HI . (b) The low-energy tight-binding
bands in the strong interlayer coupling limit (r = 0.9, t⊥/t = 0.7,
t1/t = −0.3, t⊥1/t = 0.25, t ′

⊥1/t = −0.5, λ/t = 0.3, and D/t =
0.1), denoted by Hamiltonian, HII . (c) The low-energy bands for
Hζ ≡ HI + ζ (HII − HI ) (ζ ∼ 0.18), exhibiting a Dirac crossing at
the K ′ point.

classes separately and investigate the interesting phases that
can possibly be realized.

III. FRACTIONAL CHERN INSULATING PHASES

For the electrons in the spin-polarized nearly flat Chern
band of the ferromagnetic metal, short-range interactions can
lead to a host of novel phases some of which we explore
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in this section. The electronic Chern metal has an instability
for attractive nearest-neighbor interactions which stabilizes a
topological superconductor, as was previously discussed in
[51]. We now discuss the instabilities of the Chern metal to
repulsive interactions such as the nearest-neighbor density-
density repulsion in Eq. (3). A simple analysis suggests that
such interactions cannot stabilize a superconducting phase
within the mean-field approximation (see Appendix C for a
discussion). In this section, we focus our investigation towards
the possibility of realizing the fractional Chern insulator (FCI)
states driven by these nearest-neighbor density-density inter-
actions in the kagome bilayer.

Robust FCI states often arise as an interaction driven insta-
bility of a fractionally filled Chern band at a particular filling
of 1/(2m + 1) with m being an integer [64]. Moreover, for a
topological band with Chern number C one expects the FCI
states at an electronic filling of 1/(2C + 1) to be the most
robust [65]. This expectation is borne out by several numerical
studies on different lattice systems [66–68], and as we show
below, it holds good for our bilayer kagome as well.

To examine this instability we perform exact diago-
nalization (ED) studies while incorporating both intralayer
nearest-neighbor interactions ≡ V‖ and interlayer nearest-
neighbor interactions ≡ V⊥. Proceeding conventionally [64],
we drop the dispersion of the band at the Fermi energy and
project the interactions to just this flat band while ignoring
the Hartree terms from the projected interactions. These ap-
proximations allows us to distill signatures of the FCI states
within our ED studies. Our ED studies are performed in the
momentum space where the Hamiltonian is block diagonal
in total Bloch momentum [64]. We are, however, limited to
a momentum grid of ∼35 points for which the low-energy
eigenspectrum can be obtained efficiently.

The considerations described above lead to the following
effective Hamiltonian:

HFCI = P
∑

k1 ,k2 ,k3 ,k4
α1,α2,α3,α4

V α1,α2,α3,α4
k1,k2,k3,k4

c†
k1,α1

c†
k2,α2

ck3,α3 ck4,α4P, (5)

where the sums over k’s run over the Bloch momenta in the
first Brillouin zone while the sums over α’s run over the six
bands of our spin-polarized bilayer kagome system and P
implements the projection to the band at the Fermi energy.
In this context, it is convenient [64] to map a Bloch mo-
mentum k = kxb1 + kyb2, where b1(2) is a reciprocal lattice
vector (see inset of Fig. 4) and kx(y) = 2πKx(y)/Nx(y) with Nx(y)

being the number of unit cells along the lattice vector d1(2)

(see Fig. 1) and Kx(y) ∈ {0, 1, . . . , Nx(y) − 1}, uniquely to the
integer Kx + NxKy. For the results presented in this section we
shall use this map to resolve the eigen spectrum of Eq. (5) in
the different total Bloch momentum sectors.

Moreover, since we completely ignore the weak dispersion
of the tight-binding band, V⊥ and V|| are the only relevant
energy scales in the problem. To streamline the discussion
further we set V⊥ = V|| and report the energies of the many-
body states obtained from our exact diagonalization studies
in the units of V⊥ (= V||). Small deviations from V⊥/V|| = 1
does not effect our main findings. Furthermore, given the tun-
ability of the tight-binding parameters (discussed in Sec. II)
real materials can possibly realize much flatter bands with

nontrivial Chern numbers which are separated from the other
bands in the system by a gap which is greater than V⊥. We
must point out, though, that FCI states can exist even if the
flat Chern band at the Fermi energy is not sufficiently iso-
lated from the other bands in the system (see, for example,
Ref. [69]). Thus we believe that the FCI states that we uncover
are representatives of similar and possibly more robust FCI
states realizable in distinct tight-binding parameter regimes of
the bilayer kagome system.

1. 1/3 fractional Chern insulator

In the weak interlayer hybridization limit of Fig. 5(a), we
project the interactions on to the second lowest (energy) Chern
band with C = 1. At 1/3rd filling of this band our exact
diagonalization (ED) of HFCI [Eq. (5)] reveals compelling
characteristic features of the 1/3 FCI state.

With periodic boundary conditions we find a threefold
quasidegenerate ground state manifold and a finite gap to
excitations [see Fig. 6(a)]. Moreover, the total momentum of
each state in the ground state manifold is exactly as predicted
by the generalized Pauli principle (see Appendix D). When
a flux � is introduced via twisted boundary conditions the
threefold quasidegenerate ground state manifold remains sep-
arated from the excited states while exhibiting a twist angle
periodicity of 6π , confirming their 1/3 FCI character [see
Fig. 6(b)] [64]. We also find that for the states in the ground
state manifold 〈nk〉, occupancy of the single particle Bloch
state with crystal momentum k in the band at the Fermi energy,
equals ∼1/3 [see Fig. 6(c)]. This again, is as expected for an
incompressible 1/3 FCI state [64].

While a 1/3 FCI state in a single layer kagome system has
been reported earlier, for example in Ref. [64], our results in
Fig. 6 show that such a FCI state is stable even in the bilayer
system in the presence of interlayer hybridization (t⊥) and
appreciable interlayer repulsion (V⊥).

2. 1/5 fractional Chern insulator

We now investigate the effect of nearest-neighbor repul-
sion on the Chern metallic phase, in the strong hybridization
limit with the Fermi energy in the C = 2 band, shown in
Fig. 5(b). Remarkably, at 1/5 filling of this band, within the
exact diagonalization scheme discussed above, we realize a
1/5 FCI state. With periodic boundary conditions, this FCI
phase is characterized by a five fold quasidegenerate ground
state manifold [see Fig. 7(a)], which is clearly separated from
the excited states by a gap that does not change significantly
over the few system sizes, 5 × 5, 5 × 6, and 5 × 7, that we
could explore. Two additional features in Fig. 7(a) are con-
spicuous: (1) the total momenta of the states in the ground
state manifold for every system size that we study agrees
with the prediction of the generalized Pauli principle (see
Appendix D). (2) The ground state manifold itself exhibits
a relatively large splitting between a unique “ground” state
and the other four states. While the first feature is a strong
evidence in the favor of a 1/5 FCI phase the second feature
may raise doubts about its stability. The concern about the
stability of the 1/5 FCI phase is further supported by the data
presented in Fig. 7(b) for the 5 × 6 system. This figure shows
the average density of the electrons in a single particle Bloch
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FIG. 6. 1/3 FCI state. (a) Low-energy spectra for the 1/3 state on
a 6×4 periodic boundary system for the bands in Fig. 5(a) showing
a threefold degenerate ground state. (b) Flux threading results for
the 1/3 state showing that the ground state manifold remains gapped
while exhibiting a periodicity of � = 6π . Different colors are used
to distinguish the total momenta of the states. (c) 〈n(k)〉 ∼ 1/3 for
all values of k in the three ground states.

state having Bloch momentum k in the band at the Fermi
energy, 〈nk〉, for all the five states in the ground state manifold.
While four of the states show 〈n(k)〉 ∼ 1/5, the lowest energy
state with (Kx, Ky) = (0, 3) exhibits a distinctive oscillation
over the mean density of 1/5 and thus, indicates the breaking

FIG. 7. 1/5 FCI state. (a) Low-energy spectra for the 1/5 state
with periodic boundary system for the band in Fig. 5(b) showing a
fivefold quasidegenerate ground state manifold for different system
sizes. (b) 〈n(k)〉 ∼ 1/5 for all k in the five quasidegenerate ground
states for the 5×6 system.

of additional rotational symmetries of the thermodynamic
system.

We believe, however, that this breaking of rotational sym-
metry of the thermodynamic system is an artifact of the
missing rotational symmetries in our finite size system in the
first place. Note that our exact diagonalization studies are
performed in the momentum basis. The smallest momentum
grid which would have all the rotational symmetries of the
thermodynamic system and can simultaneously have a filling
of 1/5 is 15 × 15 with 45 particles. This is well beyond our
computational capacity and consequently the systems sizes
that we study are far from this symmetric point. It is useful
to contrast this with the case for the 1/3 FCI phase. In that
case, the two smallest systems which had all the rotational
symmetries of the thermodynamic system were 3 × 3 with 3
particles and 6 × 6 with 12 particles. While 3 × 3 was too
small for any reliable conclusion, the system size that we
studied, 6 × 4 with 8 particles was not very far from the 6 × 6
system. Therefore the splitting in the ground state manifold
for the 1/3 FCI state was not as pronounced as in the 1/5
case.
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FIG. 8. Additional evidence of 1/5 FCI state. (a) Flux threading
results for the 1/5 state on a 5×6 momentum space grid showing
that the ground state manifold remains gapped while exhibiting a
periodicity of � = 10π . Different colors are used to distinguish the
total momenta of the states. (b) The many-body spectrum for the
flattened C = 2 band in Fig. 5(b) with one quasihole about the 1/5
FCI state, calculated for 3 × 7 system with four particles. The low-
energy states, below the dashed line, follow the expected generalized
Pauli principle (see Appendix D for details).

Despite the difficulty with the accessible system sizes re-
sulting in the artificial charge oscillations in Fig. 7(b), there
are a couple of additional evidences that strongly suggest that
the bilayer kagome system is indeed capable of realizing a
1/5 FCI phase. (1) With twisted boundary conditions where
an additional flux � is introduced, one finds that the five states
in the ground state manifold remain isolated from the excited
states while exhibiting a twist angle periodicity of 10π [see
Fig. 8(a)]. This is a rather compelling evidence of the nontriv-
ial topological character of the lowest five states and thus, is a
strong evidence in favor of a 1/5 FCI phase. (2) The quasihole
spectrum, presented in Fig. 8(b), also follows the generalized
Pauli principle (see Refs. [64,70,71] and Appendix D) which
makes it further convincing that the lowest five many-body
states in the spectrum in Fig. 7(a) indeed form a 1/5 FCI
quasidegenerate ground state manifold.

It is worth noting that the 1/5 FCI state that we uncover
for the bilayer kagome system is reminiscent of a similar

state which was found for pyrochlore slabs that also inher-
its the kagome motifs [63]. We also note that for a C = 2
tight-binding band which closely resembles the band at the
Fermi energy for the bilayer Fe3Sn2 as obtained from the first
principles, we do not find a FCI state for the system sizes that
we could access.

IV. INSTABILITIES OF THE NONMAGNETIC PHASE

Having discussed the phases in the vicinity of the Chern
metal, we now turn to the case where the quantum fluctuations
in the bilayer kagome, owing to its low dimensionality, are
strong enough to destabilize the ferromagnetic order. The
resultant nonmagnetic metal is best described by the time
reversal symmetric hopping Hamiltonian in Eq. (1) along
with the short-range interactions in Eq. (3). Taking cue from
the first principles, which predicts a large density of states
at and close to the Fermi energy owing to the presence of
several nearly flat bands (see Fig. 3(c) of Ref. [51]), we
propose to work with a set of hopping parameters provided in
Fig. 4 which captures this band phenomenology adequately.
In the rest of this section, we shall discuss the effect of the
short-range interactions over these tight-binding bands at ap-
propriate fillings, while highlighting some of the interesting
instabilities of the nonmagnetic phase.

In the limit of large onsite repulsion and at electron den-
sities of less than one per site, we can restrict to a space
of electronic states which have no double occupancies. An
appropriate parton paradigm in this limit splits the electron
creation operator (c†

iσ ) into a fermionic spinon creation oper-
ator ( f †

iσ ) and a bosonic hole annihilation operator (bi) such
that

c†
iσ = f †

iσ bi (6)

with a local constraint
∑

σ

f †
iσ fiσ + b†

i bi = 1 ∀ i. (7)

Clearly, Eq. (6) leads to a U(1) gauge redundancy with the
spinons and the holons carrying a unit charge each with re-
spect to the corresponding gauge field [72]. This U(1) gauge
structure is in addition to the one associated with electro-
magnetism; the source of the interaction terms in Eq. (3). To
avoid any possible confusion we refer to the gauge structure
implied by Eq. (6) as the internal gauge structure. Further-
more, it is easy to convince oneself that within this parton
construction the number of spinons at any given site must
be identified with the number of electrons at that site, while
the number of holons gives the probability of the site being
empty.

A. t-J-V model

A natural model to work with is an appropriate t-J-V
model [73] defined in the no-double-occupancy sector of the
electronic Hilbert space. In the presence of nearest-neighbor
interactions (Vi j) which are sub-dominant to the onsite in-
teraction (U ), this model Hamiltonian takes the following
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form:

HtJV = −
∑

i j
σ,σ ′

tσσ ′
i j c†

iσ c jσ ′ − μ
∑

i

ni

+
∑
〈i j〉

[
Ji jSi · S j +

(
Vi j − Ji j

4

)
nin j

]
, (8)

where S(τ )
i = 1

2

∑
ss′ c†

isσ
(τ )
ss′ cis′ with σ (τ ) being the Pauli ma-

trices and ni = ∑
σ c†

iσ ciσ are, respectively, the electronic spin
and number operators at site i. tσσ ′

i j are the same as in Eq. (1)
with values provided in Fig. 4 and μ is the chemical potential.
Ji j is the strength of the nearest-neighbor anti-ferromagnetic
exchange interaction that one obtains in the usual derivation
of the t-J model (see, for example, Refs. [74,75]). Note that
in Eq. (8), we are not including the exchange processes arising
from next nearest neighbor hopping or from the effective spin-
orbit coupling as their contribution (∼g2/U , where g is the
amplitude of the hopping process) is much smaller compared
to that from the nearest-neighbor hopping processes.

For the purpose of highlighting qualitatively nontrivial
physics, we find it sufficient to set Ji j = J and Vi j = V for
all the nearest-neighbor site indices i and j. With these sim-
plifications HtJV can be rewritten in a suggestive form as

HtJV =
∑

i j

tσσ ′
i j c†

iσ c jσ ′ − μ̃
∑

i

ni

− J	

∑
〈i j〉

B†
i jBi j − Jκ

∑
〈i j〉

K†
i jKi j, (9)

where μ̃ = μ − V is the renormalized chemical potential,
J	 = J − 2V and Jκ = 2V . B†

i j = (c†
i↑c†

j↓ − c†
i↓c†

j↑)/
√

2 is the
creation operator for a two electron singlet with one sitting on
the i-th site and another on the jth site, while K†

i j = (c†
i↑c j↑ +

c†
i↓c j↓)/

√
2 is an operator which facilitates the hopping of an

electron from site j to site i. Clearly, if J	 > 0, that is J > 2V ,
a superconducting ground state is plausible at any electron
filling of less than one electron per site. Conversely, if J	 < 0,

one would obtain a correlated metal. For J	 ∼ 0 one expects a
quantum critical phase dominated by long-wavelength fluctu-
ations of the superconducting order parameter over a metallic
background.

Before diving deeper into the nature of the superconduct-
ing phase supported by HtJV , we must note that our original
t-U -V model [see Eqs. (1) and (3)], just like the repulsive
Hubbard (t-U ) model, has no well-accepted evidence for a
superconducting phase. However, the conventional t-J model
derived from the repulsive t-U model does show signatures
of superconductivity (see, for example, Ref. [76]). Similarly,
the t-J-V model, for small values of V/t does indeed support
superconductivity (see, for example, Ref. [77]). In the follow-
ing sections, we describe a superconducting phase of HtJV

and its zero temperature transition to a metallic phase within
the parton paradigm discussed above. It is easy to convince
oneself that the J	 and Jκ terms in Eq. (9) have the same ma-
trix elements in the electronic basis and in the spinonic basis
even while leaving out the holon operators [72]. Therefore,
for the purpose of streamlining, the analysis that follows we
shall write them completely in terms of the spinon operators.
Moreover, in our analysis, we shall relax the local constraints

Eq. (7) to a global constraint with the understanding that the
physical wave functions can be obtained by projecting our
wave functions to the space of physical states [78,79].

1. High-Tc superconductivity

For a generic electron density (1 − p) of less than one
electron per site, the holons can safely be assumed to con-
dense into a superfluid state with 〈bi〉 ∼ √

p. This results in a
renormalization of the hopping amplitudes for the electronic
quasiparticles, tσσ ′

i j → ptσσ ′
i j and thus captures the correct be-

havior in the two limiting cases of p → 0 where one expects a
Mott insulating ground state, and p → 1 where one expects a
Fermi liquid ground state. The condensation of holons further
gaps out the internal gauge fields via the Anderson-Higgs
mechanism and, by appropriately redefining the spinonic op-
erators, allows us to work with electron-like operators [80].
In this background of condensed holons, we then obtain a
mean-field Hamiltonian HMF

tJV via the decomposition of the
quartic terms in Eq. (9) in the pairing ({	i j}) and the kinetic
channels ({χi j})

J	B†
i jBi j � 	∗

i jBi j + B†
i j	i j − |	i j |2

J	

, (10)

JκK†
i jKi j � χ∗

i jKi j + K†
i jχi j − |χi j |2

Jκ

. (11)

Finally, to solve HMF
tJV self-consistently, we impose

	i j = J	〈Bi j〉MF, (12)

χi j = Jκ〈Ki j〉MF, (13)

where 〈 〉MF denotes that the expectation value is being com-
puted in the ground state of HMF

tJV . We also simultaneously
adjust the chemical potential to accommodate p electrons per
site on an average.

Let us first discuss the superconducting phase that we ob-
tain in the limit of vanishing nearest-neighbor repulsion V at
T = 0 K. In this limit, Eqs. (11) and (13) can be dropped,
while 1/3 < p < 2/3 is such that the noninteracting Fermi
surface lies in the flat band (see Fig. 4). The eighteen su-
perconducting order parameters {	i j} associated with a unit
cell live on the bonds of the lattice [see Fig. 9(c)] and can
be divided into three disjoint sets on the basis of their trans-
formation properties under the lattice symmetries. The bonds
in any one of these sets mix under the lattice symmetries
and thus, host superconducting order parameters of the same
magnitude. The maximum magnitude of the pairing order
parameter among these three sets, which should eventually
decide the superconducting transition temperature, is defined
to be |	|max (|χ |max is defined analogously).

|	|max/t as a functions of p has a dome shape with a
vanishing trend close to the band edges p = 1/3 and 2/3
where the electronic density of states vanish. We show this
in Fig. 9(a) for J/t = 1/2 and 1/4. In Fig. 9(b), we plot {	i j}
over the lattice, with the thickness of the bond between sites i
and j being proportional to the magnitude of 	i j and its phase
being coded in the color of the bond. Clearly, the intralayer
and interlayer pairing order parameters are out of phase while
being invariant under lattice rotations, suggesting an s±-wave
symmetry of the pair wave function. In terms of absolute
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FIG. 9. SC within t-J-V model. (a) Behavior of |	|max/t as a
function of p for J/t = 1/2 and 1/4, obtained by solving t-J model
in V = 0 limit. Solid (dashed) curves correspond to results obtained
with a momentum space mesh of 151 × 151 (101 × 101) and the
blue dotted lines mark the band edges at p = 1/3 and 2/3. (b) Corre-
sponding real space variation of the superconducting order parameter
at J/t = 1/4 and p = 0.5. The width of the bonds represent the
magnitude of 	 (maximum ∼0.025t and and minimum ∼0.007t)
while the phase has been color coded.

energy scales for t ∼ 0.1 eV, J ∼ 0.05 eV, and p = 0.5, we
find a |	|max of the order 5%–6% of t which corresponds to
a maximum Tc ∼ 〈b†

i b†
j〉|	|max ∼ p|	|max of about 30–35 K,

which is rather high given that we are significantly away from
a filling of one electron per site.

2. Correlated metal

The superconducting state that we obtained above seems
quite robust and can in principle be the dominant instability
of the nonmagnetic metal in the bilayer kagome system. How-
ever, if this superconducting phase could be suppressed some
even more exotic phases might become realizable. Extensions
of the Lieb-Schultz-Mattis theorem [81] suggest that at a
filling of 3 electrons per unit cell (p = 0.5) if the electron-
electron interactions are unable to stabilize an ordered phase
with a broken symmetry then a quantum spin liquid ground
state is possible. At this filling, the band at the Fermi energy
in Fig. 4 is half filled and the corresponding Wannier orbitals
would form a triangular lattice. On incorporating the effect of

FIG. 10. SC to metal transition as a function of V/t . Behavior of
|	|max/t and |χ |max/t as a function of the nearest-neighbor repulsion
V/t at J/t = 0.25 and p = 0.4. The inset shows the chemical poten-
tial as V/t is tunned across the superconductor to metal transition at
Vc � J/2. The momentum space mesh grid used for this calculation
was 151×151.

microscopic interactions appropriately one expects to obtain
an effective tight-binding model with one orbital per site and
some short-ranged interactions on the triangular lattice. The
triangular lattice, like the kagome lattice, is prone to frus-
trations and hence can be expected to host one of the exotic
quantum spin liquid phases (see, for example, Ref. [53]).
Thus it is pertinent to discuss the possible mechanisms of
suppressing the superconducting order.

A mechanism for this suppression is provided by the fluctu-
ations of the collective excitations about the superconducting
state [82] which may leave us with a correlated nonmagnetic
metal. Increasing the nearest-neighbor interaction strength V
offers yet another natural pathway for the suppression of
the superconducting order in the bilayer kagome systems.
Figure 10 shows the results of our mean-field calculations
for HtJV in Eq. (9) with nonzero values of V at J/t = 0.25
and p = 0.4. We find that as V is increased towards J/2
the superconducting order parameter decreases monotonically
and eventually vanishes via a first-order quantum phase tran-
sition when Vc � J/2 to become a correlated metal as V/t is
increased further. A more detailed study uncovering the inter-
esting instabilities, including ordering by symmetry breaking,
of this correlated metal remain an interesting direction for
future work.

V. SUMMARY AND DISCUSSION

Kagome intermetallics are an interesting set of materials
which offers an ideal playground for studying the interplay
of topology and strong correlation effect. Motivated by the
rich physics offered by M3Sn2 class of these compounds, and
possible experimental synthesis of bilayers of these materials,
in this work, we investigate the correlation driven instabilities
in the kagome bilayer systems. Employing appropriate numer-
ical and analytical tools we solve the material-inspired model
Hamiltonian. We consider the two starting states, (a) a Chern
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metal with spin-polarized bands and (b) a nonmagnetic metal-
lic phase with magnetism being destroyed due to enhanced
fluctuations in two dimensions. We discover correlation-
driven instabilities towards exotic phases, like fractional chern
insulator, superconductivity and correlated metal.

Turning on the correlation effect on Chern metallic phase,
our analysis unravels possibility of two different FCI states.
In the weak interlayer hybridization limit with the system
hosting a flat band of Chern number C = 1 near the Fermi
energy, at one-third filling appears to stabilize a 1/3 FCI state,
while in the limit of strong interlayer hybridization where the
system hosts a flat band with C = 2 at the Fermi energy a
1/5 FCI state may get stabilized. The gap to excitations in
the 1/3 and 1/5 FCI states are estimated to be ∼0.02 and
0.002 V, respectively, (see Figs. 6 and 7), where V is the
intersite interaction strength. Assuming a V ∼ 0.5 eV, this
would correspond to the gap scale of 	FCI

1/3 ∼ 10 meV for
the 1/3 FCI and 	FCI

1/5 ∼ 1 meV for the 1/5 FCI, which are
comparable to the width of the flat band in the bilayer kagome
compound as predicted from first-principles calculations [51].
This suggests that to achieve the observed FCI states in the
real materials, further band engineering may be needed to
flatten out the bands at the Fermi energy. Also the separation
of flat bands need to be ensured, demanding experimenting
with choice of substrate, gating and strain engineering.

Consideration of strong repulsive interaction in the non-
magnetic situation, with restored time-reversal symmetry,
leads to distinctly different scenario. Here, using the ap-
propriate t-J-V model, we show that the system can
realize a superconducting phase akin to high-temperature
superconducting phases. Interestingly this superconducting
phase undergoes a transition to a correlated metal as the in-
tersite repulsive interaction is increased. This further opens
up the possibility of realizing a quantum spin liquid phase
when the band at the Fermi energy is half filled. The precise
nature of the superconductor to the correlated metal transition,
beyond mean-field approximation, and similarly the character
and the instabilities of the correlated metal are interesting
directions for future work.

It is important to note that in our work, we have con-
sidered only the effect of repulsive interaction. As shown in
Ref. [51], an attractive interaction in Chern metallic phase can
lead to a topological superconducting phase. This might have
phononic origins as has recently been seen in some transport
experiments in antimony based compounds [83]. Out of the
several possible instabilities, which one will dominate will
depend upon the material specific details of the band structure,
the strength and nature of the short-ranged electron-electron
correlation and electron-phonon interactions. Tuning mech-
anisms available due to the layered and cleavable nature of
the systems, though, make the situation promising, opening
up the door for experimental exploration. Using the substrate
effect, straining and gating as handles we envisage a rich
phase diagram to emerge in this class of compounds.
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APPENDIX A: LOW-ENERGY TIGHT-BINDING MODELS

The point group symmetry of the bilayer kagome lattice
(see Fig. 1) is D3d (see Table I). Given that the spin dependent
hopping in Eq. (2) does not mix the spin flavors we can still
use Sz =↑,↓ as a good quantum number.

Here, we present the symmetry analysis of the bands
for both λ = 0 and λ �= 0 separately for the tight-binding
Hamiltonians. When λ = 0, the little group at the � point
of Brillouin zone is D3d. From Table I, one finds the re-
ducible character vector of this group representation R� to be
(6, 0, 0, 0, 0, 2) which implies R� = A1g

⊕
Eg

⊕
A2u

⊕
Eu

implying two nondegenerate and two doubly degenerate states
at the � point. The little group of the K point includes the
transformations C3 and C′

2 which generate the discrete group
D3 (see Ref. [86]). The corresponding transformation matrices
can be read off from Table I and they together form a repre-
sentation RK of D3. The character vector for RK turns out to
be (6,0,0) implying that RK = A1

⊕
A2

⊕
2E. Therefore the

degeneracies in the spectrum at the K point is exactly the same
as that at the � point discussed above. The little group of the
M point is the Abelian group Ci and its reducible represen-
tation given in Table I RM , has (6,0) as its character vector.
Consequently, the spectrum at the M point is nondegenerate
with RM = 3Ag

⊕
3Au.

For λ �= 0, the point group symmetry of each spin sector
changes from D3d to S6 which only has one dimensional
irreducible representations (see Ref. [86]). The character
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FIG. 11. Mean-field ferromagnetism. For the bands presented
in Fig. 4, we plot the average magnetization per site (mz =
1/Ns

∑
i(ni↑ − ni↓)) against the strength of onsite Hubbard in-

teraction U/t for different values of electron filling per site pe

[Vi j = 0, see Eq. (3)]. Fully spin polarized state is realized for
U/t � 1.0.

vector of this representation at the � point is (6,0,0,0,0,0)
(see Table I) which means a completely nondegenerate spec-
trum. Similarly, the little group at the K point is C3 (see
Ref. [86]) which admits only one dimensional irreps, im-
plying a nondegenerate spectrum, with each irrep appearing
twice.

The change in the dimension of the irreps in the presence
of λ as compared to those in its absence is evident from the
dispersion at the � and the K points as shown in Fig. 4. We
note that the bands at every momentum point has an additional
two-fold degeneracy, which is guaranteed by a combination of
time reversal and inversion.

The inversion symmetry, however, may generally be absent
in an experimental realization because of the presence of a
substrate or an applied gate potential. When λ = 0, the resid-
ual point group symmetry of a given Sz sector is C3v (see, for
example, Ref. [86]). The reducible representation (see Table I)
at the �, has the character vector (6,0,2), implying the follow-
ing decomposition in terms of the irreducible representations
of C3v, 2A1

⊕
2E. The little groups at the K and the M points

are, respectively, C3 and C1, which are both Abelian. When
λ �= 0, the point group symmetry of the system reduces to C3

implying generically nondegenerate bands at all momenta in
the Brillouin zone. When both the Sz sectors are considered
such that time-reversal T with T2 = −1 is also present, the
band structure exhibits Kramer’s degeneracy.

APPENDIX B: MEAN-FIELD FERROMAGNETISM

A self-consistent mean-field analysis of the onsite repulsive
term [see Eq. (4)] for the free dispersion given in Fig. 4 results
in fully spin-polarized band at low energies for U/t � 1 (see
Fig. 11).

FIG. 12. Absence of SC in Chern metal. Variation of v1 (=
{vn}min ) for some representative values of V1, V2, and V3, showing
that when V1,V2,V3 > 0 the system does not host any vn < 0.

APPENDIX C: ABSENCE OF SUPERCONDUCTIVITY
WITH REPULSIVE INTERACTIONS FOR CHERN METAL

The quartic term in a many body Hamiltonian which de-
scribes the scattering of two fermion pairs, each with a zero
center-of-mass momentum, is relevant for the formation of
Cooper pairs. The zero-momentum scattering term is given
by

Hp =
∑

k,k′
s1,s2,s3,s4

Vk,s1,s2;k′,s3,s4 c†
ks1

c†
−ks2

c−k′s4 ck′s3 , (C1)

where k and k′ are momentum indices, s1(234) de-
note both the atomic sites within the unit cell and
also the spins. Vk,s1,s2;k′,s3,s4 , owing to fermionic statistics,
satisfies Vk,s1,s2;k′,s3,s4 = −V−k,s2,s1;k′,s3,s4 = −Vk,s1,s2;−k′,s4,s3 =
V−k,s2,s1;−k′,s4,s3 . Whether a zero-momentum pairing in any

FIG. 13. Berry curvature. Berry curvature distribution over the
hexagonal Brillouin zone for the C = 1 band at the Fermi energy in
Fig. 5(a).
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FIG. 14. Berry curvature. Berry curvature distribution over the
hexagonal Brillouin zone for the C = 2 band at the Fermi energy in
Fig. 5(b).

angular-momentum channel is favored can be found by rewrit-
ing Eq. (C1) as

Hp =
∑

k,k′
s1,s2,s3,s4

c†
ks1

c†
−ks2

Vk,s1,s2;k′,s3,s4 c−k′s4 ck′s3

≡
∑

n

vn	̂
†
n	̂n, (C2)

where vn is nth eigenvalue of matrix V . The numbers {vn}
denote the bound state energies of the nth zero momentum
fermion pair where 	n is given by

	̂n =
∑

k′,s3,s4

U†
n;k′,s3,s4

c−k′s4 ck′s3 , (C3)

such that U diagonalizes Eq. (C2). Under a self-consistent
Hartree-Fock, different pairing amplitudes 	n may take a
finite expectation value. When the Fermi surface is nearly
circular a superconducting instability in the nth channel is
expected if vn < 0 [87,88].

When such an analysis is performed for the ferromag-
netic Chern metallic band, for three kinds of repulsive
interactions: (i) V1: Intralayer intra-unit-cell nearest-neighbor
density-density interaction, (ii) V2: Intralayer inter-unit-cell
nearest-neighbor density-density interaction, and (iii) V3:
Interlayer intra-unit-cell nearest-neighbor density-density in-
teraction, we find no window in the parameter space for
(V1,V2,V3 > 0) when vn < 0 signaling a BCS state cannot be
realized within a self-consistent mean-field theory for purely
repulsive microscopic interactions. Variation of v1 (= {vn}min)
for some representative values of V1, V2 and V3 is shown in
Fig. 12.

APPENDIX D: FRACTIONAL CHERN INSULATOR

Here we present additional results pertaining to the FCI
states.

FCI 1/3. The Berry curvature over the hexagonal Brillouin
zone for the C = 1 band at the Fermi energy in Fig. 5(a) is
shown in Fig. 13.

FIG. 15. Degeneracy and momenta of quasihole states in Fig. 8.
The figure shows a classical ground state configuration for Nx ×
Ny = 3 × 7 system with Np = 4 particles when mapped to the ring
(see Appendix D for details). Each pink circle corresponds to a
unique single particle Bloch state in the first Brilluoin zone of the
lattice problem (P = Kx + NxKy) and a filled circle represents oc-
cupation by a particle. For the shown configuration, the total Bloch
momentum of the quasihole state is (Kx, Ky ) = (0, 2). A new config-
uration corresponding to another state in the low-energy manifold in
Fig. 8 can be generated by increasing the index (P) of each particle by
1. This can be repeated to generate configurations corresponding to
all the 21 states in the low-energy manifold of the quasihole spectrum
presented in Fig. 8.

FCI 1/5. The Berry curvature over the hexagonal Brillouin
zone for the C = 2 band at the Fermi energy in Fig. 5(b) is
shown in Fig. 14.

The generalized Pauli principle for FCI phases. The
number of topological (quasi)degenerate zero modes in the
many-body spectrum of a FCI phase and their respective
Bloch momentum can be obtained by an intricate mapping of
the lattice problem to an appropriate multicomponent contin-
uum quantum Hall system and then considering its thin torus
limit [71]. Eventually, one ends up solving a classical electro-
statics problem defined on a ring with NxNy lattice sites and
Np particles which repel each other by a pairwise interaction
decaying with the distance (along the ring) between them. The
sites on the ring are placed at an equal angular spacing of
2π/NxNy and are labeled by an index P ∈ {0, 1, . . . , NxNy −
1} such that every site on the ring is uniquely mapped to
a Bloch momentum (kx = 2πKx/Nx, ky = 2πKy/Ny) via P =
Kx + NxKy. The number of topological (quasi)degenerate zero
modes in the lattice problem is then equal to the number of
lowest energy (classical) configurations of the Np mutually
repelling particles on the ring and the corresponding Bloch
momentum is just the sum of the Bloch momenta of the in-
dividual particles in that configuration. Some deviations from
this prescription are possible and have been discussed in detail
in Ref. [71].
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It is straight forward to verify that this procedure does
correctly predict the degeneracy and the momenta of each
state in the low-energy quasidegenerate manifold of the 1/3
and 1/5 FCI states presented in Figs. 6(a) and 7(a). Moreover,

it also predicts the degeneracy and the momenta of each of
the 1/5 FCI quasihole states in the low-energy manifold of
the spectrum presented in Fig. 8. In this case, there is exactly
one state at each Bloch momentum point (see Fig. 15).
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