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Green’s function zeros in Fermi surface symmetric mass generation
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The Fermi surface symmetric mass generation (SMG) is an intrinsically interaction-driven mechanism that
opens an excitation gap on the Fermi surface without invoking symmetry-breaking or topological order. We
explore this phenomenon within a bilayer square lattice model of spin-1/2 fermions, where the system can be
tuned from a metallic Fermi liquid phase to a strongly interacting SMG insulator phase by an interlayer spin-spin
interaction. The SMG insulator preserves all symmetries and has no mean-field interpretation at the single-
particle level. It is characterized by zeros in the fermion Green’s function, which encapsulate the same Fermi
volume in momentum space as the original Fermi surface, a feature mandated by the Luttinger theorem. Utilizing
both numerical and field-theoretical methods, we provide compelling evidence for these Green’s function zeros
across both strong and weak coupling regimes of the SMG phase. Our findings highlight the robustness of the
zero Fermi surface, which offers promising avenues for experimental identification of SMG insulators through
spectroscopy experiments despite potential spectral broadening from noise or dissipation.
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I. INTRODUCTION

Symmetric mass generation (SMG) [1–8] is an interaction-
driven mechanism that creates many-body excitation gaps
in anomaly-free fermion systems without condensing any
fermion bilinear operator or developing topological orders.
It has emerged as a alternative symmetry-preserving ap-
proach for mass generation in relativistic fermion systems,
which is distinct from the traditional symmetry-breaking
Higgs mechanism [9–14]. The prospect of SMG offering
a potential solution to the long-standing fermion doubling
problem [15–21] has sparked significant interest in the lat-
tice gauge theory community [22–46]. In condensed matter
physics, SMG was initially explored within the framework
of the interaction-reduced classification of fermionic sym-
metry protected topological (SPT) states [1,2,47–68], and
has been recently extended to systems with Fermi sur-
faces [69–74], given the growing understanding that Fermi
liquids can be perceived as fermionic SPT states within the
phase space [75,76].

One important feature of the SMG gapped state lies in
the zeros of fermion Green’s function [77–82] at low energy.
Investigations reveal that the poles of the fermion Green’s
function in the pristine gapless fermion state will be replaced
by zeros in the gapped SMG state as the fermion system goes
across the SMG transition upon increasing the interaction
strength. This pole-to-zero transition was postulated [78] as
a direct indicator of the SMG transition [80,83] that can be
probed by spectroscopy experiments. However, the presence
of similar zeros in the Green’s function within Fermi surface
SMG states has not been investigated yet, and it is the focus
of our present research.

Fermi surface SMG [74] refers to the occurrence of SMG
phenomena on Fermi surfaces with nonzero Fermi volumes. It
describes scenarios where the fermion interaction transforms
a gapless Fermi liquid state (metal) into a nondegener-
ate, gapped, direct product state (trivial insulator), without

breaking any symmetry (for example, without invoking
Cooper pairing or density wave orders). Such a metal-
insulator transition is viable when Fermi surfaces collabo-
ratively cancel the Fermi surface anomaly [74,84,85]. This
anomaly can be perceived as a mixed anomaly between the
translation symmetry and the charge conservation U(1) sym-
metry on the lattice [84–90], or as an anomaly of an emergent
loop LU(1) symmetry [91–93] in the infrared theory.

In this work, we present evidence of robust Green’s func-
tion zeros in Fermi surface SMG states. Let t be the energy
scale of band dispersion and J be the energy scale of SMG
gapping interaction, we investigate the problem from two
parameter regimes.

(1) Deep in the SMG phase (J/t � 1), we start with an
exact-solvable SMG product state in a lattice model and cal-
culate the fermion Green’s function by treating the fermion
hopping as perturbation [94]. We find that the Green’s func-
tion GSMG(ω, k) deep in the SMG phase takes the following
form

GSMG(ω, k) = ω + αεk/J2

(ω − εk/2)2 − J2
, (1)

where (ω, k) labels the frequency-momentum of the fermion.
εk is the energy dispersion of the original band structure in the
free-fermion limit, and α is an order-one number depending
on other details of the system. One salient feature of GSMG is
that it has a series of zeros at ω = −αεk/J2 in the frequency-
momentum space. At ω = 0, the Green’s function zeros form
a zero Fermi surface that replaces the original Fermi surface.

(2) If the SMG phase is adjacent to a spontaneous sym-
metry breaking (SSB) phase, we use perturbative field theory
to argue that the Green’s function in the SMG phase near the
symmetry-breaking transition (J/t � 1) should take the form
of

G′
SMG(ω, k) = ω + εk

ω2 − ε2
k − �2

0

(2)
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where we assume that the SSB order parameter retains a finite
amplitude �0 in the SMG phase, but its phase is randomly
fluctuating [95]. Again, G′

SMG features a series of zeros at
ω = −εk, with the same zero Fermi surface.

Many previous works [96–99] suggest that the Luttinger
theorem [100] will not be violated in the presence of the
interaction that preserves the translation and charge conser-
vation symmetry. However, quasiparticles (poles of Green’s
function) may not exist in the strongly correlated systems, the
Fermi surface is instead defined by the surface of Green’s
function zeros at zero frequency, i.e., G(0, k) = 0, and the
Green’s function changes sign on the two sides of the zero
Fermi surface, or the so-called Luttinger surface [91,98,101–
103]. This can be regarded as the remnant of the conventional
Fermi surface in the strongly interacting gapped phase. Our
analysis shows that the volume enclosed by the zeros of the
Green’s function in the SMG phase is the same as the Fermi
volume in the Fermi liquid phase, which agrees with the
Luttinger theorem.

The paper will be structured as follows. We start by in-
troducing a concrete lattice model for Fermi surface SMG in
Sec. II A and briefly discussing its phase diagram. We give
theoretical arguments for Green’s function zeros in the SMG
phase from the Luttinger theorem in Sec. II B (general), and
the particle-hole symmetry in Sec. II C (specific). We provide
numerical and field theoretical evidence of Green’s function
zeros from both the strong coupling Sec. III A and the weak
coupling Sec. III B perspectives. We comment on the robust-
ness of probing the zero structure in spectroscopy experiments
in Sec. IV. We conclude in Sec. V with a discussion of
the relevance of our model to the nickelate superconductor
La3Ni2O7.

II. ARGUMENT FOR GREEN’S FUNCTION ZEROS

A. Lattice model and phase diagram

As a specific example of Fermi surface SMG, we consider
a bilayer square lattice [104–106] model of spin-1/2 fermions,
as illustrated in Fig. 1(a). Let cilσ be the fermion annihilation
operator on site-i layer l (l = 1, 2) and spin σ (σ =↑,↓). The
model is described by the following Hamiltonian:

H = −t
∑

〈i j〉,l,σ
(c†

ilσ c jlσ + H.c.) + J
∑

i

Si1 · Si2, (3)

where Sil := 1
2 c†

ilσ σσσ ′cilσ ′ denotes the spin operator with
σ := (σ 1, σ 2, σ 3) being the Pauli matrices. The Hamil-
tonian H contains a nearest-neighbor hopping t of the
fermions within each layer and an interlayer Heisenberg
spin-spin interaction with antiferromagnetic coupling J >

0. The Heisenberg interaction should be understood as a
four-fermion interaction, that there is no explicitly formed
local moment degrees of freedom. Unlike the standard t-J
model [107], we do not impose any on-site single-occupancy
constraint [108] here. We assume that the fermions are half-
filled in each layer.

In the noninteracting limit (J/t → 0), the ground state
of the tight-binding Hamiltonian in Eq. (3) is a Fermi liq-
uid with a fourfold degenerated (two layers and two spins)
square-shaped Fermi surface in the Brillouin zone, as shown

FIG. 1. (a) Bilayer square lattice model with intralayer hopping
and interlayer spin interaction. (b) Fermi sea and Fermi surface at
J = 0 in the Brillouin zone. A high-symmetry path is traced out in
gray. (c) A conjectured phase diagram consist of a Fermi liquid (FL)
fixed point, a spontaneous symmetry breaking (SSB) phase, a XY
transition, and a SMG insulating phase.

in Fig. 1(b). The fermion system is gapless in this limit.
However, given that the fermion carries one unit charge under
the U(1) symmetry, the Fermi surface anomaly vanishes due
to [76,87]

4∑
a=1

qaνa = 4 × 1 × 1

2
= 0 mod 1, (4)

where a indexes the fourfold degenerated Fermi surface with
qa = 1 being the U(1) charge carried by the fermion and
νa = 1/2 being the filling fraction. This implies there must be
a way to gap out the Fermi surface into a trivial insulator while
preserving both the translation and the U(1) charge conserva-
tion symmetries. Nevertheless, these symmetry requirements
are restrictive enough to rule out all possible fermion bilinear
gapping mechanisms, leaving Fermi surface SMG the only
available option.

One possible SMG gapping interaction is the interlayer
Heisenberg spin-spin interaction J in Eq. (3). In the strong
interaction limit (J/t → ∞), the system has a unique ground
state, given by

|0〉 =
⊗

i

(c†
i1↑c†

i2↓ − c†
i1↓c†

i2↑)|vac〉, (5)

which is a direct product of the interlayer spin-singlet state on
every site. |vac〉 stands for the vacuum state of fermions (i.e.,
cilσ |vac〉 = 0). The SMG ground state |0〉 does not break any
symmetry and does not have topological order. All excitations
are gapped by an energy of the order J from the ground state.
Any local perturbation far below the energy scale J can not
close this excitation gap, so the SMG phase is expected to be
stable in a large parameter regime as long as J � t .

Given the distinct ground states in the two limits of J/t ,
we anticipate at least one quantum phase transition separating
the Fermi liquid and the SMG insulator. However, due to the
perfect nesting of the Fermi surface, the Fermi liquid state is
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unstable towards spontaneous symmetry breaking (SSB) upon
infinitesimal interaction, so a more plausible phase diagram
should look like Fig. 1(c), where an intermediate SSB phase
sets in. A mean-field analysis based on the Fermi liquid fixed
point shows that there are two degenerated leading instabil-
ities: (i) the interlayer exciton condensation (EC) and (ii)
the interlayer superconductivity (SC). They are respectively
described by the following order parameters

φEC =
∑
i,σ

(−)ic†
i1σ ci2σ , φSC =

∑
i,σ

(−)σ c†
i1σ c†

i2σ̄ . (6)

Here, (−)i denotes the stagger sign on the square lattice of
lattice momentum (π, π ). (−)σ = +1 for σ =↑ and −1 for
σ =↓. σ̄ stands for the opposite spin of σ .

The energetic degeneracy of these two SSB orders can
be explained by the fact that their order parameters φEC

and φSC are related by a particle-hole transformation ci2σ →
(−)i(−)σ c†

i2σ̄ in the second layer only, which is a symmetry of
the model Hamiltonian in Eq. (3). The EC 〈φEC〉 
= 0 sponta-
neously breaks the translation and interlayer U(1) symmetry,
and the SC 〈φSC〉 
= 0 spontaneously breaks the total U(1)
symmetry. Both of them gap out the Fermi surfaces fully,
leading to an SSB insulator (or superconductor). The SSB and
SMG phases are likely separated by an XY transition, at which
the symmetry gets restored. We will leave the numerical ver-
ification of the proposed phase diagram Fig. 1(c) for future
study, as the main focus of this research is to investigate the
structure of fermion Green’s function in the SMG insulating
phase.

We note that the model Eq. (3) was also introduced as
the “coupled ancilla qubit” model to describe the pseudo-gap
physics in the recent literature [70,72,73]. Its honeycomb
lattice version has been investigated in recent numerical
simulations [109], where a direct quantum phase transition
between semimetal and insulator phases was observed.

B. Luttinger theorem and Green’s function zeros

The Luttinger theorem [100,110] asserts that in a fermion
many-body system with lattice translation and charge U(1)
symmetries, the ground state charge density 〈N〉/V [i.e., the
U(1) charge per unit cell] is tied to the momentum space
volume in which the real part of the zero-frequency fermion
Green’s function is positive Re G(0, k) > 0. This can be for-
mally expressed as

〈N〉
V

= Nf

∫
Re G(0,k)>0

d2k
(2π )2

. (7)

Here, the U(1) symmetry generator N = ∑
i,l,σ c†

ilσ cilσ mea-
sures the total charge, and the volume V = ∑

i 1 is defined as
the number of unit cells in the lattice system. Nf = 4 counts
the fermion flavor number (or the Fermi surface degeneracy),
including two layers and two spins. The Green’s function
G(ω, k) in Eq. (7) is defined by the fermion two-point cor-
relation as

〈clσ (ω, k)cl ′σ ′ (ω, k)†〉 = G(ω, k)δll ′δσσ ′ . (8)

The correlation function is proportional to an identity ma-
trix in the flavor (layer-spin) space because of the layer

U(1) : clσ → e(−)l iθclσ , the layer interchange Z2 : c1σ ↔ c2σ ,
and the spin SU(2) : clσ → (eiθ·σ/2)σσ ′clσ ′ symmetries.

The Luttinger theorem applies to the Fermi liquid and
SMG states in the bilayer square lattice model Eq. (3), as both
states preserve the translation and charge U(1) symmetries.
Given that the fermions are half-filled (ν = 1/2) in the system,
the Fermi volume should be∫

Re G(0,k)>0

d2k
(2π )2

= 〈N〉
V Nf

= ν = 1

2
. (9)

The Fermi volume is enclosed by the Fermi surface, across
which Re G(0, k) changes sign. The sign change can be
achieved either by poles or zeros in the Green’s function.

In the Fermi liquid state, the required Fermi volume is
satisfied via Green’s function poles along the Fermi surface,
as pictured in Fig. 1(b). However, the SMG insulator is a fully
gapped state of fermions that has no low-energy quasiparti-
cles (below the energy scale J). Consequently, the Green’s
function G(ω, k) cannot develop poles at ω = 0, meaning
the required Fermi volume can only be satisfied by Green’s
function zeros. Therefore the Lutinger theorem implies that
there must be robust Green’s function zeros at low energy
in the SMG phase, and the zero Fermi surface must enclose
half of the Brillouin zone volume in place of the original pole
Fermi surface.

It is known that the Luttinger theorem can be violated in
the presence of topological order [86,88,102,111–117]. How-
ever, this concern does not affect our discussion in the SMG
phase, because the SMG insulator is a trivial insulator without
topological order.

C. Particle-hole symmetry and zero Fermi surface

The Luttinger theorem only constrains the Fermi volume
but does not impose requirements on the shape of the Fermi
surface. However, in this particular example of the bilayer
square lattice model Eq. (3), the system has sufficient sym-
metries to determine even the shape of the Fermi surface.

The key symmetry here is a particle-hole symmetry ZC
2 ,

which acts as

cilσ → (−)i(−)σ c†
ilσ̄ . (10)

The Hamiltonian H in Eq. (3) is invariant under this trans-
formation. Since the Green’s function is an identity matrix in
the flavor space Eq. (8) which is invariant under any flavor
basis transformation, we can omit the flavor indices and fo-
cus on the frequency-momentum dependence of the Green’s
function, written as

G(ω, k) =
∑

t,x,t ′,x′
〈c(t, x)c(t ′, x′)†〉ei(ω(t−t ′ )−k·(x−x′ )). (11)

Given Eq. (10), the fermion field c(t, x) transforms under the
ZC

2 symmetry as

c(t, x) → c(t, x)†eiQ·x, c(t, x)† → c(t, x)e−iQ·x, (12)

where Q = (π, π ) is the momentum associated with the stag-
ger sign factor (−)i on the square lattice. As a consequence,
the Green’s function transforms as

G(ω, k) → −G(−ω, Q − k). (13)

205117-3



DA-CHUAN LU, MENG ZENG, AND YI-ZHUANG YOU PHYSICAL REVIEW B 108, 205117 (2023)

Furthermore, there are also two diagonal reflection symme-
tries on the square lattice, which maps k = (kx, ky) to (ky, kx )
or (−ky,−kx ) in the momentum space.

Both the Fermi liquid and the SMG states preserve the
particle-hole symmetry ZC

2 and the lattice reflection sym-
metry, which requires the Green’s function to be invariant
under the combined symmetry transformations. So the zero-
frequency Green’s function must satisfy

G(0, kx, ky) = −G(0, π ± ky, π ± kx ), (14)

meaning that the sign change of G(0, k) should happen along
kx ± ky = π mod 2π , which precisely describes the shape of
the Fermi surface. The Fermi surface is polelike in the Fermi
liquid state and becomes zerolike in the SMG state, but its
shape and volume remain the same.

However, it should be noted that the precise overlap of the
zero Fermi surface in the SMG insulator and the pole Fermi
surface in the Fermi liquid is a fine-tuned feature of the bilayer
square lattice model Eq. (3). In more general cases, such as
including further neighbor hopping in the model, the particle-
hole symmetry would cease to exist, thus the invariance in the
shape of the Fermi surface is no longer guaranteed. Neverthe-
less, the Luttinger theorem can still ensure the invariance in
the Fermi volume, thereby providing the SMG insulator with
robust Green’s function zeros.

To verify this proposition, we will analyze the behavior
of the Green’s function in the SMG phase from both strong
and weak coupling perspectives in Sec. III. Our calculations
suggest that, for this specific model, the SMG state indeed
possesses a Fermi surface (of Green’s function zeros) that is
identical in shape to that in the Fermi liquid state.

III. EVIDENCE OF GREEN’S FUNCTION ZEROS

A. Strong coupling analysis

We will first focus on the strong interaction limit (J/t →
∞), where the system is deep in the SMG phase and the
exact ground state is known [see Eq. (5)]. We start from this
limit and turn on the hopping term as a perturbation. We
employ exact diagonalization and cluster perturbation theory
(CPT) [94,118] to compute the Green’s function in the SMG
phase. The details of our method are described in Appendix.
It is valid to use a small cluster to reconstruct the Green’s
function in the SMG phase since the ground state is close
to a product state that does not have long-range correlation
or long-range quantum entanglement. This is quite different
from the Hubbard model, where the Fermi surface anomaly
is nonvanishing, and the infrared phase must be either SSB
order or topological order [86,111,114,115]. In either case, the
ground state wave functions cannot be reconstructed from the
small clusters due to the long-range correlation/entanglement.
This argument has been noted in the original paper on the CPT
method [94].

To be specific, we first partition the square lattice (in-
cluding both layers) into 2 × 2 square clusters as shown in
Fig. 2. Let us first ignore the intercluster hopping. Within
each cluster, we represent the Hamiltonian in the many-body
Hilbert space and use the Lanczos method to obtain the lowest
∼2000 eigenvalues and eigenvectors. The Green’s function
in the cluster can then be obtained by the Källén-Lehmann

FIG. 2. Partition the square lattice into 2 × 2 clusters. The many-
body Hamiltonian is exactly diagonalized within each cluster. The
effect of intercluster hopping is included in an RPA-like approach.

representation

G0(ω)i j =
∑
m>0

〈0|ci|m〉〈m|c†
j |0〉

ω − (Em − E0)
+ 〈m|ci|0〉〈0|c†

j |m〉
ω + (Em − E0)

, (15)

where |m〉 is the mth excited state with energy Em, and |0〉 is
the ground state with energy E0, whose wave function was
previously given in Eq. (5). Since the four fermion flavors
(two spins and two layers) are identical under the internal
flavor symmetry, we can drop the flavor index in the Green’s
function and only focus on one particular flavor with the site
indices i, j, where i, j = 1, 2, 3, and 4 as indicated in Fig. 2.
The convergence of the Green’s function can be verified by
including more eigenstates from the Lanczos method. We
checked that increasing the number of eigenpairs to ∼8000
will not change the result significantly, indicating that the
result with ∼2000 eigenpairs has already converged.

Now we restore the intercluster hoping to extend the
Green’s function from small clusters to the infinite lattice. The
Green’s function of superlattice momentum k can be obtained
from the random phase approximation (RPA) approach [94],

G(ω, k)i j =
(

G0(ω)

1 − T (k)G0(ω)

)
i j

, (16)

where the T (k) matrix

T (k) = −t

⎛
⎜⎜⎜⎜⎝

0 e−i2kx 0 ei2ky

ei2kx 0 ei2ky 0

0 e−i2ky 0 ei2kx

e−i2ky 0 e−i2kx 0

⎞
⎟⎟⎟⎟⎠ (17)

describes the intercluster fermion hopping. The resulting
Green’s function G(ω, k)i j is defined in the folded Brillouin
zone k ∈ (−π/2, π/2]×2 with sublattice indices i, j. To un-
fold the Green’s function to the original Brillouin zone k ∈
(−π, π ]×2, we perform the following (partial) Fourier trans-
form

G(ω, k) = 1

L

∑
i, j

e−ik·(ri−r j )G(ω, k)i j . (18)

We numerically calculated the unfolded Green’s func-
tion G(ω, k) using the above-mentioned cluster perturbation
method. We take a large interaction strength J/t = 8 deep in
the SMG phase and present the resulting Green’s function
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FIG. 3. Fermion Green’s function Eq. (18) deep in the SMG
insulator phase, at J = 8t . (a) The imaginary part (spectral func-
tion) −2 Im G(ω + i0+, k) shows the pole (spectral peak) structure.
(b) The real part Re G(ω, k) shows the pole (divergence) and zero
(purple contour) structures. (c) Same as (b) but zoomed in near ω = 0
to show the dispersion of Green’s function zeros.

in Fig. 3. From Fig. 3(a), the poles of the Green’s function
form two dispersing bands around ω = ±J , which resembles
the upper and lower Hubbard bands in the Hubbard model.
This indicates the quasiparticles are fully gapped in the SMG
phase. Meanwhile, from Figs. 3(b) and 3(c), the zeros of
the Green’s function appear around ω = −αεk/J2 with some
nonuniversal but positive coefficient α > 0. We find that the
“dispersion” of zeros is reversed compared to the original
band dispersion εk. In Fig. 4, we also numerically confirmed
that the “bandwidth” wzero of zeros is suppressed by the inter-
action J as wzero ∼ J−2 as J → ∞.

Building upon the above observation of the poles and zeros
of the Green’s function, we put forth the following empirical
formula:

GSMG(ω, k) = ω + αεk/J2

(ω − εk/2)2 − J2
, (19)

FIG. 4. Scaling of the Green’s function zero “bandwidth” wzero

with the interaction strength J . Circles represent the numerically
calculated wtext at different J , and the line is a fit to the data.

as an approximate description of our numerical result Eq. (18).
An important aspect of this formula is the positioning of
the Green’s function zeros precisely around the initial Fermi
surface (where εk = 0) at ω = 0. This is indicated by the small
arrows in Fig. 3(c).

Assuming Re GSMG(0, k) = 0 as the definition of the zero
Fermi surface in the SMG phase, it would encompass the
same Fermi volume as the pole Fermi surface in the Fermi
liquid phase. As both translation and charge conservation
symmetries remain unbroken in the SMG phase, the Luttinger
theorem mandates the preservation of the Fermi volume.
Given that the SMG state is a fully gapped trivial insulator,
there is no pole (no quasiparticle) at low energy, thus the
Green’s function can only rely on zeros to fulfill the Fermi
volume required by the Luttinger theorem, which is explicitly
demonstrated by Eq. (19).

B. Weak coupling analysis

Nevertheless, SMG is not the sole mechanism for gapping
out the Fermi surface. SSB might also open a full gap on the
Fermi surface, which corresponds to the Higgs mechanism for
fermion mass generation. Specifically, in the bilayer square
lattice model Eq. (3), due to the perfect nesting of the Fermi
surface, the Fermi liquid exhibits strong instability toward
SSB orders. Without loss of generality, we will focus on the
interlayer exciton condensation in the weak coupling limit.
The corresponding order parameter φEC was introduced in
Eq. (6), which carries momentum Q = (π, π ). The exciton
condensation leads to an SSB insulating phase, as noted in
the phase diagram Fig. 1(c). However, there are significant
differences between the SMG insulator and the SSB insulator,
especially in terms of the structure of Green’s function zeros.

In the SSB insulator phase, the Brillouin zone folds by the
nesting vector Q = (π, π ). The fermion Green’s function can
be written in the (ck, ck+Q)ᵀ basis (omitting layers and spins
freedom) as

GSSB(ω, k) = ωσ 0 + εkσ
3 + Re �σ 1 + Im �σ 2

ω2 − ε2
k − |�|2 , (20)

where � = J〈φEC〉 denotes the exciton gap induced by the
exciton condensation 〈φEC〉 
= 0. The properties of GSSB are
illustrated in Fig. 5. The spectral function in Fig. 5(a) depicts
the quasiparticle peak along the band dispersion, reflecting a
gapped (insulating) band structure.

Since GSSB is a matrix, its zero structure should be de-
fined by its determinant being zero, i.e., det GSSB(ω, k) = 0,
which is the only way to define the zero structure in a basis
independent manner. Figure 5(b) indicates the determinant of
GSSB remains the same sign within the band gap induced by
the exciton condensation. Since GSSB does not preserve the
translation symmetry (as � → −� is translation-odd), and �

is nonzero, det GSSB does not have zeros crossing ω = 0 at the
original Fermi surface. These two observations are linked: the
absence of translation symmetry makes the Luttinger theorem
ineffective, hence there is no expectation for the zero Fermi
surface in the SSB insulator.

As the interaction J intensifies, the SSB insulator ulti-
mately transitions into the SMG insulator, as depicted in
the phase diagram Fig. 1(c). During this transition, the
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FIG. 5. Fermion Green’s function Eq. (20) GSSB in the SSB in-
sulator phase, assuming a gap size of |�| = t . (a) The imaginary
part −2 Im G(ω + i0+, k)11 in the 〈c†

kck〉 channel, showing the pole
(quasiparticle peak) along gapped bands. (b) The real part of the
determinant Re det G(ω, k). No zero within the gap. In both plots,
the frequency is shifted by a small imaginary part ω → ω + 0.01it
for better visualization of spectral features.

broken symmetry is restored, yet the fermion excitation gap
remains intact, similar to the pseudo-gap phenomenon seen
in correlated materials [119,120]. In the context of modeling
fermion spectral functions, the pseudogap phenomenon can
be interpreted as a consequence of the phase (or orientation)
fluctuations of fermion bilinear order parameters [121–128].
In this picture, the order parameter � = �0eiθ maintains a
finite amplitude �0 as we enter the SMG phase from the
adjacent SSB phase, but its phase θ is disordered by long-
wavelength random fluctuations. Consequently, on the large
scale, � cannot condense to form long-range order; but on a
smaller scale, �0 still provides a local excitation gap every-
where for fermions.

Based on this picture of the SMG state, the simplest treat-
ment is to focus on the long wavelength fluctuation of � and
estimate its self-energy correction for the fermion by

�(ω, k) = = E
�

�̂†G0(ω, k)�̂ = �2
0

ωσ 0 + εkσ 3
, (21)

where the vertex operator is �̂ := Re �σ 1 + Im �σ 2 and the
bare Green’s function is G0(ω, k) = (ωσ 0 − εkσ

3)−1. Here
we have assumed that the correlation length ξ of the bosonic
field � is long enough that its momentum is negligible for
fermions. This assumption is valid near the transition to the
SSB phase, as the correlation length diverges (ξ → ∞) at the
transition.

Using this self-energy to correct the bare Green’s function,
we obtain

G(ω, k) = (G0(ω, k)−1 − �(ω, k))−1

= ωσ 0 + εkσ
3

ω2 − ε2
k − �2

0

. (22)

Since the translation symmetry has been restored in the SMG
phase, we can unfold the Green’s function back to the original
Brillouin zone [by taking the G(ω, k)11 component], which
leads to a weak coupling description of the Green’s function

FIG. 6. Fermion Green’s function Eq. (23) G′
SMG in the SMG

insulator phase near the phase transition to an adjacent SSB phase,
assuming a local gap size of �0 = t . (a) The imaginary part (spectral
function) −2 Im G(ω + i0+, k) shows the pole (quasiparticle peak)
along gapped bands. (b) The real part Re G(ω, k) exhibits the zero
(purple contour) crossing ω = 0 at the original Fermi surface. In
both plots, the frequency is shifted by a small imaginary part ω →
ω + 0.01it for better visualization of spectral features.

in the shallow SMG phase near the transition to the SSB phase

G′
SMG(ω, k) = ω + εk

ω2 − ε2
k − �2

0

. (23)

A more rigorous treatment of a similar problem can be found
in Ref. [95], which includes finite momentum fluctuations
of �. The major effect of these fluctuations is to introduce
a spectral broadening for the fermion Green’s function as
if replacing ω → ω + iδ in Eq. (23). It was also found that
the broadening δ ∼ ξ−1 scales inversely with the correlation
length ξ of the order parameter, which justifies our simple
treatment in the large-ξ regime. Similar Green’s functions as
Eq. (23) was previously constructed to describe non-Fermi
liquid [98] statisfying the Luttinger theorem. However, its
physical meaning is now clarified as Green’s function in the
SMG phase.

The features of G′
SMG in Eq. (23) are presented in Fig. 6.

When comparing Figs. 6(a) and 5(a), we can observe that the
pole structure of G′

SMG is identical to that of GSSB (in the
diagonal component), both showcasing a gapped spectrum.
However, they significantly differ in their zero structures, as
seen by comparing Figs. 6(b) and 5(b). Due to the restoration
of symmetry, the low-energy zeros reemerge in the Green’s
function in the SMG phase. Additionally, its zero Fermi sur-
face perfectly aligns with the original pole Fermi surface,
fulfilling the Luttinger theorem’s requirement for the Fermi
volume.

Comparing the Green’s function in the SMG phase derived
from the strong coupling analysis Eq. (19) and the weak
coupling analysis Eq. (23) (see also Figs. 3 and 6), we find that
despite the apparent difference in high-energy spectral fea-
tures, the zero Fermi surface defined by G(0, k) = 0 remains a
resilient low-energy feature. The persistent zero Fermi surface
in the SMG phase is a consequence of the Luttinger theorem.

Nonetheless, besides the low-energy zero structure, it is
also intriguing to understand how the high-energy spectral
feature deforms from the weak coupling case to the strong
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FIG. 7. (a) Broadened spectral function from the one in Fig. 3.
(b) Reconstructed Green’s function real part by the KK relation,
showing robust Green’s function zeros (purple contour) crossing
ω = 0.

coupling case. However, this problem requires nonperturba-
tive numerical simulations. Fortunately, the bilayer square
lattice model Eq. (3) admits a sign-problem-free [129] quan-
tum Monte Carlo [130–134] simulation. We will leave this
interesting direction for future research.

IV. PROBING GREEN’S FUNCTION ZEROS

While Green’s function zeros are an important feature of
the SMG insulator, they are not directly observable in ex-
periments. Spectroscopy experiments, such as angle-resolved
photoemission spectroscopy (ARPES), can directly probe the
fermion’s spectral function A(ω, k) = −2 Im G(ω + i0+, k),
which is the imaginary part of Green’s function. By employ-
ing the Kramers-Kronig (KK) relation to recover the real part
of Green’s function from the spectral function,

Re G(ω, k) = 1

2π
P

∫
dω′ A(ω′, k)

ω′ − ω
, (24)

we can indirectly study the zero structure of the Green’s func-
tion.

However, the spectral function might be broadened in ex-
perimental data due to noise or dissipation. We are interested
in studying how sensitive the reconstructed Green’s function
zero is to these disturbances, in order to understand the sta-
bility of the method. Following Sec. III A, we start from the
strong coupling limit and use the CPT approach to calculate
Green’s function. To account for the spectral broadening ef-
fect, we replace ω with ω + iδ, where δ is relatively large,
say, about the order of the hopping t . Based on the broadened
spectral function in Fig. 7(a), we use the KK relation to
reconstruct the real part, as shown in Fig. 7(b). We find that
the zero Fermi surface maintains the same shape, but the zero
“dispersion” bandwidth gets larger.

The increase in bandwidth can be understood by taking the
SMG Green’s function GSMG(ω, k) in Eq. (19), and solving
for its zeros Re G(ω + iδ, k) = 0. To the leading order of 1/J
and δ, the solution is given by

ω(k) = −
(

1 + δ2

α

)αεk

J2
+ · · · , (25)

meaning that the bandwidth of Green’s function zero disper-
sion will increase by δ2/α, but the corresponding Luttinger
surface remains unchanged. Therefore the Green’s function
zero in the SMG phase is a robust feature that can be poten-
tially identified from spectroscopy measurements, even in the
presence of noises or dissipations.

V. SUMMARY AND DISCUSSIONS

In this paper, we investigated the Fermi surface SMG in a
bilayer square lattice model. A crucial finding of this study
lies in the robust Green’s function zero in the SMG phase.
Traditionally, a Fermi liquid state is characterized by poles in
the Green’s function along the Fermi surface. However, as the
fermion system is driven into the SMG state by interaction
effects, these poles are replaced by zeros. This is a robust
phenomenon underlined by the constraints of the Luttinger
theorem.

Our exploration is not limited to theoretical assertions.
We also offer a tangible demonstration of this occurrence
in the bilayer square lattice model. By applying both strong
and weak coupling analyses, we provide a comprehensive
portrayal of the fermion Green’s function across different
interaction regimes. We highlight that the emergence of the
zero Fermi surface is not an ephemeral or fine-tuned phe-
nomenon, but rather a robust and enduring feature of the SMG
phase. We show that even when the system is subjected to
spectral broadening, the zero Fermi surface persists, retaining
the Fermi volume.

The results of this study confirm the robustness of the zero
Fermi surface and underscore the possibility of observing it
in experimental setups, such as through ARPES. Despite not
being directly observable, the zero structure of the Green’s
function could be inferred indirectly via the KK relation.

The bilayer square lattice model may be relevant to the
nickelate superconductor recently discovered in pressurized
La3Ni2O7 [135,136], which is a layered two-dimensional ma-
terial where each layer consists of nickel atoms arranged in
a bilayer square lattice. The Fermi surface is dominated by
dz2 and dx2−y2 electrons of Ni. The dz2 electron has a rela-
tively small intralayer hopping t due to the rather localized
dz2 orbital wave function in the xy plane but enjoys a large
interlayer antiferromagnetic Heisenberg interaction J due to
the super-exchange mechanism mediated by the apical oxy-
gen. This likely puts the dz2 electrons in an SMG insulator
phase in the bilayer square lattice model and opens up op-
portunities to investigate the proposed Green’s function zeros
in real materials. The potential implication of SMG physics
on the nickelate high-Tc superconductor still requires further
theoretical research in the future.
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APPENDIX: CLUSTER PERTURBATION THEORY

Here we review the details of cluster perturbation theory
(CPT) originally developed in [94]. Denote the superlattice
lattice points by R, then the position of any original lattice
point would be given by R + r, where r is the relative position
of the lattice point to the location R of the cluster containing
that particular lattice point. For clusters of size L, the generic
Green’s function in real space can be denoted by GR,R′

i, j , with
i, j = 1, . . . , L, where the time dependence is implicitly as-
sumed and same goes for the frequency dependence in Fourier
space. Due to the translation invariance of the clusters on the
superlattice, the real space Green’s function can be firstly
partially Fourier-transformed to give

GR,R′
i, j = 1

N

∑
q

G(q)i je
iq·(R−R′ ), (A1)

where the q summation is over the Brillouin zone (BZ) of
the superlattice and N is the number of clusters on the su-
perlattice, which goes to infinity in the thermodynamic limit.
In contrast to the translation invariance of the (R, R′) part of
GR,R′

i, j , or equivalently it only depends on the difference R − R′

as can be seen in Eq. (A1), the (i, j) part of the Green’s
function loses translation invariance due to the introduction
of clusters. This is so because correlation between two points
within the same cluster is not manifestly the same with the
correlation between another pair of equally separated points
across clusters. Therefore it takes two lattice momenta to fully
characterize GR,R′

i, j in Fourier space. More precisely, we have,

G(k, k′) = 1

NL

∑
R,R′

∑
i, j

GR,R′
i, j eik·(R+ri )−ik′ ·(R′+r j ). (A2)

Then we can plug Eq. (A1) into Eq. (A2) and integrate out the
superlattice lattice vectors R, R′ to obtain the following:

G(k, k′) = 1

L

∑
i, j

∑
q

G(q)i j δ̃k,qδ̃k′,qei(k·ri−k′ ·r j ), (A3)

where the δ̃ function denotes the fact that the two wave vectors
are equivalent only up to a superlattice reciprocal lattice vector
Q because Q · R = 2πZ in the phase factor. More precisely,
we have

δ̃k,q =
L∑

s=1

δk,q+Qs
, (A4)

where Qs with s = 1, . . . , L are the L inequivalent wave vec-
tors in the reciprocal lattice of the original lattice (see the 1d
case shown in Fig. 8). Then we can perform the q summation
in Eq. (A3) to have

G(k, k′) = 1

L

∑
i, j

∑
s,s′

G(k − Qs)i jδk′−k,Qs−Qs′ e
i(k·ri−k′ ·r j )

=
∑
i, j

∑
�Q

G(k)i jδk′−k,�Qei(k·ri−k′·r j ), (A5)

where we have used the fact that G(q)i j is invariant under the
shift by a superlattice reciprocal lattice vector Qs.

The translation invariant approximation for the Green’s
function on the original lattice is obtained when �Q = 0, i.e.,

FIG. 8. Reciprocal lattice in 1d for a four-site cluster. K labels the
reciprocal lattice vector for the original lattice and Q labels the recip-
rocal lattice vector for the superlattice. More precisely, Ks = 2π

a s and
Qs = 2π

La s, where a is the lattice constant of the original lattice, L = 4
here and s ∈ Z.

k = k′. Therefore the Green’s function becomes

G(k) =
∑
i, j

G(k)i je
ik·(ri−r j ). (A6)

Now we just need to calculate Gi, j (k) using cluster per-
turbation. The idea is to treat hopping between clusters as
perturbation when consider strong on-site interactions. In par-
ticular,

Ĥ = Ĥ0 + V̂ , (A7)

where Ĥ0 contains intracluster terms and V̂ contains interclus-
ter hopping. Considering nearest-neighbor hopping between
the square clusters used in the main text. The cluster construc-
tion is reproduced in Fig. 9 with the four sites in each cluster
labeled by 1–4. The hopping matrix is given by (setting lattice
constant a = 1)

V R,R′
i, j = − tδR,R′−2x̂(δi,2δ j,1 + δi,3δ j,4)

− tδR,R′+2x̂(δi,1δ j,2 + δi,4δ j,3)

FIG. 9. Cluster diagram showing the hopping between neigh-
boring clusters (dashed line). The four sites inside each cluster are
numbered as shown.
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− tδR,R′−2ŷ(δi,1δ j,4 + δi,2δ j,3)

− tδR,R′+2ŷ(δi,3δ j,2 + δi,4δ j,1). (A8)

Fourier transforming V R,R′
i, j into the superlattice reciprocal

space, we have

Vi, j (q) = −tei2qx (δi,2δ j,1 + δi,3δ j,4)

− te−i2qx (δi,1δ j,2 + δi,4δ j,3)

− tei2qy (δi,1δ j,4 + δi,2δ j,3)

− te−i2qy (δi,3δ j,2 + δi,4δ j,1)

= −t

⎛
⎜⎜⎜⎝

0 e−i2qx 0 ei2qy

ei2qx 0 ei2qy 0
0 e−i2qy 0 ei2qx

e−i2qy 0 e−i2qx 0

⎞
⎟⎟⎟⎠

i, j

, (A9)

which is the form presented in Eq. (17) in the main text. Then
the interacting Green’s function is given by

Ĝ(q) = 1

ω − Ĥ
= 1

ω − Ĥ0 − V̂ (q)
= Ĝ0

1 − V̂ (q)Ĝ0
, (A10)

where Ĝ0 ≡ (ω − Ĥ0)−1 is the intracluster Green’s function
that can be easily obtained by exact diagonalization as long as
the cluster size is not too big. The obtained G(q)i j can now be
plugged into Eq. (A6) to calculate the CPT Green’s function
for the interacting system.
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