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Emergent QED3 from half-filled flat Chern bands
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Recently, two-dimensional Dirac materials patterned with a superlattice structure have emerged as a rich
platform for exploring correlated and topological quantum matter. In this paper, we propose that by subjecting
Dirac electrons on a particle-hole symmetric topological insulator (TI) surface to a periodic magnetic field with
triangular lattice symmetry, it is possible to realize a quantum critical phase of Nf = 3 Dirac fermion species
strongly coupled to an emergent gauge field, or 2+1-D quantum electrodynamics (QED3). We demonstrate
explicitly that the QED3 phase naturally arises from a Dirac composite fermion (CF) picture, where the periodic
magnetic field manifests as a periodic CF potential and transforms the CF Fermi surface into gapless Fermi
points. We further show that by breaking the particle-hole symmetry of the TI surface—either by doping or
by introducing a periodic electrostatic potential with zero mean—our quantum critical phase gives way to a
sequence of fractional Chern insulator phases. Our theory illustrates the rich menagerie of quantum phases
possible around half filling of a flat Chern band.

DOI: 10.1103/PhysRevB.108.205123

I. INTRODUCTION

The unprecedented tunability of two-dimensional (2D) van
der Waals materials has led to opportunities to explore unique
quantum phases of matter. In particular, a plethora of cor-
related and topological electron states have been found by
engineering 2D systems with a superlattice structure. Major
examples include moiré potentials established by stacking 2D
materials with a twist angle between layers or a lattice mis-
match [1–6], spatially varying strains [7,8], and buckling in
graphene sheets [9]. The superlattice patterning of these ma-
terials commonly provides a spatial modulation at the length
scale of 10 nm, which can give rise to flat bands hosting strong
interaction effects.

In the presence of Coulomb interactions, partially filled
flat Chern bands at odd-denominator filling fractions can
support fractional Chern insulators (FCIs) [10–16]. Like
ordinary fractional quantum Hall (FQH) phases, FCIs ex-
hibit a fractionally quantized Hall conductivity, topological
order, and fractional excitations, but enriched with the
symmetry of the periodic lattice. The search for FCIs
in 2D materials has garnered much recent experimental
attention [17,18].

Less explored is the case of flat Chern bands at half filling.
Ordinary Landau levels (LLs) in a uniform magnetic field are
experimentally observed to host a range of correlated phases
at half filling, depending on the LL index, n. These include the
composite Fermi liquid (CFL) (n = 0) [19,20], a non-Abelian
FQH state (n = 1) [21–24], and charge ordered states (higher
n) [25–30]. We are therefore driven to ask: Can topological
flat bands beyond LLs support additional types of quantum
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phases at half filling? If so, in what material platforms can
they be found?

In this paper, we demonstrate the emergence of an exotic
quantum critical phase in half-filled flat Chern bands, and we
propose a realistic material platform for its physical realiza-
tion. This phase can be described in terms of Nf = 3 species
of emergent Dirac fermions strongly interacting through a
dynamical U(1) gauge field or 2 + 1-D quantum electrody-
namics (QED3). As a strongly interacting conformal field
theory, many of the universal properties of QED3 are unknown
outside of large-Nf limits, and numerical methods [31–38]
have thus far made limited progress, making the possibility
of its physical realization all the more tantalizing.

We show that the quantum critical QED3 state can be real-
ized from a system of 2D Dirac electrons subject to a periodic
magnetic field with triangular lattice symmetry and two flux
quanta per unit cell. In the limit of a uniform magnetic field
and at charge neutrality, the n = 0 LL is half filled, and, in
the presence of Coulomb interactions, the ground state is a
CFL. When a periodic modulation in the magnetic field is in-
troduced, the composite fermions (CFs) experience a periodic
electric potential, leading to the formation of CF bands. By
solving the CF band structure at mean-field level, we find that
massless Dirac cones appear at three M points of the Brillouin
zone (BZ). For the case of two flux quanta per unit cell, these
emergent Dirac cones cross the Fermi level, i.e., the CF Fermi
surface is transformed into three CF Fermi points by periodic
field modulation. The low-energy physics of the resulting
quantum critical state is thus governed by Nf = 3 QED3
(see Fig. 1).

Crucial to our construction is the particle-hole symmetry of
the physical electrons at half filling of the Chern band, which
protects the emergent Dirac fermions of our QED3 phase from
becoming gapped. We also require the electronic Chern band
to be sufficiently flat: A large enough bandwidth will instead
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FIG. 1. The schematic setup: Topological insulator surface under
a periodic magnetic field, forming a triangular vortex lattice in our
case, which could arise from proximity to type-II superconductors.
The low-energy theory consists of three Dirac fermions interacting
with photons (QED3).

favor an ordinary Fermi liquid state at half filling. These two
conditions are simultaneously satisfied in 2D Dirac electron
systems at charge neutrality, such as topological insulator (TI)
surface states, subject to a periodic magnetic field.

We further show that when the electronic particle-hole
symmetry is broken with a periodic electrostatic potential, the
QED3 quantum critical phase gives way to FCI phases with
topological orders of ν = ±1/3 Laughlin states, consistent
with earlier studies on FCI phase transitions [39]. We also find
by doping away from half filling a Jain sequence of further
FCI phases. Dirac materials in a periodic magnetic field are
thus a simple and robust setup realizing both QED3 and FCI
phases from a half-filled flat Chern band.

II. SETUP

We begin by considering the TI surface in a uniform mag-
netic field. The surface of the TI supports a single Dirac
electron, �, with action

S� =
∫

t,x
i�̄(∂μ − iAμ)γ μ�, (1)

where Aμ is the background electromagnetic (EM) field,
γ μ = (σ z, iσ x, iσ y) are the Dirac gamma matrices, and we
take the Dirac electrons’ velocity to be v = 1. Throughout
the paper, we will use boldface to denote spatial vectors, as
well as the notation

∫
t,x ≡ ∫

dt d2x. We also work in units
of h̄ = c = kB = 1 unless otherwise noted. In the presence of
a uniform magnetic field, B0 = ∇ × A(0), A(0) = B0

2 (y,−x),
time-reversal symmetry (T ) is broken while particle-hole
symmetry (PH) [40] remains intact. Consequently, the Dirac
electrons form positive and negative-energy LLs. At charge
neutrality, the particle-hole symmetry PH (which exchanges
empty and filled states) guarantees that the n = 0 LL at zero
energy is exactly at half filling for any B0. Note that realistic
TI materials will break PH through a Zeeman term, gB0�̄�.
For the physics of emergent QED3 to be accessible without
fine-tuning, we will require PH to be exact and thus assume
g = 0.

It is well-known that in the presence of Coulomb interac-
tion, the half-filled n = 0 LL is a strongly correlated metallic
phase known as a CFL [19,20,41]. The existence of the CFL
can be explained using flux attachment [42–45], in which
each electron is transmuted into a CF via adiabatic attach-
ment of two flux quanta. Attaching flux screens the external
magnetic field completely, allowing the CFs to form a Fermi
surface coupled to a fluctuating U(1) gauge field. Although

the traditional flux attachment procedure breaks PH—one
must decide whether to attach flux to electrons or holes—Son
proposed a CFL theory [46] where PH is manifest:

Sψ =
∫

t,x

[
iψ̄ (∂μ − iaμ)γ μψ + 1

4π
Ada

]
. (2)

Here the CFs, ψ , are Dirac fermions coupled to a fluctuat-
ing U(1) gauge field, aμ, and we have defined the emergent
magnetic field, b∗ = ∇ × a. From the point of view of the
Dirac CFL, the physical electrons in the n = 0 LL are double
vortices of the emergent gauge field [47–54],

ρe = �†� ↔ 1

4π
b∗, Ji

e = �̄γ i� ↔ 1

4π
εi j e j, (3)

where ei = ∂iat − ∂t ai. Similarly, like in the well-known
boson-vortex duality [55–57], the Dirac CFs are vortices of
the physical magnetic field: at acts as a Lagrange multiplier
fixing the CF density, ρψ = ψ†ψ ,

ρψ = ψ†ψ = −1

2

B

2π
, (4)

meaning that a single CF corresponds to two flux quanta.
The CFL thus has a circular Fermi surface fixed by
the external magnetic field, with Fermi wave vector,
kF = √|4π ρψ | = √|B|. For a recent review of the physics
of the CFL in half-filled LLs and a comparison of the Dirac
CFL theory with the nonrelativistic flux attachment approach,
see Ref. [41].

Importantly, the microscopic PH symmetry of the half-
filled LL problem appears as a time-reversal symmetry of the
Dirac CFs [46], which feel no magnetic field. It acts on the
Dirac CF variables as

PH : ψ → −iσ yψ, (a0, ai ) → (a0,−ai ). (5)

For clarity below, we will denote this symmetry as TCF when
discussing its action in the context of the Dirac CF theory.

III. EMERGENT Nf = 3 QED3 FROM PERIODIC
MAGNETIC FIELD

We proceed to consider the case where the TI surface is
subject to a periodic magnetic field. One way such a setup
can be established is by placing TI film on top of a type-II
superconductor, where an external magnetic field, H , induces
an Abrikosov vortex lattice, which in turn periodically modu-
lates the magnetic field, B, felt by the TI. However, in such a
setup the flux per unit cell is fixed to the superconducting flux
quantum, h/2e, rather than the desired case of 2h/e. Alterna-
tively, a periodic magnetic field can be induced by an array
of micromagnets [58,59]. As shown by a recent study [60], in
Dirac electron systems under a periodic B field, there remains
a perfectly flat Chern band at zero energy, which leads to
competing FCI and Wigner crystal states at odd-denominator
filling fractions. Our paper studies the case of half filling,
which corresponds to charge neutrality. It is important to note
that we assume the particle-hole symmetry PH remains exact
even when the magnetic field is nonuniform.
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FIG. 2. The evolution of the CF Fermi surface at unit filling of
the periodic potential. As the strength of the periodic modulation,
|B1| is increased, the CF bands fold at the Brillouin zone edge, and
the original circular Fermi surface is deformed. When |B1|/|B0| ∼
O(1), three isolated Dirac cones emerge at the Fermi energy.

We now consider a magnetic field with both uniform and
spatially oscillating components:

B(x) = B0 + 2B1

6∑
n=1

cos (Qn · x). (6)

Here the oscillatory component, which is a two-dimensional
periodic function, defines a triangular lattice with lattice con-
stant a. Qn = 4π√

3a
(sin( π (n−1)

3 ), cos( π (n−1)
3 )), n = 1, . . . , 6,

are the reciprocal lattice vectors. The CF filling per triangular
lattice unit cell is equal to half the number of flux quanta per
unit cell, by Eq. (4).

In the Dirac CF variables, a slowly varying magnetic field
leads to a slowly varying CF density, ρψ (x) = −B(x)/4π .
Rather than implement this identity as a constraint, it is conve-
nient to instead enforce this relation on average by introducing
a scalar potential for the CFs of the same symmetry as the
magnetic field B(x):

SV = −
∫

t,x
VCF(x) ψ†ψ (t, x),

VCF(x) = μ0 + 2V1

6∑
n=1

cos (Qn · x). (7)

The coefficient, V1 ∝ �B0 B1/4π , �B0 = 1/
√

B0, are self-
consistently determined by enforcing Eq. (4) for the mean
density, 〈ρψ 〉 (see Appendix B).1 The full action for the CFs
we will consider is therefore the sum of Eq. (2) with SV . Next
we derive the low-energy, long-wavelength theory for the CFs.

The presence of the periodic potential VCF(x) leads to band
folding. When the periodic potential in Eq. (7) is made suffi-
ciently strong, B1/B0 ∼ O(1), the mean-field Dirac CF band
structure exhibits three Dirac cones connecting the first and
second bands at E > 0 (see Fig. 2). These Dirac cones are
degenerate and located at the M points of the BZ, consistent
with the C6 lattice rotation symmetry and the CF time-reversal
symmetry, TCF. This CF band structure is depicted in the top
panel of Fig. 3, which is obtained by solving the mean-field

1This procedure is valid by the equivalence of thermodynamic
ensembles: We have passed from the canonical to the grand canonical
formulation of the CF theory.

FIG. 3. The dispersion of the CFs under a periodic potential,
Eq. (7), with V1 = 2/(

√
3a). Top: When the electronic PH sym-

metry is enforced, three Dirac cones appear in the CF spectrum at
the M points of the BZ. At filling, f = 1, the chemical potential
(dashed line) crosses each of the Dirac points. Right: There are
three Dirac cones along the plotted trajectory at the Fermi energy.
Bottom: Introducing a commensurate, periodic scalar potential for
the electrons (magnetic field for the CFs) breaks PH and causes a
gap to open.

CF Hamiltonian numerically (see Appendix A). Of particu-
lar interest to us is the case of unit filling of the triangular
lattice, which we denote f = 1. In this case, there are two
flux quanta—hence a single CF—at each triangular lattice unit
cell. Consequently, the Fermi level of the CFs is exactly at the
Dirac points, i.e., the original CF Fermi surface is transformed
into three Fermi points by the periodic modulation of mag-
netic field. Reintroducing gauge fluctuations, the theory then
finds itself in an exotic quantum critical phase governed by
QED3 with Nf = 3 fermion species.

We now explicitly calculate the CF dispersion near the
BZ M points to leading order in the periodic potential
[61]. Without loss of generality, we focus on the points
±M1 = ±(0, 2π/(

√
3a)) and consider the mean-field CF

Dirac Hamiltonian obtained from the sum of Eqs. (2) and
(7), neglecting gauge fluctuations, 〈aμ〉 = 0. In the absence of
the periodic potential term, the eigenspinors of the CF Dirac
Hamiltonian about the M1 points are

ξ+(M1 + δk) = 1√
2

(
1,−e−i

√
3a

2π
δkx

)
, (8)

ξ−(−M1 + δk) = 1√
2

(
1, ei

√
3a

2π
δkx

)
(9)

for small deviations of δk = (δkx, δky ) from ±M1. The peri-
odic potential, Eqs. (7), leads to scattering between the states,
ξ±, as their momenta differ by Q1. In momentum space,
the term which connects these points is V1 ψ†(k) ψ (k + Q1).
Since the unperturbed eigenspinors of Dirac CFs at ±M1 form
a Kramers pair, the scattering matrix element between them
vanishes. In the vicinity of the M1 point, the scattering matrix
element depends linearly on δk as

V1 ξ
†
+(δk) ξ−(δk) = i

√
3V1a

2π
δkx. (10)

The CF dispersion near the M1 point is reconstructed due to
scattering off of the periodic potential. If we express a generic
spinor χ1(δk) near M1 in the basis of v± = (ξ+ ± ξ−)/

√
2, we
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find a Dirac Hamiltonian,

H1 = δky χ
†
1 τ xχ1 +

√
3V1a

2π
δkx χ

†
1 τ yχ1 + · · · , (11)

where τ x,y,z are the Pauli matrices in the v± basis. The corre-
sponding results for the Dirac cones near the M2 and M3 points
can be obtained using this result by acting with C3 rotations.
Notice that the band velocity is anisotropic and thus changes
by a C3 rotation between each M point.

Our mean-field result can be substantiated by general con-
siderations based on symmetry (further discussion can be
found in Appendix C). Because the mean-field Hamiltonian
involves a single flavor of Dirac CF protected by TCF symme-
try with T 2

CF = −I, the CF energy spectrum should be gapless
and the total number of degenerate Dirac cones must be odd
(as in the ordinary case of TI surface states in the presence of
time reversal symmetry). By Kramers theorem, the existence
of a Dirac point at momentum k implies the presence of a
degenerate state at −k. This leads to fermion doubling unless
the Dirac cone appears only at BZ points that are left invariant
under TCF, i.e., points satisfying k = −k mod Qn. For the
triangular lattice, such points of the BZ are the � point and
the three M points. In particular, the C3 symmetry relating
the M points implies that Dirac cones at the M points must
all be degenerate. It is thus natural for the Dirac CF system
discussed here to form three Dirac cones at the M points.

Introducing gauge fluctuations to the mean-field result,
Eq. (11), one obtains at f = 1 three Dirac fermions coupled
to the U(1) gauge field, aμ. The band velocities of these
Dirac fermions are anisotropic, each differing by a C3 rotation.
However, the large-Nf QED3 fixed point is stable to both ve-
locity anisotropy and differences in the velocity of each Dirac
species [62]. We therefore reasonably expect that the long
wavelength theory has emergent Lorentz invariance, and each
χI fermion has the same velocity v ≡ 1. Hence, Nf = 3 QED3
arises as an effective theory at length scales much greater than
the period of the oscillatory magnetic field a,

Seff =
∫

t,x

[
3∑

I=1

iχ̄I (∂μ − iaμ)γ μχI + 1

4π
A′da

]
, (12)

where again γ μ = (τ z, iτ x, iτ y), and we define A′ ≡ Atotal − A
to be a background probe field on top of the original back-
ground field, Aμ, that produces B(x). We omit the Maxwell
term for a, which is irrelevant in the renormalization group
sense (but is necessary as a UV regulator). Notice that what
started as a discrete C3 symmetry in the UV has been enhanced
to an emergent SU(3) flavor symmetry, χI → UIJχJ , at low
energies.2 See Appendices C and D for a discussion of how
discrete symmetries such as parity and time-reversal act in the
effective Nf = 3 QED3 theory.

Furthermore, our mean-field arguments do not depend on
the detailed choice of density-density interaction potential,
Vint (ρe), for the Dirac electrons, which simply maps to a flux-
flux interaction, Vint (b∗), in the dual theory. In particular, we

2There is a possibility the theory in Eq. (12) may be unstable
to dynamical mass generation, leading to a trivial state with finite
correlation length. See the discussion in Ref. [63] for a review.

note that instantaneous Coulomb interactions are expected to
be marginally irrelevant at the QED3 fixed point [64], while
a Lorentz invariant generalization of Coulomb interactions
is exactly marginal and leads to a line of fixed points with
self-dual properties [51,53,65,66].

IV. QED3 AS A FCI PLATEAU TRANSITION

In ordinary quantum Hall systems, incompressible FQH
phases are achieved when the filling is tuned away from the
CFL state at ν = 1/2, with Hall conductivity set by the filling.
In striking contrast, here we show that incompressible states
with fractional Hall conductivity, known as FCI states, can be
induced fixed at half-filling for the electronic Chern band by
introducing a periodic chemical potential.

Our QED3 state is protected by the electronic PH sym-
metry. When PH is broken, this critical state can become
unstable and transition into a new state. By introducing a
periodic electrostatic potential to break PH, we find the QED3
state gives way to FCI phases, while maintaining half filling
of the electronic Chern band. We consider a potential that is
commensurate with the vortex lattice,

Ve(x) = 2μ1

6∑
n=1

cos(Qn · x), (13)

which has zero spatial mean. It generates the singlet mass
operator, m�singlet = m

∑
I χ̄IχI , with sgn(m) = sgn(μ1).

From the fermion-vortex duality, Eqs. (3), we see that
Ve(x) sources a periodic magnetic field felt by the CFs, b∗(x),
which we choose to write in terms of a vector potential,
ai(x) = εi j∂ jφ(x), where φ(x) is a bounded, real-valued func-
tion with the same periodicity as a. We find numerically in the
lower panel of Fig. 3 that the combination of periodic potential
and periodic gauge field opens a gap in the mean-field CF
dispersion. In other words, the emergent Dirac fermion in our
QED3 state now acquires a finite mass.

The origin of gap opening can also be understood by a
perturbative analysis. We proceed analogously to the argu-
ments leading to Eq. (11). For momenta near M1, the relevant
scattering process induced by the periodic gauge field has
wave vectors Q1, Q4 = −Q1. Denoting the amplitude of φ(x)
by � and using the matrix element ξ+(0)γ tγ xξ−(0) = i, we
find that the mean-field Hamiltonian contains a Dirac mass
term,

H′
1 = ax(Q1) ψ†(M1)γ xψ (−M1) + H.c. (14)

∝ π�

a
χ

†
1 τ zχ1, (15)

where χ1 was defined above Eq. (11) and sgn(�) = sgn(μ1).
The analogous calculation can be readily performed for the
other two species, yielding a mass, m

∑
I χ̄IχI , sgn(m) =

sgn(μ1).
When the χI fermions become massive, one obtains a CF

Chern insulator with Chern number 3 sgn(m)/2. Integrating
out the fermions and gauge fluctuations, we see that the peri-
odic scalar potential in Eq. (13) tunes an FCI transition across
which the Hall conductivity changes by

�σxy = 1

3

e2

h
, (16)
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with the two topological orders on each side of the tran-
sition corresponding to the ν = ±1/3 Laughlin states (see
Appendix E).

It is also of interest to consider scalar potentials that break
the C6 lattice symmetry by having different amplitudes, μ

(n)
1 ,

for each Qn vector. Such deformations generically introduce
an octet of mass operators of the form �b

octet = ∑
I,J χ̄I t b

IJ χJ ,
where t b, b = 1, . . . , 8, are the generators of SU(3). These
operators can tune the theory to (1) the FCI states described
above, as well as (2) a Chern insulator state with integer
Hall response occurring when one of the χI fermions receives
a mass with opposite sign from the other two, and, finally,
(3) a PH-preserving state where one of the emergent Dirac
fermions is gapless and the remaining two are gapped with
opposite sign.

V. DOPING QED3: FCI JAIN SEQUENCE

We now consider finite doping from charge neutrality—
which breaks the electronic PH—and varying B0 away from
the case of two flux per unit cell. We find that our emergent
QED3 theory gives way to a family of FCI states, in analogy
with how the CFL is a parent state for the celebrated Jain
sequence of observed Abelian FQH phases. At finite doping
ρe, the χI fermions feel a uniform emergent magnetic field,
b∗, and form their own LLs (including the zeroth LL). When
an integer number of these LLs are completely filled, an in-
compressible FCI appears. This occurs when the χI fermions
are at filling:

νχ = 2π
∑

I

〈χ†
I χI〉
b∗

= 3

(
q − 1

2

)
, q ∈ Z. (17)

Here the 1/2 term comes from the zeroth LL of the emer-
gent Dirac fermions in our QED3 state, and the factor of 3
accounts for the three flavors. From Eq. (12), we observe that
the emergent Dirac fermion density is set by the deviation
from B0, denoted B′ = εi j∂iA′

j = −(4π )
∑

I χ
†
I χI , and that

the background charge density leads to an emergent magnetic
field, ρe = b∗/4π . Combining these relations with Eq. (17),
we see by the Streda formula that the resulting incompressible
FCI phase has Hall conductivity:

σxy = 2π
dρe

dB′ = − 1

12q − 6

e2

h
. (18)

Here σxy is the Hall conductivity associated with a single
TI surface, of which the contribution from the half-filled
Chern band is σ 0

xy = σxy + 1/2 in units of e2/h (because
Chern bands at negative energies contribute −1/2). Compar-
ing σ 0

xy = (3q − 2)/(6q − 3) with the Jain sequence, σ Jain
xy =

p/(2p + 1), we find that each of these fractions lies on the
principal Jain sequence and has the same topological order
as their associated Jain states. Importantly, only the Jain
sequence states satisfying p = 3q − 2 appear on the FCI se-
quence in Eq. (18). One therefore expects to measure a Landau
fan of FCI states in a Chern band near half filling, with slopes
given by Eq. (18), as shown in Fig. 4.

FIG. 4. Two ways to access FCI phases. Left: By tuning a pe-
riodic scalar potential with strength μ1 while remaining fixed at
half filling, the emergent Dirac fermions become massive, leading
to FCI states. Note that in this figure, the Hall conductivity is that
which would be measured on a single TI surface. Right: By doping
away from Nf = 3 QED3 with a uniform electron density, ρe, and
magnetic field B′ = B − B0. In this case, the emergent Nf = 3 QED3

phase gives way to a sequence of incompressible FCI states. The
magenta segment on the B axis denotes the CFL phase. The green
dot corresponds to the case of two flux quanta per unit cell, where
the quantum critical QED3 phase appears.

VI. UNIVERSAL PROPERTIES OF THE EMERGENT
QED3 STATE

The quantum critical Nf = 3 QED3 phase is characterized
by a range of universal observable properties which contrast
the uniform CFL metal occurring in the absence of a periodic
magnetic field, B1 = 0. In this section, we describe several of
the most prominent such properties.

Among the most basic universal properties of the Nf =
3 QED3 theory in Eq. (12) are the scaling dimensions of the
mass operators, denoted [�singlet] and [�octet], which deter-
mine the divergence of the correlation length as the transition
is crossed. For example, tuning the FCI transition with a peri-
odic scalar potential will lead to a diverging correlation length
exponent, ξ ∼ (μ1)−ν , with ν = 1/(3 − [�singlet]). The values
of [�singlet] and [�octet] can be calculated in the large-Nf ex-
pansion [62,67–69], but the validity of extending these results
to small Nf is unclear. Were one to establish an experimental
or numerical realization of our setup, it could be possible to
measure these exponents, either directly from the correlation
functions of the mass operators in numerics or by measuring
the scaling of the DC conductivity, σxx ∼ f (ω/T, μ1/T νz )
with z = 1 [70].

The DC conductivity of quantum critical states in 2D is
another essential piece of universal data. Because the EM
current of the theory in Eq. (12) is the emergent electric field,
Ji = εi je j/4π , ei = ∂iat − ∂t ai, one obtains for a rotationally
invariant system,

σ

(
ω

T

)
= iω

(4π )2
�−1

(
ω

T

)
, (19)

where �xx = �yy ≡ � is the polarization of the emergent
gauge field. Both the DC (ω/T → 0) and optical (T/ω → 0)
conductivities are universal numbers of O(e2/h), but they do
not necessarily take the same value [71]. This is in contrast
to the Dirac CFL metal at B1 = 0, where the DC conductivity
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should be set by disorder and is much smaller than e2/h in
sufficiently clean systems [20].

The universal conductivity of QED3 can again be calcu-
lated in the large-Nf limit, which gives [72]

σ

(
ω

T
→ 0

)
→ ∞, σ

(
T

ω
→ 0

)
= 2

πNf

e2

h
, (20)

suggesting that in the clean limit the theory may be a
perfect conductor with diverging DC conductivity and van-
ishing density of states. Note that to obtain this result,
one computes the resistivity in the large-Nf limit, using
�(ω, q = 0) = iNf ω( 1

16 + O(N−1
f )) (for T = 0), and then in-

verts the result to obtain the conductivity. This is why the
leading contribution to the conductivity goes as 1/Nf .

Similarly, the electronic compressibility is given by the
correlator of the emergent magnetic field, since ρe = b∗/4π .
Because of the scale invariance of Nf = 3 QED3, the static
compressibility should vanish linearly as T → 0, κ (T ) ∼
T . This is in contrast to the CFL phase, which has finite
compressibility as T → 0. Additionally, the heat capacity of
QED3 at large Nf has the form C ∼ T 2+η, η ∼ O(1/Nf ),
whereas for the CFL metal the heat capacity should, in gen-
eral, exhibit a distinct power law, e.g., C ∼ T 2/3 in systems
with short-ranged interactions and C ∼ T log T for systems
with long-ranged 1/r Coulomb interactions.

We finally comment that truly realistic systems have
quenched disorder, which will cause QED3 theories to run to
a new fixed point governed by an interplay of disorder and
interactions [64,72–75]. In the Nf = 3 theory, PH-symmetric
disorder (a random magnetic field component for the elec-
trons) is exactly marginal, leading to a line of fixed points
with varying dynamical critical exponent, z > 1. For generic
disorder breaking PH, the theory runs to strong disorder and
gives way to diffusion (z = 2), leading to a quantum critical
point governed by a gauged nonlinear sigma model (NLSM)
[76,77], which at mean-field level resembles Pruisken’s the-
ory of the IQH transition [78,79]. Determining the universal
properties of NLSMs of this type remains an important open
problem.

VII. DISCUSSION

Starting with a TI surface in a periodic magnetic field,
we have demonstrated that half-filled LLs of Dirac electrons
in spatially periodic magnetic fields can give rise to exotic
quantum critical states—namely, Nf = 3 QED3—without any
fine-tuning. This critical state is protected by the particle-hole
symmetry of the Dirac electrons at charge neutrality.

Although exact particle-hole symmetry is necessary to
reach the quantum critical QED3 state without fine-tuning,
realistic TI films break particle-hole symmetry at finite field
due to the presence of a nonvanishing Zeeman term. One
may therefore naturally expect that this term gaps the emer-
gent Dirac cones and results in the appearance of a gapped
state, as opposed to a quantum critical phase. However, if
the breaking of particle-hole symmetry is weak, this gap may
be quite small, and thus the physics of the quantum critical
QED3 phase may still be accessible with fine-tuning of ex-
ternal fields. We leave the detailed development of material
realizations to future work.

Our paper establishes possibilities for strongly correlated
gapless states at half filling of Chern bands that may be
applicable in even further contexts. Indeed, an emergent
particle-hole symmetry may be found in the growing land-
scape of Chern band systems at half filling, as occurs in
the case in half-filled LLs at high magnetic fields. Thus, the
exotic quantum critical physics described in this paper may
be a more general feature of half-filled Chern bands. Speaking
more broadly, half-filled Chern bands provide ample opportu-
nities for realizing unique quantum states of matter and call
for much further study.
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APPENDIX A: MEAN FIELD CF BAND STRUCTURE

Here we describe the numerical calculation of the mean-
field CF band structure in the presence of a periodic
modulation, Eq. (6). A more complete depiction of the band

FIG. 5. The dispersion of the CFs under a periodic poten-
tial, Eqs. (7), with V1 = 2/(

√
3a) showing more bands and Dirac

fermions at M, K points. Physical settings are identical to main text
Fig. 3.

205123-6



EMERGENT QED3 FROM HALF-FILLED FLAT CHERN … PHYSICAL REVIEW B 108, 205123 (2023)

FIG. 6. (a) The dispersion of CFs under exact diagonalization when B1 is small compared with B0. The dashed line indicates Fermi energy
that crosses bands, creating CF particle and hole pockets plotted in Fig. 2(a). (b) An illustration of the integration in Eq. (B8) near a particular
intersection point between circular Fermi surface and the Brillouin zone. The red shade denotes momenta p’s which scatter to p − Q1 and give
nonzero contribution to the integral.

structure is provided in Fig. 5. After mapping to the Dirac
CF picture, one has a Dirac cone lying at the � point below
the Fermi energy. As described in the main text, the periodic
magnetic field can be viewed as a periodic CF chemical poten-
tial. Thus, at leading order, the periodic magnetic field scatters
the CFs with a momentum difference of the reciprocal super-
lattice vectors, Qn. In momentum space, the single-particle
Hamiltonian is

HCF =
∫

d2 p ψ̄ (p) (γ i pi ) ψ (p) + V1

6∑
n=1

ψ†(p)ψ (p + Qn).

(A1)

For a particular p in the first BZ, the scattering process
involves states with momenta p, p + Qn, p + 2Qn · · · and we
take the momentum cutoff to p + 3Qn for the numerical diag-
onalization. Figure 6(a) shows a dispersion for small B1 which
for CFs deforms the circular Fermi surface into particle/hole
pockets.

When solving for the mean field of CFs under an inter-
nal magnetic field b∗ from chemical potential modulation on
physical electrons, we take

ai = εi j∂ jφ(x), φ(x) = φ0

6∑
n=1

cos(Qn · x). (A2)

The vector potential a thus has nontrivial Fourier compo-
nent at reciprocal lattice vectors ai(Qk ) = iεi jQk, jφ0 where
k = 1 · · · 6, i, j = x, y. This connects CF states with the mo-
mentum difference of Qk , i.e., resulting in additional terms:

Ha =
6∑

n=1

ai(Qk )ψ pγ
iψp+Qn

. (A3)

APPENDIX B: PERIODIC POTENTIAL OF CFS FROM
PERIODIC MAGNETIC FIELD OF PHYSICAL

ELECTRONS

To perform our mean-field analysis, it was necessary to
pass to a CF description with fixed chemical potential rather
than fixed density (i.e., pass from the canonical to the grand
canonical ensemble). Here we describe how to calculate the
profile of the needed CF chemical potential, VCF(x) in Eqs. (7),
induced by a periodic modulation in the magnetic field.
From dimensional analysis, it is natural to guess the leading
behavior,

|V1| ∼ |B1|√|B0|
+ · · · , (B1)

where V1 is defined in Eqs. (7) as the amplitude of the oscil-
lating part of the CF chemical potential:

VCF(x) = μ0 + V1

∑
n=1,...,6

eiQn·x. (B2)

Indeed, Eq. (B1) makes physical sense—the quantity has di-
mensions of energy and vanishes as B1 → 0 (the periodic
potential turns off) or B0 → ∞ (the periodic modulation is
small on the scale of the Fermi wave vector).

The proportionality coefficient in Eq. (B1) can be deter-
mined by enforcing self-consistently,

〈ψ†ψ (x)〉VCF (x) = B(x)

4π
, (B3)

working power by power in B1/B0. Although this perturbative
approximation may not hold for the situation of physical in-
terest, |B0| ∼ |B1|, we expect it to give a reasonable estimate
for the relationship between B1 and V1 (we emphasize that
the spatial periods of V1 and B1 are identical, independent of
any perturbative approximation). Wick rotating to imaginary
time, t = −iτ , we single out the Qn Fourier components of
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the density one-point function,

〈ψ†ψ (Qn)〉 = 1

2π

∫
d2x Tr[Gψ†ψ (x, x, τ → 0)]eiQn·x

= B(Qn)

4π
,

Gψ†ψ (x, x, iω) = (iω + iγ0γ
i∂i + VCF(x))−1. (B4)

In the regime where |V1| � |μ0|, i.e., B1 � B0, we can ex-
pand Eq. (B4) with a small parameter V1

μ0
:

Gψ†ψ (x, iω) = G0 + δG = G0 − G0(VCF(x) − μ0)G0 + · · · ,

G0 = (iω + iγ0γ
i∂i + μ0)−1. (B5)

Keeping only the leading (one-loop) contribution, we obtain
for the oscillating part, δG:

δG = −
∫

d2 pdω Tr[G0(p, iω)V1G0(p+ Qn, iω)] = B1(Qn)

4π
.

(B6)

We find it convenient to express the Green’s function
in the eigenenergy basis for each momentum p, rewrit-
ing G0(p, iω) = P(p)(iω + |p| + μ0)−1 + (1 − P(p))(iω −
|p| + μ0)−1 in terms of the projection operator, P(p), that
projects the Dirac spinor onto the positive energy band. The
frequency integral has the general form∫

dω (iω + ε1)−1(iω + ε2)−1 = 1 − �(−ε1ε2)
1

|ε1 − ε2| .

(B7)

Here �(X ) is the Heaviside step function, which tells us that
the negative energy states (well below the chemical poten-
tial) do not contribute. Furthermore, for states with positive
energy, we observe that only when p and p + Qn are above
and below the Fermi surface will the integral in Eq. (B6) be
nonzero. The dominant contribution comes when the energies
at momenta p, p + Qn are close. For the specific Qn for the
hexagonal BZ, one concludes that the integral is most singular
at the momenta where the original circular Fermi surface (for
integer filling, i.e., with the same area as the first BZ) inter-
sects the hexagonal BZ. Linearizing the deviation from one
intersection point as δp, we have for the integral in Eq. (B6)
[see Fig. 6(b)]∫

d (δp)d (δp‖)
ξp,p+Qn

v⊥δp + v‖δp‖
V1 = B1(Qn)

4π
, (B8)

where ξp,p+Qn
= Tr[P(p)P(p + Qn)] and δp‖ is the mo-

mentum projected along Qn (not to be confused with the
momentum along the Fermi surface). The above integral is
regular and can be calculated numerically. However, since
the regime of interest corresponds to the case B1/B0,V1/V0 ∼
O(1), we do not expect the final coefficient, C ∼ O(1) to be
physically meaningful. We therefore confirm the expectation
from dimensional analysis and estimate

C
√

B0 V1 = B1(Qn)

4π
, (B9)

where the factor
√

B0 comes in from the |Qn| dependence
on the unit cell size and hence B0, given that unit cell

size S satisfies B0S = 4π . We have |Qn| ∝ √
B0 and the

expression Eq. (B8) scales as |Qn| ∼ √
B0. The above con-

clusion should be modified quantitatively in the regime where
B1 ∼ B0 that QED3 emerges, where one does not have a
controlled way for calculation. The scaling and relation be-
tween V1, B1 remain true in this regime due to dimensional
analysis.

APPENDIX C: POSITION OF THE EMERGENT
CF DIRAC CONES

We show that the emergent Dirac cones for CFs are pinned
at certain high-symmetry points—including Mi, K (K ′) at the
BZ edge and � at the BZ center.

Two threads of arguments are presented: From the anomaly
of the CFs, i.e., parity anomaly in PH � U (1)ψ , at mean-
field level for a fixed energy, the spectrum has to be either
gapless or possess an odd number of Dirac cones to match
the anomaly. For the Dirac cone case, note that PH sends
momenta k → −k due to its antiunitary action. Hence, gener-
ically, the Dirac cones come in pairs, except at high-symmetry
point Mi’s since ±Mi differ by a reciprocal lattice vector and
one could have an odd number of Dirac cones pinned at Mi’s.
Another possibility is a single Dirac cone at �, which is PH
invariant. For filling 1 for CFs focused in the main text, we
have the case for Dirac cones emerging at Mi’s.

Another argument follows from symmetry of the CF ac-
tion: PH leaves Mi, �’s invariant and squares to −1. Hence
there is a Kramers degeneracy at Mi, �’s.

To see the appearance of Dirac cones at K, K̃ = −K points,
which in our case occurs between the second and third Bloch
bands in energy (along with the Dirac cone at � to cancel
the parity anomaly), we consider two relevant symmetries
C3,PH · P , with the action on the CFs

C3 : ψ (r) → e−iσ z π
3 ψ (C3(r)),

PH · P : ψ → σ zψ. (C1)

We show that acting on the eigenstates with momenta K and
its C3 equivalents K ′, K ′′, the two symmetries do not com-
mute, which implies degeneracy. The Bloch wave functions
with positive energy for the CFL action Eq. (2) are taken
to be

ψK : (1, eiθ )T , ψK ′ : C3(ψK ) = (e−2iθ , ei3θ )T ,

ψK ′′ : −C−1
3 (ψK ) = (e−4iθ , ei5θ )T . (C2)

Under such basis, the transformation matrix for C3,PH · P
reads

C3 :

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠,

PH · P :

⎛
⎝ 0 e2iθ 0

e2iθ 0 0
0 0 −e2iθ

⎞
⎠. (C3)

which do not commute. Hence the degeneracy at K, K̃ = −K
are enforced.
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APPENDIX D: SYMMETRY ACTION
ON THE EMERGENT DIRAC CONES

Here we specify how different symmetries act on the emer-
gent Dirac fermions, χI , I = 1, 2, 3, of the emergent QED3
theory. We start with the lattice translations and C3 rotations,

Ti : χI → eiMI ·x χI ,

C3 : χI → eiγ t π
3 χ(I+1) mod 3. (D1)

Here MI are the reciprocal lattice vectors corresponding to the
three M points. As described in the main text, at long wave-
lengths the C3 rotation symmetry is enhanced to an emergent
SU(3) flavor symmetry.

The discrete symmetries of most interest to us are the
antiunitary (electronic) particle-hole and parity symmetries,
which we denote CT (the product of charge conjugation and
time-reversal) and CP ,

CT : χI → −iτ yχI (−t, x), (a0, ai ) → (a0,−ai )

CP : χI → τ xχs(I )(t,−x, y), (a0, ai ) → (a0,−ax, ay),

(D2)

where s(I ) permutes the Dirac fermion species as s(1) = 1,

s(I = 2, 3) = 5 − I . The emergent Nf = 3 QED3 theory is
invariant under these symmetries. Both are broken by the
introduction of a periodic scalar potential, i.e., the Dirac mass
operator.

APPENDIX E: TOPOLOGICAL ORDERS
OF THE FCI STATES

Here we consider the topological orders of the FCI states
considered in the main text. This requires introducing an aux-
iliary gauge field, bμ, to the Nf = 3 QED3 theory such that all
Chern-Simons terms are properly quantized and the theory is
gauge invariant:

S =
∫

t,x

3∑
I=1

iχ̄I (∂μ − iaμ)γ μχI − 1

8π
ada − 2

4π
bdb

+ 1

2π
bd (a + A′) − 1

8π
A′dA′. (E1)

Note here that aμ is a spinc connection, while bμ is an or-
dinary U(1) connection. See, e.g., Refs. [49,80] for a more
detailed discussion of the difference between spinc and U(1)
connections. For our needs, the only important consequence
of this distinction is that anyons associated with aμ will have
their statistics shifted by π , since spinc connections couple to
fermions. Note also that we continue to consider the theory
on the surface of a TI, the bulk of which gives rise to the final
A′dA′/8π term.

One can easily recover the action discussed in the main
text, Eq. (12), by integrating out bμ, meaning that the local
physics of the two theories is equivalent. However, unlike
Eq. (12), this theory is gauge invariant on any manifold. This
is crucial for correctly diagnosing the topological order on
integrating out the χI fields deep in a FCI phase.

We begin by considering the effect of a singlet mass
term, Lmass = −m

∑
I χ̄IχI , which is generated by the pe-

riodic scalar potential in Eq. (13). This deformation causes

the χI fermions to form Chern insulators, each with Chern
number sgn(m)/2. The resulting state is a FCI described by
the topological quantum field theory (TQFT) with Lagrangian

LFCI = 3 sgn(m) − 1

2

1

4π
ada − 2

4π
bdb

+ 1

2π
bd (a + A′) − 1

8π
A′dA′. (E2)

The Hall conductivity of this state can be calculated by inte-
grating out both gauge fields,

Lresponse =
(

1

2
− sgn(m)

6

)
1

4π
A′dA′ − 1

8π
A′dA′, (E3)

where we have separated out the bulk TI contribution. Indeed,
the first term has coefficient 1/3 (m > 0) or 2/3 (m < 0),
suggesting that these states have the topological order of the
ν = ±1/3 Laughlin states. We can furthermore calculate the
ground-state degeneracy on the torus, which is | det K| = 3,
where K is the (3 sgn(m)/2 − 1/2,−2, 1) K matrix corre-
sponding to Eq. (E2), in agreement with this expectation.

The equivalence can be established more concretely at the
level of the TQFT. We start with the case m > 0. In this case,
the first term in Eq. (E2) is a trivial TQFT, ada/4π . Indeed,
in this case we can integrate out a in a gauge invariant way to
obtain

Lm>0 = − 3

4π
bdb + 1

2π
bdA′ − 1

8π
A′dA′. (E4)

This is of course the usual Laughlin U(1)−3 state, with the
same charge-1/3 anyonic quasiparticles as the usual Laughlin
FQH state. Notice that the fluctuating gauge field here is an
ordinary U(1) connection, as the spinc connection has been
eliminated.

We now consider the case of m < 0. Here we cannot im-
mediately integrate out aμ, but we can nevertheless argue its
equivalence to a Laughlin state. We start by using a trick to
simplify the TQFT (which in this case incorporates the same
physics as the more rigorous notion of level-rank duality;
see Refs. [53,80] for an introduction accessible to condensed
matter physicists). We start by introducing a background
CF world line, jμf , coupling to aμ. Because jμf describes a
fermion, we can use flux attachment to rewrite it in terms of a
bosonic world-line variable, Jμ, with a single flux attached,

jμf aμ → Jμ βμ + 1

4π
(β + a)d (β + a), (E5)

where βμ is a new U(1) gauge field implementing the flux
attachment. Its role is to explicitly implement the aforemen-
tioned shift of the anyon statistics by π associated with the fact
that aμ is a spinc connection. Therefore, rather than working
with a TQFT where one probes with fermionic lines, we can
equivalently work with a different representation of the TQFT
where all the probes are bosonic. We therefore arrive at an
equivalent TQFT,

Lm<0 = 1

4π
βdβ + 1

2π
βda − 1

4π
ada − 2

4π
bdb

+ 1

2π
bd (a + A′) − 1

8π
A′dA′, (E6)
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where we have dropped the dependence on the probe, Jμ. Now
again the theory involves a trivial TQFT for aμ, and we can
integrate it out in the same way as before to obtain

Lm<0 = 2

4π
βdβ + 1

2π
bd (β + A′) − 1

4π
bdb − 1

8π
A′dA′,

(E7)

which, incidentally, is the TQFT we would have found had we
invoked the level-rank duality between U(1)−2 (with a spinc
connection) and U(1)2 (with an ordinary U(1) connection).
We can integrate out bμ to obtain the properly quantized,
single-component TQFT:

Lm<0 = 3

4π
βdβ + 1

2π
βdA′ + 1

8π
A′dA′. (E8)

From here, one can easily confirm that this theory has the
correct Hall conductivity and ground-state degeneracy. We
therefore observe that the m < 0 state is equivalent to a U(1)3

TQFT, which is the particle-hole conjugate of the U(1)−3 state
found for m > 0.

In the case of the FCI sequence accessed by filling q ∈ Z
LLs of the χI fermions, the TQFT one obtains is

LFCI Jain = 3q − 2

4π
ada − 2

4π
bdb

+ 1

2π
bd (a + A′) − 1

8π
A′dA′. (E9)

Note that the q = 0 and q = 1 states are the same as the
states we found by turning on mass operators with m < 0
and m > 0, respectively. This general sequence of states have
K matrices that each correspond to a state on the principal
Jain sequence. Indeed, each Jain state can be described by a
2×2 K-matrix with label (k,−2, 1), k ∈ Z, where the gauge
field with level k is a spinc connection (i.e., couples to CFs).
The anyon content of each of these states can be found dis-
cussed in numerous references, e.g., Refs. [45,81].
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