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Exciton-spin interactions in antiferromagnetic charge-transfer insulators

Tatsuya Kaneko,1 Yuta Murakami ,2 Denis Golež,3,4 Zhiyuan Sun,5 and Andrew J. Millis6,7

1Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
2RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan

3Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
4Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

5State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics,
Tsinghua University, Beijing 100084, China

6Department of Physics, Columbia University, New York, New York 10027, USA
7Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA

(Received 7 August 2023; revised 4 October 2023; accepted 17 October 2023; published 13 November 2023)

We derive exciton-spin interactions from a microscopic correlated model that captures important aspects of
the physics of charge-transfer (CT) insulators to address magnetism associated with exciton creation. We present
a minimal model consisting of coupled clusters of transition metal d and ligand p orbitals that captures the
essential features of the local atomic and electronic structure. First, we identify the lowest-energy state and
optically allowed excited states within a cluster by applying the molecular orbital picture to the ligand p orbitals.
Then, we derive the effective interactions between two clusters mediated by intercluster hoppings, which include
exciton-spin couplings. The interplay of the correlations and the spatial structure of the CT exciton leads to
strong magnetic exchange couplings with spatial anisotropy. Finally, we calculate an optical excitation spectrum
in our effective model to obtain insights into magnetic sidebands optically observed in magnetic materials. We
demonstrate that the spin-flip excitation due to the strongly enhanced local spin interactions around the exciton
gives rise to the magnetic sidebands.
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I. INTRODUCTION

An exciton is a bound electron-hole pair, typically exist-
ing as an excited state of an insulator, at an energy lower
than the single-particle band gap. Recent dramatic progress
in the synthesis of van der Waals (vdW) materials and their
heterostructures has raised advanced issues in the study of
excitons in low dimensional systems [1–3]. Several vdW mag-
nets are strongly correlated insulators, typically of the charge
transfer (CT) type [4–10] involving both a transition metal
with a partly filled d-shell hosting strong electron-electron in-
teractions leading to magnetism [11,12] and ligand (typically
p) orbitals that play an important role in optical excitation
processes and exciton formation. In vdW magnets, excitons
are observed to be strongly coupled to magnetic order [13,14].
For example, the magnetic insulator NiPS3 [14–18] shows an
excitonic peak and sideband peaks that are strongly associated
with zigzag antiferromagnetic (AFM) order and its magnetic
excitations. These and many related experiments raise funda-
mental questions about the physics of excitons in correlated
(rather than band) insulators and their coupling to magnetic
excitations.

In correlated insulators driven by on-site Coulomb inter-
actions, excitations are, in essence, transitions between the
different electronic configurations (multiplets) of correlated
(e.g., d) orbitals on a single atom. The magnetic sidebands
associated with these on-site multiplet excitations have been
investigated since the 1960s [19–26]. However, in CT com-
pounds such as NiPS3, optically active CT excitons involving

a hole on the ligand bound to an electron added to the transi-
tion metal exist calling for another theory of excitons and their
coupling to magnetism.

In this paper, we study excitons in magnetic CT insu-
lators starting from a microscopic generalized tight-binding
model that explicitly includes ligands and an intersite
(ligand/transition metal) interaction Vd p as well as the on-site
U interactions, so excitonic as well as correlated insulator
behavior may be studied. Our calculations reveal that the
presence of the ligand hole in the exciton state leads to drastic
changes in the magnetic exchange couplings, in particular, a
very strong coupling between the exciton (which has a spin
inherited from the magnetic nature of the CT state) and the
surrounding spins [see Fig. 1(a)]. The coupling is paramet-
rically large relative to other exchange interactions and has
a strong spatial anisotropy determined by the polarization of
the electric field that creates the exciton. The result is that the
CT exciton gives rise to multispin complexes whose moderate
coupling to the AFM background creates sidebands in the
optical excitation spectrum [Fig. 1(b)].

The rest of this paper is organized as follows. In Sec. II,
we present the Hamiltonian of a single cluster modeling
transition-metal d and ligand p orbitals, where we consider the
lowest-energy state and optically allowed excited state com-
bining the molecular orbital picture to the ligand p orbitals
[see the inset of Fig. 1(a)]. In Sec. III, we derive effective
interactions between two clusters including the exciton-spin
interactions attributed to the intercluster hoppings. Finally, in
Sec. IV, we extend the idea to a lattice system and evaluate
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FIG. 1. (a) Schematic picture of our effective model. The insets
show the orbital structures in the lowest-energy and optically allowed
excited states in a single cluster. J ′

± is the spin-exchange interaction
around the molecular orbital excited by light polarized along the
horizontal direction, and J is the magnetic interaction of the host.
(b) Optical spectrum when J ′

+ = J ′ � J (see details in the main
text). The lower energy peak is the main excitonic peak while the
higher-energy peak corresponds to the magnetic sideband peak.

an optical excitation spectrum in our effective model, demon-
strating that the spin-flip excitation caused by the strongly
enhanced local spin interactions gives rise to the magnetic
sideband peak. Section V is a summary and discussion of open
issues and possibilities for future work.

II. SINGLE CLUSTER

We study a network of correlated d orbitals and ligand p
orbitals consisting of five-atom clusters containing one tran-
sition metal and four ligand atoms; for definiteness, we take
a square-planar point symmetry with formal valence corre-
sponding to a d9 configuration of the transition metal ion and
take the relevant d orbital to be the dx2−y2 orbital. We also
include the ligand p orbitals that hybridize with the dx2−y2

orbital as shown in Fig. 2(a). The result is a cluster described
by a five-orbital model. We describe the d-p cluster in the
hole picture and introduce the d-p hopping td p, intracluster
p-p hopping tpp, energy-level difference between the p and
d orbitals �p, on-site Coulomb interactions in d and p or-
bitals Ud and Up, respectively, and d-p Coulomb interaction
Vd p. The connection between different clusters in the solid is
discussed in the next section. The Hamiltonian of the single
d-p cluster is given by

Ĥ = Ĥ0 + Ud n̂d,↑n̂d,↓ + Up

∑
ν

n̂pν ,↑n̂pν ,↓ + Vd pn̂d

∑
ν

n̂pν
,

(1)

with the single-particle part Ĥ0 = Ĥd p + Ĥpp + �p
∑

ν n̂pν
,

where Ĥd p and Ĥpp are the intracluster d-p and p-p hopping
terms, respectively (see details in Appendix A). n̂d,σ = d̂†

σ d̂σ

(n̂pν ,σ = p̂†
ν,σ p̂ν,σ ) and n̂d = n̂d,↑ + n̂d,↓ (n̂pν

= n̂pν ,↑ + n̂pν ,↓)
are the number operators, where d̂σ and p̂ν,σ are the annihila-
tion operators of fermions with spin σ (=↑,↓) on the d and
pν (ν = x±, y±) orbitals, respectively.

For both physical insight and technical convenience, we
find that it is useful to describe the ligand p orbitals in
the single cluster using the molecular orbital basis shown
in Fig. 2(b). The operators of the even-parity molecular
orbitals are π̂0,σ = ( p̂x+,σ − p̂x−,σ + p̂y+,σ − p̂y−,σ )/2 and
π̂d,σ = ( p̂x+,σ − p̂x−,σ − p̂y+,σ + p̂y−,σ )/2, and the operators
of the odd-parity molecular orbitals are π̂x,σ = −( p̂x+,σ +
p̂x−,σ )/

√
2 and π̂y,σ = ( p̂y+,σ + p̂y−,σ )/

√
2. Note that we put

the minus sign in π̂x,σ to formulate the current operator in
the same manner. Using these molecular orbitals, the single-
particle Hamiltonian is given by

Ĥ0 = �p

∑
μ,σ

π̂†
μ,σ π̂μ,σ + 2tpp

∑
σ

(π̂†
0,σ π̂0,σ − π̂

†
d,σ

π̂d,σ )

− 2td p

∑
σ

(π̂†
d,σ

d̂σ + d̂†
σ π̂d,σ ), (2)

where μ (= 0, x, y, d) is the index of the molecular orbital and
tpp > 0 (see details in Appendix A). Note that we choose the
d orbital (one-hole) state d̂†

σ |0〉 as the reference (zero) energy
state and do not write the energy level of the d orbital (Ed )
explicitly.

πdπ0

px− px+d

py+

py−

x

y
πx πy

πd

π0
πx, πy

d

Δp − 2tpp

Δp

Δp + 2tpp

tdp

(a) (b) (c)

FIG. 2. (a) Single d-p cluster, (b) ligand p molecular orbitals, and (c) single-particle levels in the d-p cluster.
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We can read the eigenvalues in the one-hole sector from
Eq. (2). All but one linear combination of the p states de-
couples; the πd orbital hybridizes with the d orbital via
td p and the energies of the hybridized states are given by

E± = �′
p/2 ±

√
(�′

p/2)2 + 4t2
d p with �′

p = �p − 2tpp. We

assume �p − 2tpp > 0 so E− < 0 due to td p. The wave func-
tion corresponding to the lowest-energy one hole state is
|gσ 〉 = (ud̂†

σ + vπ̂
†
d,σ

) |0〉, where u2 + v2 = 1 and u2 = (1 +
�′

p/
√

�′2
p + 16t2

d p)/2 and the state has dominant d character.

If td p is strong, the next lowest-lying one-hole states are the
πx,y doublet with energy �p [see Fig. 2(c)]. These two states
are of odd parity and are connected to the cluster ground state
by the x- and y-polarized current operators obtained as usual
by making a Peierls substitution on the hoppings (see details
in Appendix A 2).

At higher energy, there are two-hole states, including the
configurations with two particles in the p orbitals (energy
∼2�p or ∼2�p + Up), one particle in d and one in p (energy
∼Vd p + �p), and the doubly occupied d orbital (energy ∼Ud ).
Because the two-hole states are strongly correlated states,
their exact energy levels are not simply obtained by the single-
particle levels in Eq. (2). These two-hole states play a role in
evaluating the intercluster exchange couplings.

In this paper, we consider the CT exciton attributed to the
linear optical excitation Ĥext

d p (t ) = −Ĵd p · A(t ), where Ĵd p is
the current operator for the d-p excitation and A(t ) is the
vector potential [E(t ) = −∂t A(t ) is the electric field]. Be-
cause d-orbital character is dominant in the lowest-energy
state |gσ 〉, we only consider the crucial contribution from
Ĵd p and neglect other minor contributions (e.g., current Ĵ pp

given by tpp). Using the molecular orbitals shown in Fig. 2(b),
the current operator along the κ (= x, y) direction is given
by Ĵd p,κ = −i

√
2td p(qr/h̄)

∑
σ (π̂†

κ,σ d̂σ − d̂†
σ π̂κ,σ ), where h̄ is

the Planck’s constant, q is the charge of the particle, and
r is the distance between d and p sites (see details in Ap-
pendix A 2). The form of the current operator Ĵd p,κ indicates
that the optical excitation induces the odd-parity molecular
orbitals. Note that “exciton” in the following discussions im-
plies the state π̂†

κ,σ |0〉 (κ = x, y) optically created from the
lowest-energy state |gσ 〉. We may compare the excited energy
of this state (∼�p + E−) to the energy of a system with a
well-separated electron (filled cluster) and two-hole cluster
(∼Vd p + �p + E−) [27]; we see that the exciton level is lower
than the CT gap by Vd p > 0. This rough estimation may be
valid in the strong-coupling limit Vd p � td p. This exciton level
is lower than the energy of doublon-holon (d10-d8) excited
state in the CT insulator (Ud > �d p).

III. EFFECTIVE INTERACTIONS

In this section, we derive the effective exciton-spin cou-
pling from the exchange mechanism due to the hopping
between two spatially separated d-p clusters (see e.g., the in-
set of Fig. 5). Similar arrangements of clusters are realized in
the double perovskite structure (e.g., Sr2CuTeO6) [28,29] and
the crystal structure of Ba3CuSb2O9 [30,31]. If the nearest-
neighboring (NN) molecular orbitals are orthogonal, e.g., as in
the edge-shared cuprates [32], a similar idea can be extended

further to the spatially separated second or third NN clusters
(as relevant for NiPS3 [33]).

The crucial physics underlying the discussion is that the
clusters are connected by hopping between a ligand in one
cluster to a ligand in the next. In the cluster ground state
|gσ 〉, the overlap of the spin with the edge ligand ion is small,
leading to smallness in the exchange couplings, whereas the
exciton state has a large amplitude to be on the edge ligand
state, leading to a parametrically larger exchange coupling.

For an effective model, we configure the single-site oper-
ators using the singly occupied states described by Ĥ0. Since
our target is the CT exciton induced by light, we restrict
the states to the lowest-energy state |gσ 〉 = (ud̂†

σ + vπ̂
†
d,σ

) |0〉
and the optically allowed odd-parity states |xσ 〉 = π̂†

x,σ |0〉 and
|yσ 〉 = π̂†

y,σ |0〉. Because the energies of the πx and πy orbitals
are degenerate, we can define the odd-parity molecular or-
bitals in a different frame. Here, we introduce(|Xσ 〉

|Yσ 〉
)

=
(

cos φ sin φ

− sin φ cos φ

)(|xσ 〉
|yσ 〉

)
(3)

for later convenience. As shown below, an appropriate choice
of φ gives a simple model description, and it depends on
the geometry of two clusters (e.g., φ = 0 in the clusters
shown in Fig. 3 and φ = π/4 in the clusters shown in
Fig. 5). To describe the effective Hamiltonian, we define
the projection operators based on the six states |g↑〉, |g↓〉,
|X↑〉, |X↓〉, |Y↑〉, and |Y↓〉 (see also Appendix B 1). The spin
operator is defined by Ŝ = (1/2)

∑
γ

∑
σ,σ ′ |γσ 〉 σσσ ′ 〈γσ ′ |,

where σ is the vector of the Pauli matrices and γ = X,Y, g.
For the transition between the g and 
 = X or Y states,
we define T̂ +


 = ∑
σ |
σ 〉 〈gσ | and T̂ −


 = ∑
σ |gσ 〉 〈
σ |. To

identify the type of the singly occupied state, we intro-
duce the operator that satisfies P̂γ |γ ′

σ 〉 = δγ ,γ ′ |γσ 〉 (i.e., P̂γ =∑
σ |γσ 〉 〈γσ |). When the external field is applied along

the θ direction in the x-y plane, i.e., A(t ) = A(t )eA =
A(t )(cos θ, sin θ ), the optical excitation from the g state
is characterized by Ĵd p · eA |gσ 〉 = −iF [cos(θ − φ) |Xσ 〉 +
sin(θ − φ) |Yσ 〉], where F = √

2td puqr/h̄. Hence, using the
operator T̂ ±


 , the optical excitation within the cluster can be

described by Ĥext
d p (t ) 
 iFA(t )[T̂ +

X cos(θ − φ) + T̂ +
Y sin(θ −

φ)] + H.c.
We evaluate the effective interactions between two clusters

by considering perturbative intercluster p-p hopping t ′
pp. In

our evaluation, the effect of intracluster hopping td p is in-
cluded in the unperturbed Hamiltonian (because the g state
is the d-p hybridized state), and the effective interactions
are calculated by the second-order perturbation theory with
respect to t ′

pp. To incorporate the effect of td p precisely, we
employ the numerical exact diagonalization (ED) method for
the evaluation of the correlated intermediate eigenstates in the
perturbative process (see details in Appendix B 2).

First, we consider the effective model of the simplest struc-
ture shown in the inset of Fig. 3, where two clusters are
connected via one intercluster p-p hopping. In this coordina-
tion, |Xσ 〉 = |xσ 〉 (at φ = 0) contributes to the spin exchange
but the contribution from the orthogonal |Yσ 〉 = |yσ 〉 is zero.
Hence, we focus on |gσ 〉 and |xσ 〉 to describe the effective
model. Because we are interested in the one-exciton state, we
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FIG. 3. �p dependence of the effective interactions when two
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evaluate the model when the occupation of the x state is one
or less. When both clusters are in the g state, the effective
Hamiltonian for the g sector is given by

Ĥ(12)
eff;g = P̂1,gP̂2,g

[
Eg+J

(
Ŝ1 · Ŝ2 − 1

4

)]
, (4)

where Eg is the energy due to the two g states, and J is the spin
exchange interaction. This is a conventional Heisenberg-type
Hamiltonian, but we put the P̂j,g ( j = 1, 2) operators because
two clusters must be in the g state. On the other hand, when
one of two clusters is in the x state, the effective Hamiltonian
is given by

Ĥ(12)
eff,e = (P̂1,xP̂2,g + P̂1,gP̂2,x )

[
E ′

x +J ′
x

(
Ŝ1 · Ŝ2 − 1

4

)]

− (T̂ +
1,xT̂ −

2,x + T̂ +
2,xT̂ −

1,x )

[
I ′
x +K ′

x

(
Ŝ1 · Ŝ2 − 1

4

)]
, (5)

where E ′
x corresponds to the energy when one x state is created

and J ′
x is the spin-exchange interaction between the x and

g clusters. I ′
x is the effective interaction switching the g and

x states and K ′
x is the effective interaction of the exciton

exchange accompanied by the spin exchange. The schematic
pictures of these effective interactions are shown in Fig. 4.

We show the effective interactions calculated by ED in
Fig. 3. Here, we set Ud = 10 eV, Up = 0.6Ud , Vd p = 0.25Ud ,
td p = 0.6 eV, tpp = 0.15 eV, and the intercluster hopping t ′

pp =
0.3 eV. Note that we use slightly large Ud to address the CT
insulator regime at Ud > �p. We set Ud > Up as expected in
typical transition metal compounds [34]. As shown in Fig. 3,
the spin-exchange interaction J ′

x between the g and x states
is much larger than J of the g sector. While I ′

x and K ′
x are

also larger than J , J ′
x is the largest, implying that the exciton

creation enhances the local spin-exchange interaction.
The hierarchy of the effective interactions can be under-

stood by the analytical form of the interactions evaluated by
the strong coupling expansion in the limit Ud ,Up,Vd p,�p �
td p (see also Appendix B 2). The effective interactions based

I'

g

x

g

x

g

x

g

x

J xJ'

xx K'

FIG. 4. Schematics pictures of the effective interactions.

on the strong coupling expansion are given by

J ∼ 4t ′2
ppt4

d p

�2
p(�p + Vd p)2

[
1

Ud
+ (2�p + Vd p)2

�2
p(2�p + Up)

]
,

J ′
x ∼ t ′2

ppt2
d p

V 2
d p(Ud − �p)

+ t ′2
ppt2

d p

(
�2

p + 2�pVd p + 2V 2
d p

)
�2

pV
2

d p(�p + Up)
,

I ′
x ∼ t ′2

ppt2
d p(�p + Vd p)

�3
pVd p

, K ′
x ∼ 2t ′2

ppt2
d p(�p + Vd p)

�2
pVd p(�p + Up)

. (6)

As shown in the analytical formulas, J ′
x, I ′

x, and K ′
x are given

by the fourth-order of the hoppings (∝ t2
d pt ′2

pp) but J for the
g sector is characterized by the six-order of the hoppings (∝
t4
d pt ′2

pp). The extra factors of t2
pd/�

2
p in J arise from the small

overlap of the ground-state wave function |gσ 〉 with the cluster
ligand; whereas the other interactions are larger because of the
large amplitude of the hole on the ligand. This is an important
characteristic of the CT insulator contracted with the case of
the on-site d multiplet excitation [24,25].

Next, we consider the case when two clusters are
connected via two intercluster p-p hoppings (see the
inset of Fig. 5). Similar cluster arrangements appear in
realistic materials, e.g., in double perovskite magnets and
in the second- or third-NN clusters when the NN orbitals
are nearly orthogonal as in NiPS3 [28,31,33]. The form
of the Hamiltonian for the g sector Ĥ(12)

eff;g is the same
as Eq. (4). However, in contrast to the previous case,
both |xσ 〉 and |yσ 〉 contribute to the effective Hamiltonian
Ĥ(12)

eff,e. For example, an effective interaction described by
|y↓g↑〉 〈x↑g↓| is possible because of a spin exchange via
|x↑g↓〉 → |0 D↑↓〉 → |y↓g↑〉 (where 0 and D↑↓ are the empty
and a doubly occupied clusters, respectively). Here, we
simplify the Hamiltonian by considering an appropriate
frame (i.e., φ) in Eq. (3). In the geometry of two clusters
shown in Fig. 5, φ = π/4 leads to, e.g., J ′

0 |x↓g↑〉 〈x↑g↓| +
J ′

0 |y↓g↑〉 〈y↑g↓| + J ′
1 |x↓g↑〉 〈y↑g↓| + J ′

1 |y↓g↑〉 〈x↑g↓| =
(J ′

0 + J ′
1) |X↓g↑〉 〈X↑g↓| + (J ′

0 − J ′
1) |Y↓g↑〉 〈Y↑g↓|, where we

can omit the off-diagonal terms. In this frame, the effective
magnetic interactions are given by J ′

X = J ′
0 + J ′

1 = J ′
+ and

J ′
Y = J ′

0 − J ′
1 = J ′

−. In the same way, I ′
X/Y = I ′

0 ± I ′
1 = I ′

± and
K ′

X/Y = K ′
0 ± K ′

1 = K ′
±. Using 
 = X and Y , the effective
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Hamiltonian for the one-exciton state is given by

Ĥ(12)
eff,e =

∑



(P̂1,
P̂2,g+P̂1,gP̂2,
 )

[
E ′


+J ′



(
Ŝ1 · Ŝ2− 1

4

)]

−
∑




(T̂ +
1,
T̂ −

2,
+T̂ +
2,
T̂ −

1,
 )

[
I ′

+K ′




(
Ŝ1 · Ŝ2− 1

4

)]
.

(7)

We show the calculated effective interactions in Fig. 5,
where we plot J ′

+ = J ′
0 + J ′

1, J ′
− = J ′

0 − J ′
1, and so on. In the

calculation, we use Ud = 10 eV, Up = 0.6Ud , Vd p = 0.25Ud ,
td p = 0.8 eV, tpp = 0.15 eV, and the intercluster hopping t ′

pp =
0.2 eV. Similar to Fig. 3, the spin exchange interaction J ′

+
is the largest. The reason for the large J ′

+ is essentially the
same as the case discussed in Fig. 3; the spin located in
the ligand p orbitals enables easier spin exchanges. On the
other hand, J ′

− = J ′
0 − J ′

1 is negative. This indicates J ′
1 > J ′

0,
and the reason can be understood by considering the spin
exchange processes shown in Fig. 6. The spin exchange for
J ′

0 includes the contribution shown in Fig. 6(a), where the
up and down spins doubly occupy the same p orbital in the
intermediate state. The energy level of this doubly-occupied
state is 2�p + Up. However, the spin exchange for J ′

1 can
avoid double occupancy at the same p orbital as shown in
Fig. 6(b), where the energy level of the intermediate state is
2�p. Hence, because of the difference in the energy levels
of the intermediate states, the spin exchange for J ′

1 can be
larger than the spin exchange for J ′

0, i.e., J ′
1 > J ′

0. We also
find that the signs of I ′

− and K ′
− are also negative. The reason

for the negative I ′
− is simple. Because the intercluster hopping

t ′
pp transfers the particle from px in cluster 1 to py in cluster

2 (and vice versa), the effective interaction corresponding to
|xσ gσ̄ 〉 〈gσ xσ̄ | is nearly zero, i.e., I ′

0 ∼ 0. Hence, we obtain
I ′
± ∼ ±I ′

1. In contrast to I ′
±, K ′

± includes the spin exchange
processes, where K ′

0 is not zero. However, K ′
− = K ′

0 − K ′
1 can

be negative because K ′
1 is larger than K ′

0 in the similar reason
to J ′

−.

px

px

(a) (b)

px

py

2Δp+Up 2Δp

d d

d d

FIG. 6. Fourth order processes included in the spin exchange
interactions (a) J ′

0 and (b) J ′
1.

IV. EXCITON IN THE AFM BACKGROUND

To discuss magnetism associated with exciton creation in
bulk as in actual materials, we extend our model from two
clusters to lattice systems. If we address the one-exciton prob-
lem, we should set that the one cluster is in the excited X (or
Y ) state and all the other clusters are in the g state. When the
lattice structure is composed of the spatially separated clusters
as shown in Fig. 1(a), the effective Hamiltonian may be given
by

Ĥeff = J
∑
〈i, j〉

P̂i,gP̂j,g

(
Ŝi · Ŝ j − 1

4

)
+

∑
j

∑



�E
P̂j,


+
∑
〈i, j〉

∑



J ′
i j,
 (P̂i,
P̂j,g + P̂i,gP̂j,
 )

(
Ŝi · Ŝ j − 1

4

)

−
∑
〈i, j〉

∑



(T̂ +
i,
T̂ −

j,
+T̂ +
j,
T̂ −

i,
 )

[
I ′
i j,
 + K ′

i j,


(
Ŝi · Ŝ j − 1

4

)]
,

(8)

where 〈i, j〉 denotes pairs of NN clusters and �E
 is the
energy difference between the g and 
 (= X,Y ) states given
by Eg and E ′


 . In the following, we also denote the effective
interaction, e.g., as J ′


 (δ) = J ′
i j,
 (aeδ = ri − r j , where a is the

distance between adjacent clusters). Note that the Hamilto-
nian Ĥeff assumes that the number of the excited cluster is
conserved. This assumption is valid when the exciton lifetime
is long as expected in the vdW magnet [15,16]. While sim-
ilar Hamiltonians have been investigated in previous studies
using the spin-wave theory in the condition J ′


 ∼ J or J ′

 < J

[24,25], we need to pay attention to the character of the CT
insulator, which shows J ′


 � J . In contrast to the previous
studies, the spin wave that assumes the spatial extension of
excited spins may not be a good approximation to capture the
strong local quantum fluctuations (local spin flips) induced by
J ′

 � J around the excited cluster in the CT insulator.

We consider magnetism when the excited cluster is created
in the AFM background in the CT insulator. Here, we address
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the case when only the X state is created by external light
via Ĥext

d p (t ) 
 iFA(t )
∑

j (T̂
+
j,X − T̂ −

j,X ) at θ = φ on the square
lattice shown in Fig. 1(a). When the X state at φ = π/4
is created as discussed in Fig. 5, the effective interaction
along the X direction is given by, e.g., J ′

X (+X ) = J ′
X (−X ) =

J ′
0 + J ′

1 = J ′
+. On the other hand, the effective interaction of

the X state along the Y direction on the square lattice is
J ′

X (+Y ) = J ′
X (−Y ) = J ′

0 − J ′
1 = J ′

− because the π/2 rotation
of the axes gives J ′

Y (+X ) = J ′
Y (−X ) = J ′

0 − J ′
1 = J ′

− shown
in Fig. 5. Hence, the effective interaction around the odd-
parity X state is spatially anisotropic as schematically shown
in Fig. 1(a). This gives the anisotropic nature of the spin-
correlated exciton. Although we only consider the X state,
the Y state also shows the same energy-level structure as the
X state because the lattice structure we consider has the π/2
rotational symmetry.

As shown in the previous section, the spin exchange J ′
X

around the excited cluster is much larger than J of the
host. In this condition, the strong local quantum fluctua-
tion by J ′

X prefers local spin flips even though it breaks the
local AFM configuration. To take into account the locally
spin-flipped states effectively, we approximately compose the
excited states in the following procedures (see details in
Appendix C). To prepare the AFM background, we as-
sume that the ground state |ψ0〉 is the AFM (classical Néel)
state |ψAFM〉 on the square lattice. Then, we make the
one-exciton state as T̂ +

j,X |ψAFM〉. Based on this one-exciton
state, we organize the states configured by the flipped spins
around the excited cluster. In this approximation, we assume
J ′

, I ′


, K ′

 � J and neglect other possible spin configurations

excited by J for simplicity.
Now, we discuss the optical excitation spectrum of

our effective model. Using the approximation mentioned
above, we evaluate the optical response function χ (ω) =∑

m | 〈ψm|Ĵd p|ψ0〉 |2δ(h̄ω − (Em − E0)), where we assume
Ĵd p = −iF

∑
j,α (T̂ +

j,X − T̂ −
j,X ) and |ψm〉 (Em) is the excited

eigenstate (eigenenergy) composed of the one-exciton and
the spin-flipped states in the AFM background (see details in
Appendix C). Figure 1(b) shows the calculated χ (ω) when
J ′
+ is the largest (where J ′

+ = J ′, J ′
− = −0.15J ′, I ′

+ = 0.15J ′,
I ′
− = −0.15J ′, K ′

+ = 0.1J ′, and K ′
− = −0.2J ′). The response

function χ (ω) exhibits the multipeak structure. The high-
est peak in Fig. 1(b) is mainly attributed to the one-exciton
state T̂ +

j,X |ψAFM〉. In addition, χ (ω) shows the sideband peak
associated with the spin-flip excitation [see Fig. 1(b)]. In par-
ticular, because we assume J ′

X (±X ) = J ′
+ > J ′

X (±Y ) = J ′
−,

the eigenstate of the large sideband peak in Fig. 1(b) is dom-
inantly due to the multispin complex induced by the strong
spin coupling along the X direction. As shown in Appendix C,
the couplings (off-diagonal elements) between the different
spin configurations (i.e., quantum fluctuations) by J ′

X make
the eigenstates including both the AFM and spin-flip config-
urations, which give rise to the magnetic sideband peak in
the optical spectrum in Fig. 1(b). Even though we employ a
simplified approximation, we can find the multipeak structure
(excitonic main peak + magnetic sideband peak) reflecting
the local magnetic excitation introduced via the exciton-spin
interactions.

Note that the classical Néel state we assumed for the AFM
background in the approximation is not usually the exact
ground state of the Heisenberg model [while our assump-
tion becomes more valid when a material has a strong spin
(e.g., Ising) anisotropy]. If quantum fluctuations by J of the
host are included in the ground and excited states, they may
broaden the main peaks due to fluctuations and possibly lead
to satellite magnonic sidebands. In a paramagnetic state above
the Néel temperature, an ensemble of many disordered spin
configurations may lead to a featureless broad low-magnitude
spectrum without a prominent peak (because many excited
spin configurations are accessible). The ordered AFM state
at low temperatures limits the number of spin configurations
and highlights the essential magnetic sideband peaks. If a
broadening factor of the spectrum (or exciton lifetime) has a
strong temperature dependence, the difference in the optical
spectrum between the ordered low-T and disordered high-T
states may become more noticeable. While we expect that
our simple approximation captures the essential aspect of
the excitation spectrum, a precise analysis of our complex
exciton-spin coupling model is an important future task.

V. SUMMARY AND DISCUSSION

We have studied the exciton-spin interactions from a
microscopic d-p model for CT insulators comprised of well-
defined transition metal-ligand clusters with relatively weak
intercluster coupling and with energy levels allowing for CT
excitons in which the hole is on the ligand site and the
electron on the transition metal site. Taking into account the
lowest-energy state and optically allowed excited state within
a cluster, we have derived the effective interactions between
two clusters, which include the exciton-spin interactions. We
find that the exciton (which carries a spin) has a spatial struc-
ture reflecting its creation by a polarized electric field from a
symmetric ground state and is much more strongly coupled
to spins on particular neighboring clusters than the spins in
the host materials are coupled to each other. Using a simple
approximation, we have shown an optical excitation spec-
trum in our effective exciton-spin coupled model to obtain
insights into magnetic sidebands. We have demonstrated that
the spin-flip excitation caused by the strongly enhanced local
spin interactions gives rise to multiple peaks in the optical
excitation spectrum.

We remark on differences from the early studies of
the spin-correlated excitations of the d-electron multiplets
[19–26]. The optical d multiplet excitations investigated in
the previous works for the manganese compounds involve the
change of the spin quantum number within the single site [35],
and the magnitude of the magnetic interactions around the
excited object is the same order or less than the interaction
J of the host [24,25]. In contrast, the optical d-p excitation
considered in our theory for the CT insulator does not lead
to the change of the spin quantum number within the single
cluster. Moreover, the spin-exchange coupling J ′ around the
excited CT cluster is strongly enhanced from J of the host.
Hence, our theory taking into account the characteristics of the
CT insulators suggests an alternative pathway to the creation
of magnetic sidebands.
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Our paper is based on a simplified model that idealizes
a material as a collection of structurally and electronically
well-defined clusters weakly coupled one to another, and our
analysis relies on strongly correlated CT limit and restricts
attention to the case where the relevant transition metal states
are d9 and d10 (one hole in ligand or filled d-shell). An
important problem for future research is to extend the analysis
to other valences (and thus richer level structure) and to other
geometries. However, in its present form, our theory may
be applicable to magnets in the double perovskite structure.
Actually, a similar lattice structure to Fig. 1(a) is hosted in the
double perovskite magnet denoted by A2BB′X6 when the B
or B′ ion is nonmagnetic, e.g., Sr2CuTeO6 [28,29].

Our basic idea is also applicable to materials involving
spatially separated second- or third-NN magnetic clusters
when the NN ligand p molecular orbitals are orthogonal as
in the edge-shared cuprates [32]. The vdW magnet NiPS3

has the edge-shared octahedral structure, where the AFM
spin-exchange interaction between the NN clusters is very
weak because the px and py orbitals in the shared ligand
site are nearly orthogonal [36]. Instead, the d-p-p-d network
between the third-NNs gives the largest spin exchange in
NiPS3 [33,36–38], implying that the interactions between two
separated third-NN clusters are the most effective. Our theory
shows a magnetic sideband structure near the excitonic peak
as observed in NiPS3 [14,18]. However, if we discuss the
spin-correlated exciton in NiPS3 precisely, we may need to
upgrade the model because NiPS3 is the d8, i.e., two-orbital
(dx2−y2 and d3z2−r2 ) system and the ligand p molecular orbitals
should be defined in the octahedral coordination including the
pz orbitals. While we set the Néel AFM order as the ground
state in our theory, NiPS3 forms the zigzag AFM order at low
temperatures. Although we expect that the qualitative features
(e.g., J ′ > J) do not strongly rely on the type of the AFM
order, the Néel AFM order on the square lattice and the zigzag
AFM order on the honeycomb lattice may exhibit different
polarization-direction dependencies of the intensities of the
optical peaks because the spatial structures of the change in
the magnetic exchange interaction depend on the polarization
of the incident light. A quantitative estimation of this polar-
ization dependence in NiPS3 is an open issue for the future.
In the bulk NiPS3, the interlayer magnetic coupling J⊥ is not
negligible [38]. Because J⊥ is usually weak relative to the cap-
ital in-plane magnetic interactions, our qualitative conclusion
may not be strongly affected by J⊥. However, J⊥ can affect
the stability of the magnetic order in the ground state. If J⊥
assists in stabilizing the AFM order, we may observe a clear
sideband peak in the optical spectrum because the ordered
AFM state is favorable for a prominent sideband peak (as
mentioned in Sec. IV). Our theory is based on the localized
exciton picture. This picture is valid when the ratio t ′

pp/Vd p

is small because in this condition the transfer of the excited
p particle to an adjacent cluster is suppressed by the d-p
repulsion Vd p that favors configurations in which the created
hole remains in the same cluster as the electron. In NiPS3, t ′

pp
may be small relative to Vd p since t ′

pp that strongly contributes
to the magnetic exchange corresponds to the hopping between
the third-NN clusters. Hence, we expect that the excitonic
wave function in NiPS3 is strongly localized around the single
d-p cluster.

Meanwhile, if two clusters are corner-shared as in the
CuO2 layer of the high-Tc cuprates, we may need to introduce
a Zhang-Rice-like Wannier orbital [39]. While further quan-
titative research using the Zhang-Rice orbital is necessary
for the future, we may expect similar CT exciton even in
cornered shared clusters because the transfer of the spin to
the ligand p orbital is the essence. By comparison with the
case of the spatially separated two clusters, it is easier to
make a doublon (doubly occupied cluster) and holon (empty
cluster) excited state [40–44] in the corner-shared clusters. In
the corner-shared structure, we may therefore need to consider
the possibilities of the doublon-holon exciton and the CT
exciton comparably. To observe the excitonic and associated
magnetic sideband peaks clearly, their peak positions must be
well separated from the broadband particle-hole continuum,
implying that a strong exciton binding energy is required for
detecting the magnetic sideband peaks in actual materials.

Finally, we note that the strong and spatially anisotropic
exciton-spin coupling we find here is a generic feature of
excitons in CT insulators and may provide an interesting basis
for exciton-spin-polariton.
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APPENDIX A: d-p MODEL

1. Model Hamiltonian

We employ the d-p model to describe the electronic prop-
erties of the CT insulators. Figure 2(a) is the MX4 cluster,
where the distances between transition metal M (d-orbital)
and ligand X (p-orbital) ions are equivalent in the square
coordination. The Hamiltonian of the single d-p cluster in the
hole picture is given by

Ĥ = Ĥd p + Ĥpp + �p

∑
ν

n̂pν
+ Ud n̂d,↑n̂d,↓

+ Up

∑
ν

n̂pν ,↑n̂pν ,↓ + Vd pn̂d

∑
ν

n̂pν
, (A1)

with the intracluster d-p and p-p hopping terms

Ĥd p = td p

∑
ν

∑
σ

ξν p̂†
ν,σ d̂σ + H.c., (A2)

Ĥpp = tpp

∑
ν,ν ′

∑
σ

ζν,ν ′ p̂†
ν,σ p̂ν ′,σ + H.c., (A3)

respectively. ξν (= ±1) is the sign of the transfer integral of
the d-p hopping (e.g., ξx− = ξy+ = +1 and ξx+ = ξy− = −1
in the MX4 cluster). ζν,ν ′ is the sign of the transfer integral of
the intracluster p-p hopping but ζν,ν ′ = 0 when ν and ν ′ are
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not NN. In the d-p cluster shown in Fig. 2(a), the d-p and p-p
hopping terms are given by

Ĥd p = −td p

∑
σ

( p̂†
x+,σ − p̂†

x−,σ − p̂†
y+,σ + p̂†

y−,σ )d̂σ + H.c.,

(A4)

Ĥpp = tpp

∑
σ

( p̂†
x+,σ − p̂†

x−,σ )( p̂y+,σ − p̂y−,σ ) + H.c., (A5)

respectively. Introducing the operators for the p molecular
orbitals [see Fig. 2(b)]

π̂0,σ = 1
2 ( p̂x+,σ − p̂x−,σ + p̂y+,σ − p̂y−,σ ), (A6)

π̂d,σ = 1
2 ( p̂x+,σ − p̂x−,σ − p̂y+,σ + p̂y−,σ ), (A7)

the d-p and p-p hopping terms become

Ĥd p = −2td p

∑
σ

(π̂†
d,σ

d̂σ + d̂†
σ π̂d,σ ), (A8)

Ĥpp = 2tpp

∑
σ

π̂
†
0,σ π̂0,σ − 2tpp

∑
σ

π̂
†
d,σ

π̂d,σ , (A9)

respectively. The πd orbital hybridizes with the d orbital but
the π0 orbital does not, i.e., π0 is a nonbonding orbital.

2. Charge transfer induced by light

Next, we consider the d-p excitation induced by external
light. The d-p Hamiltonian under the applied electric field is
described by

Ĥd p(t ) = td p

∑
ν

∑
σ

ξν

(
ei q

h̄ A(t )·rν p̂†
ν,σ d̂σ + H.c.

)
, (A10)

where rν is the relative position of the pν site centered on the
d site. The current operator is defined by the derivative of the
Hamiltonian Ĥd p(t ) with respect to A, i.e.,

Ĵd p = −itd p
q

h̄

∑
ν

∑
σ

ξνrν ( p̂†
ν,σ d̂σ − d̂†

σ p̂ν,σ ). (A11)

In the model shown in Fig. 2(a), the currents along x and y
directions are given by

Ĵd p,x = +itd p
qr

h̄

∑
σ

[( p̂†
x+,σ + p̂†

x−,σ )d̂σ − H.c.], (A12)

Ĵd p,y = −itd p
qr

h̄

∑
σ

[( p̂†
y+,σ + p̂†

y−,σ )d̂σ − H.c.], (A13)

respectively, where r is the distance between the d and pν

sites, and rx± = (±r, 0) and ry± = (0,±r) are used.
Since the linear optical excitation is attributed to Ĥext

d p (t ) =
−Ĵd p · A(t ), the d-p hopping

∑
ν ξνrν p̂†

ν,σ d̂σ in the current
operator represents the d-p excitation driven by light. Using
|rν | = r, the optically allowed odd-parity p molecular orbital
is described by

π̂σ = 1√
N

∑
ν

ξν

rν

r
p̂ν,σ , (A14)

where N is the normalization factor. In the cluster shown in
Fig. 2(a), π̂σ = (π̂x,σ , π̂y,σ ) are given by

π̂x,σ = − 1√
2

( p̂x+,σ + p̂x−,σ ), (A15)

π̂y,σ = 1√
2

( p̂y+,σ + p̂y−,σ ), (A16)

where N = 2. Then, the current operator using these opera-
tors is given by

Ĵd p = −itd p

√
N qr

h̄

∑
σ

(π̂†
σ d̂σ − d̂†

σ π̂σ ). (A17)

When the external field

A(t ) = A(t )eA = A(t )(cos θ, sin θ ) (A18)

is applied along the θ direction in the x-y plane, Ĵd p · A(t ) =
(Ĵd p,x cos θ + Ĵd p,y sin θ )A(t ) and the Hamiltonian for the op-
tical d-p excitation is given by

Ĥext
d p (t ) =

√
2itd p

qr

h̄
A(t ) cos θ

∑
σ

(π̂†
x,σ d̂σ − d̂†

σ π̂x,σ )

+
√

2itd p
qr

h̄
A(t ) sin θ

∑
σ

(π̂†
y,σ d̂σ − d̂†

σ π̂y,σ ). (A19)

APPENDIX B: EFFECTIVE MODEL

1. Operators

The operators of our effective model are based on the
singly occupied states described by Ĥ0. Since our target is the
exciton-spin interactions driven by light, we restrict the states
to the lowest-energy state |gσ 〉 [= (ud̂†

σ + vπ̂
†
d,σ

) |0〉] and the
optically allowed odd-parity states |Xσ 〉 and |Yσ 〉 [defined in
Eq. (3)]. For the spin degrees of freedom, we define the spin
operator

Ŝ = 1

2

∑
γ

∑
σ,σ ′

|γσ 〉 σσσ ′ 〈γσ ′ | , (B1)

where σ is the vector of the Pauli matrices and γ = X,Y, g.
The raising/lowering operator of spin is Ŝ± = Ŝx ± iŜy. The
operators describing the CT need to characterize the three
indices X , Y , and g. Generally, the operators for three flavors
can be defined by τ̂ = (1/2)

∑
σ

∑
γ ,γ ′ |γσ 〉 λγ γ ′ 〈γ ′

σ | using
the Gell-Mann matrices λ = (λ1, λ2, · · · , λ8) [45]. In this
paper, we introduce the operators that are suitable for our
model description. To describe the transition between the g
and 
 = X or Y states, we define

T̂ +

 =

∑
σ

|
σ 〉 〈gσ | , T̂ −

 =

∑
σ

|gσ 〉 〈
σ | . (B2)

When the Gell-Mann matrices are defined on the basis of
(|X 〉 |Y 〉 |g〉), T̂ ±

X = τ̂ 4 ± iτ̂ 5 and T̂ ±
Y = τ̂ 6 ± iτ̂ 7 in the Gell-

Mann representation. In addition, to identify the type of the
singly occupied state, we introduce the operator

P̂γ =
∑

σ

|γσ 〉 〈γσ | . (B3)

This operator can be written as

P̂γ = 1

3
Î + 2√

3
(Q̂1 cos ϕγ + Q̂2 sin ϕγ ), (B4)

with ϕX = π/3, ϕY = −π/3, ϕg = π , and

Q̂1 = 1

2
√

3

∑
σ

(|Xσ 〉 〈Xσ |+|Yσ 〉 〈Yσ |−2 |gσ 〉 〈gσ |), (B5)

Q̂2 = 1

2

∑
σ

(|Xσ 〉 〈Xσ |−|Yσ 〉 〈Yσ |). (B6)
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Here, Î = ∑
σ

∑
γ |γσ 〉 〈γσ | is the identity operator. These Q

operators correspond to Q̂1 = τ̂ 8 and Q̂2 = τ̂ 3 in the Gell-
Mann representation. Since [Ŝ, T̂ ±


 ] = 0 and [Ŝ, P̂γ ] = 0, the
spin operators and the operators for the CT are commutative.
Although the operators corresponding to τ̂ 1 and τ̂ 2 are not in-
troduced here, they are unnecessary in our model description
because we consider the case when |Xσ 〉 and |Yσ 〉 are orthog-
onal (i.e., no |Xσ 〉 〈Yσ | operations) by choosing an appropriate
φ introduced in Eq. (3).

2. Evaluation of effective interactions

We evaluate the effective interactions between two d-p
clusters by considering perturbative intercluster hoppings.
Here, we assume that each cluster has one particle described
by single-particle Hamiltonian Ĥ0 in the initial and final con-
ditions. The intercluster p-p hopping, which leads to effective
interaction, is

Ĥ′
pp = t ′

pp

∑
j, j′

∑
ν,ν ′

∑
σ

ζ inter
jν, j′ν ′ p̂†

j,ν,σ p̂ j′,ν ′,σ + H.c., (B7)

where ζ inter
jν, j′ν ′ (= 0 or ±1) denotes the sign and presence of

the intercluster hopping. When this intercluster perturbation
moves a particle to another cluster, the Coulomb interactions
are activated in the doubly occupied cluster, which is de-
scribed by Ĥ including Ud , Up, and Vd p.

We calculate the effective interactions based on the second-
order perturbation theory with respect to t ′

pp. Hence, the
effective interaction is evaluated by

(Heff )α;α′ = Eαδα,α′ −
∑

β

〈α| Ĥ′
pp |β〉 〈β| Ĥ′

pp |α′〉
Eβ − Eα

, (B8)

where |α〉 is the unperturbed eigenstate composed of two
singly occupied configurations and |β〉 is the intermediate
eigenstate composed of one doubly occupied configuration
and one empty configuration. Eα (Eβ) are the eigenenergy of
|α〉 (|β〉), and Eq. (B8) is the formula of the effective interac-
tions between two unperturbed states with Eα = Eα′ . Using
the calculated (Heff )α;α′ , the effective Hamiltonian is given
by Ĥeff = ∑

α,α′ (Heff )α;α′ |α〉 〈α′|. While the single-particle
state in |α〉 can be obtained by Ĥ0 in Eq. (2), the evalua-
tion of the intermediate doubly occupied state |β〉 needs to
consider both the intracluster hoppings (td p, tpp) and Coulomb
interactions (Ud , Up, Vd p). To incorporate the correlated inter-
mediate state precisely, we employ the numerical ED method.
In this scheme, we diagonalize the Hamiltonian of the clusters
without t ′

pp to prepare the unperturbed eigenenergy Eβ and
eigenstate |β〉, and then the effective interactions in Eq. (B8)
are evaluated by introducing t ′

pp.
Here, we consider the effective interaction (Heff )α;α′ in the

cluster arrangement shown in Fig. 7(a), where two clusters are
connected via one p-p path. Since |Yσ 〉 = |yσ 〉 at φ = 0 is not
active, we focus on |gσ 〉 and |xσ 〉. Combining the numerical
calculations, we find the following relations (i) and (ii).

(i) When both clusters are in the g state, i.e., |α〉 =
|gσ1 gσ2〉 and |α′〉 = |gσ ′

1
gσ ′

2
〉, the effective interactions written

as (Heff )α;α′ = (Heff )γ1γ2;γ ′
1γ

′
2

σ1σ2;σ ′
1σ

′
2

are given by (Heff )gg;gg
σσ ;σσ = Eg,

x
y

x
y
X

Y

(a) (b)

FIG. 7. (a) Two clusters connected via one p-p path and (b) two
clusters connected via two p-p path.

(Heff )gg;gg
σ σ̄ ;σ σ̄ = Eg − J/2, and (Heff )gg;gg

σ σ̄ ;σ̄ σ = J/2, where σ̄ is
the opposite spin of σ . Eg is the energy of the g state and J
is the spin exchange interaction. Using the operators defined
in Appendix B 1, we obtain the effective Hamiltonian Ĥ(12)

eff;g in
Eq. (4).

(ii) When one of two clusters is in the x state,
there are two possibilities; |α〉 = |gσ1 xσ2〉 ↔ |α′〉 = |gσ ′

1
xσ ′

2
〉

(without g-x exchange) or |α〉 = |gσ1 xσ2〉 ↔ |α′〉 = |xσ ′
1
gσ ′

2
〉

(with g-x exchange). The effective interactions without
the g-x exchange are given by (Heff )xg;xg

σσ ;σσ = (Heff )gx;gx
σσ ;σσ =

E ′
x, (Heff )xg;xg

σ σ̄ ;σ σ̄ = (Heff )gx;gx
σ σ̄ ;σ σ̄ = E ′

x − J ′
x/2, and (Heff )xg;xg

σ σ̄ ;σ̄ σ =
(Heff )gx;gx

σ σ̄ ;σ̄ σ = J ′
x/2, where E ′

x is the energy when one x state
exits, and J ′

x is the spin-exchange interaction between the x
and g clusters. In addition, the effective interactions with the
g-x exchange are given by (Heff )xg;gx

σσ ;σσ = (Heff )gx;xg
σσ ;σσ = −I ′

x,
(Heff )xg;gx

σ σ̄ ;σ σ̄ = (Heff )gx;xg
σ σ̄ ;σ σ̄ = −I ′

x + K ′
x/2, and (Heff )xg;gx

σ σ̄ ;σ̄ σ =
(Heff )gx;xg

σ σ̄ ;σ̄ σ = −K ′
x/2. I ′

x is the g-e exchange interaction
without changing spin structures, but K ′

x involves the spin
exchange. Using the operators defined in Appendix B 1, we
obtain the effective Hamiltonian Ĥ(12)

eff,e in Eq. (5).
In the limit Ud ,Up,Vd p,�p � td p, tpp, the effective inter-

actions can be evaluated by the strong coupling expansion
with respect to the hoppings. In the strong coupling limit, the
single-cluster g state is approximately given by |gσ 〉 = (ud̂†

σ +
vπ̂

†
d,σ

) |0〉 with u2 ∼ 1 − 4t2
d p/�

2
p and v2 ∼ 4t2

d p/�
2
p. Taking

into account the intracluster d-p processes in the intermediate
doubly occupied configurations, we obtain the effective inter-
actions in Eqs. (6). Note that the formulas in Eqs. (6) do not
include the intracluster hopping tpp because the contributions
from tpp are smaller than the contributions from td p. If we
evaluate the effective interactions in the cluster arrangement
in Fig. 7(b), the analytical formulas are more complicated than
Eqs. (6) because we need to take into account more intra- and
intercluster perturbative processes than the simplest case in
Fig. 7(a). To incorporate all contributions precisely beyond the
limit Ud ,Up,Vd p,�p � td p, tpp, we employ the ED method in
the evaluations of the effective interactions.

APPENDIX C: APPROXIMATION FOR THE CT EXCITON
IN THE AFM BACKGROUND

In this appendix, we explain the details of the approx-
imation we employed assuming J ′


, I ′

, K ′


 � J around the
excited cluster. As in the main text, we address the case when
only the X state is created by external light in the cluster
arrangement shown in Fig. 7(b). In this case, neglecting the
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FIG. 8. One-exciton states in the AFM background (upper panel)
and spin-flipped states around the exciton (lower panel). The yellow
circle indicates the excited cluster.

Y state, the effective Hamiltonian can be

Ĥeff = J
∑
〈i, j〉

P̂i,gP̂j,g

(
Ŝi · Ŝ j − 1

4

)
+

∑
j

�EX P̂j,X

+
∑
〈i, j〉

J ′
i j,X (P̂i,X P̂j,g + P̂i,gP̂j,X )

(
Ŝi · Ŝ j − 1

4

)

−
∑
〈i, j〉

(T̂ +
i,X T̂ −

j,X +T̂ +
j,X T̂ −

i,X )

[
I ′
i j,X +K ′

i j,X

(
Ŝi · Ŝ j − 1

4

)]
.

(C1)

The effective interactions J ′
X (δ) = J ′

i j,X aligned along the X
and Y directions are J ′

X (±X ) = J ′
0 + J ′

1 = J ′
+ and J ′

X (±Y ) =
J ′

0 − J ′
1 = J ′

−, respectively.
To discuss exciton-correlated magnetism, first, we set the

one-exciton state in the AFM background (see Fig. 8)

| j, A, 0〉 = T̂ +
R j ,A,X |ψAFM〉 , (C2)

| j, B, 0〉 = T̂ +
R j ,B,X |ψAFM〉 , (C3)

where |ψAFM〉 is the AFM ground state and we denote the site
index as T̂ +

j,X = T̂ +
R j ,A,X (T̂ +

R j ,B,X ) for the sublattice A (B) and
the position of the unit cell R j . Then, to take into account
the effects of the local quantum fluctuations driven by the
strong J ′

X , we consider the flipped spin around the excited site.
Based on the one-exciton states, we make spin-flipped states
as shown in the lower panels in Fig. 8. Assuming that the spin
on the A (B) site is polarized to up (down), we configure

| j, A, 1〉 = Ŝ+
R j ,B

Ŝ−
R j ,A

| j, A, 0〉 , (C4)

| j, A, 2〉 = Ŝ+
R j−a1−a2,B

Ŝ−
R j ,A

| j, A, 0〉 , (C5)

| j, A, 3〉 = Ŝ+
R j−a2,B

Ŝ−
R j ,A

| j, A, 0〉 , (C6)

| j, A, 4〉 = Ŝ+
R j−a1,B

Ŝ−
R j ,A

| j, A, 0〉 (C7)

for the one-exciton state on the A sublattice and

| j, B, 1〉 = Ŝ−
R j ,A

Ŝ+
R j ,B

| j, B, 0〉 , (C8)

| j, B, 2〉 = Ŝ−
R j+a1+a2,A

Ŝ+
R j ,B

| j, B, 0〉 , (C9)

| j, B, 3〉 = Ŝ−
R j+a2,A

Ŝ+
R j ,B

| j, B, 0〉 , (C10)

| j, B, 4〉 = Ŝ−
R j+a1,A

Ŝ+
R j ,B

| j, B, 0〉 (C11)

for the one-exciton state on the B sublattice, where the po-
sitions of the A and B sites (in the unit cell) are τA = 0
and τB = aex, respectively, and the translation vectors are
a1 = aex + aey and a2 = aex − aey.

The above spin-flipped states enable us to evaluate the
excitonic energy levels incorporating the contributions from
J ′

X , I ′
X , and K ′

X . For example, the spin-flipped states give the
matrix elements 〈 j, A, 1| Ĥeff | j, A, 0〉 = J ′

X (+X )/2 = J ′
+/2,

〈 j, B, 0| Ĥeff | j, A, 0〉 = −I ′
X (+X ) + K ′

X (+X )/2 = −I ′
+ +

K ′
+/2 and 〈 j, B, 1| Ĥeff | j, A, 0〉 = −K ′

X (+X )/2 = −K ′
+/2.

Note that we omit the contribution from J assuming
J ′

X , I ′
X , K ′

X � J . Because spatially uniform optical excitation
induces the excitonic state

∑
j

∑
α=A,B | j, α, 0〉 /

√
N

(where N is the number of the lattice sites), we make
the matrix of the effective Hamiltonian using the state
|α, λ〉 = √

2/N
∑

j | j, α, λ〉 with λ = 0, 1, · · · , 4. The
10 × 10 matrix based on |A, λ〉 and |B, λ〉 is given by

H =
[

HJ ′ �

�† HJ ′

]
, (C12)

with the diagonal block

HJ ′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−J ′
+ − J ′

− J ′
+/2 J ′

+/2 J ′
−/2 J ′

−/2

J ′
+/2 −J ′

+/2 0 0 0

J ′
+/2 0 −J ′

+/2 0 0

J ′
−/2 0 0 −J ′

−/2 0

J ′
−/2 0 0 0 −J ′

−/2

⎤
⎥⎥⎥⎥⎥⎥⎦

and off-diagonal block

�=

⎡
⎢⎢⎢⎢⎢⎢⎣

−2Ĩ ′
+ − 2Ĩ ′

− −K ′
+/2 −K ′

+/2 −K ′
−/2 −K ′

−/2

−K ′
+/2 −Ĩ ′

+ 0 0 0

−K ′
+/2 0 −Ĩ ′

+ 0 0

−K ′
−/2 0 0 −Ĩ ′

− 0

−K ′
−/2 0 0 0 −Ĩ ′

−

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where Ĩ ′
± = I ′

± − K ′
±/2. Diagonalization of the matrix H

gives the eigenenergies of the excited levels incorporating
the effects of the exciton-spin interactions J ′

X , I ′
X , and K ′

X .
This is a minimal approximation of our effective model at
J ′

X , I ′
X , K ′

X � J .
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By employing the symmetry-adapted basis, the 10×10 matrix of Eq. (C12) can transform into the block diagonal matrix

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

H+
3 0 0 0 0 0

0 H−
3 0 0 0 0

0 0 E+
1+ 0 0 0

0 0 0 E−
1+ 0 0

0 0 0 0 E+
1− 0

0 0 0 0 0 E−
1−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (C13)

H+
3 and H−

3 are the 3×3 matrices given by

H±
3 =

⎡
⎢⎢⎣

−(J ′
+ + J ′

−) ∓ [2(I ′
+ + I ′

−) − (K ′
+ + K ′

−)] (J ′
+ ∓ K ′

+)/
√

2 (J ′
− ∓ K ′

−)/
√

2

(J ′
+ ∓ K ′

+)/
√

2 −J ′
+/2 ∓ (I ′

+ − K ′
+/2) 0

(J ′
− ∓ K ′

−)/
√

2 0 −J ′
−/2 ∓ (

I ′
− − K ′

−/2
)
⎤
⎥⎥⎦,

where this 3×3 matrix is constructed by

|±, 0〉 = 1√
2

[|A, 0〉 ± |B, 0〉],

|±, X+〉 = 1

2
[(|A, 1〉 + |A, 2〉) ± (|B, 1〉 + |B, 2〉)],

|±,Y +〉 = 1

2
[(|A, 3〉 + |A, 4〉) ± (|B, 3〉 + |B, 4〉)].

E±
1± is the diagonalized element (i.e., eigenenergy), where

E±
1+ = −J ′

+/2 ∓ (I ′
+ − K ′

+/2)

for the eigenstate

|±, X−〉 = 1
2 [(|A, 1〉 − |A, 2〉) ± (|B, 1〉 − |B, 2〉)],

and

E±
1− = −J ′

−/2 ∓ (I ′
− − K ′

−/2)

for the eigenstate

|±,Y −〉 = 1
2 [(|A, 3〉 − |A, 4〉) ± (|B, 3〉 − |B, 4〉)].

Among them, |+, 0〉 corresponds to the state induced by the
optical uniform excitation. Three eigenstates of the block
matrix H+

3 contain the component of |+, 0〉 because of the
hybridization via the off-diagonal elements (J ′

± − K ′
±)/

√
2.

We calculate an optical excitation spectrum using the
eigenstates obtained by diagonalization of the matrix
Eq. (C13). The response function for the optical d-p excitation
is given by

χ (ω) =
∑

m

| 〈ψm|Ĵd p|ψ0〉 |2δη(h̄ω − (Em − E0)), (C14)

where we assume Ĵd p = −iF
∑

j,α (T̂ +
R j ,α,X − T̂ −

R j ,α,X ), |ψm〉
(Em) is the eigenstate (eigenenergy) of the matrix H , and
δη(ε) is the Lorentzian with the broadening factor η. As-
suming |ψ0〉 = |ψAFM〉, the matrix element of this optical
response function is given by 〈ψm|Ĵd p|ψ0〉 ∝ 〈ψX,m|+, 0〉 =
(〈ψX,m|A, 0〉 + 〈ψX,m|B, 0〉)/

√
2, where |ψX,m〉 is the eigen-

state of the matrix H+
3 .

Note that the above simple approximation neglects the con-
tribution from J assuming J ′

X � J because the contributions
of J excitation may be weak in comparison with the local
spin-flip excitation by J ′

X . If we take into account the ef-
fects of J , spatial extended spin-wave-like excitations outside
of the local spin complexes by J ′

X possibly lead to satel-
lite magnonic sidebands. In the paramagnetic state at a high
temperature (that is larger than J but is lower than �p), the
optical spectrum around the exciton level may be evaluated
by χ (ω) ∝ ∑

m

∑
n e−βE (g)

n | 〈ψ (e)
m |Ĵd p|ψ (g)

n 〉 |2δη(h̄ω − (E (e)
m −

E (g)
n )), where β is the inverse temperature, and |ψ (g)

n 〉 (E (g)
n )

and |ψ (e)
m 〉 (E (e)

n ) are the eigenstates (eigenenergies) in the
ground-state and one-exciton sectors, respectively. In contrast
to the zero-temperature AFM state with symmetry breaking,
the various spin configurations in the one-exciton sector are
accessible because the many disordered spin configurations of
|ψ (g)

n 〉 are activated at high temperatures. Even in a few spin
models (e.g., the five spins coupled around the exciton site),
the intensity of the spectrum due to multiple spin states can
appear in the disordered ensemble. In macroscopic systems,
since numerous disordered spin configurations are activated
above the Néel temperature, the ensembles at higher tempera-
tures may lead to a featureless low broad spectrum without a
prominent peak.

[1] K. F. Mak and J. Shan, Nat. Photon. 10, 216 (2016).
[2] T. Mueller and E. Malic, npj 2D Mater. Appl. 2, 29 (2018).
[3] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T.

Amand, and B. Urbaszek, Rev. Mod. Phys. 90, 021001 (2018).

[4] J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55,
418 (1985).

[5] S. Y. Kim, T. Y. Kim, L. J. Sandilands, S. Sinn, M.-C. Lee, J.
Son, S. Lee, K.-Y. Choi, W. Kim, B.-G. Park, C. Jeon, H.-D.

205121-11

https://doi.org/10.1038/nphoton.2015.282
https://doi.org/10.1038/s41699-018-0074-2
https://doi.org/10.1103/RevModPhys.90.021001
https://doi.org/10.1103/PhysRevLett.55.418


TATSUYA KANEKO et al. PHYSICAL REVIEW B 108, 205121 (2023)

Kim, C.-H. Park, J.-G. Park, S. J. Moon, and T. W. Noh, Phys.
Rev. Lett. 120, 136402 (2018).

[6] J. Zhang, X. Cai, W. Xia, A. Liang, J. Huang, C. Wang, L. Yang,
H. Yuan, Y. Chen, S. Zhang, Y. Guo, Z. Liu, and G. Li, Phys.
Rev. Lett. 123, 047203 (2019).

[7] C. Lane and J.-X. Zhu, Phys. Rev. B 102, 075124 (2020).
[8] D. Bhoi, J. Gouchi, N. Hiraoka, Y. Zhang, N. Ogita, T.

Hasegawa, K. Kitagawa, H. Takagi, K. H. Kim, and Y.
Uwatoko, Phys. Rev. Lett. 127, 217203 (2021).

[9] K. Yang, G. Wang, L. Liu, D. Lu, and H. Wu, Phys. Rev. B 104,
144416 (2021).

[10] J. Klein, B. Pingault, M. Florian, M.-C. Heißenbüttel, A.
Steinhoff, Z. Song, K. Torres, F. Dirnberger, J. B. Curtis, M.
Weile, A. Penn, T. Deilmann, R. Dana, R. Bushati, J. Quan, J.
Luxa, Z. Sofer, A. Alù, V. M. Menon, U. Wurstbauer et al., ACS
Nano 17, 5316 (2023).

[11] K. S. Burch, D. Mandrus, and J.-G. Park, Nature (London) 563,
47 (2018).

[12] S. Yang, T. Zhang, and C. Jiang, Adv. Sci. 8, 2002488 (2021).
[13] Y. J. Bae, J. Wang, A. Scheie, J. Xu, D. G. Chica, G. M.

Diederich, J. Cenker, M. E. Ziebel, Y. Bai, H. Ren, C. R. Dean,
M. Delor, X. Xu, X. Roy, A. D. Kent, and X. Zhu, Nature
(London) 609, 282 (2022).

[14] S. Kang, K. Kim, B. H. Kim, J. Kim, K. I. Sim, J.-U.
Lee, S. Lee, K. Park, S. Yun, T. Kim, A. Nag, A. Walters,
M. Garcia-Fernandez, J. Li, L. Chapon, K.-J. Zhou, Y.-W. Son,
J. H. Kim, H. Cheong, and J.-G. Park, Nature (London) 583,
785 (2020).

[15] X. Wang, J. Cao, Z. Lu, A. Cohen, H. Kitadai, T. Li, Q. Tan,
M. Wilson, C. H. Lui, D. Smirnov, S. Sharifzadeh, and X. Ling,
Nat. Mater. 20, 964 (2021).

[16] K. Hwangbo, Q. Zhang, Q. Jiang, Y. Wang, J. Fonseca, C.
Wang, G. M. Diederich, D. R. Gamelin, D. Xiao, J.-H. Chu,
W. Yao, and X. Xu, Nat. Nanotechnol. 16, 655 (2021).

[17] C. A. Belvin, E. Baldini, I. O. Ozel, D. Mao, H. C. Po, C. J.
Allington, S. Son, B. H. Kim, J. Kim, I. Hwang, J. H. Kim,
J.-G. Park, T. Senthil, and N. Gedik, Nat. Commun. 12, 4837
(2021).

[18] F. Dirnberger, R. Bushati, B. Datta, A. Kumar, A. H.
MacDonald, E. Baldini, and V. M. Menon, Nat. Nanotechnol.
17, 1060 (2022).

[19] D. D. Sell, J. Appl. Phys. 39, 1030 (1968).
[20] R. L. Greene, D. D. Sell, W. M. Yen, A. L. Schawlow, and R. M.

White, Phys. Rev. Lett. 15, 656 (1965).
[21] D. D. Sell, R. L. Greene, and R. M. White, Phys. Rev. 158, 489

(1967).
[22] R. J. Elliott, M. F. Thorpe, G. F. Imbusch, R. Loudon, and J. B.

Parkinson, Phys. Rev. Lett. 21, 147 (1968).
[23] S. Freeman and J. J. Hopfield, Phys. Rev. Lett. 21, 910 (1968).

[24] J. B. Parkinson and R. Loudon, J. Phys. C: Solid State Phys. 1,
1568 (1968).

[25] T. Tonegawa, Prog. Theor. Phys. 41, 1 (1969).
[26] T. Fujiwara and Y. Tanabe, J. Phys. Soc. Jpn. 32, 912 (1972).
[27] If Vd p > �p, the lowest energy of the two-hole cluster may be

replaced by the energy of the configuration with two holes in
two p orbitals (∼ 2�p).

[28] P. Babkevich, V. M. Katukuri, B. Fåk, S. Rols, T. Fennell, D.
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