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We study the frustrated and dimerized ferromagnetic-antiferromagnetic J1-J ′
1-J2 chain using the density-matrix

renormalization group method. Based on numerical calculations of the second derivative of energy, spin gap,
spin-spin correlations, string order parameter (SOP), and entanglement spectrum (ES), we obtain the ground-
state phase diagram for a wide range of J ′

1/J1 and J2/|J1| values. This phase diagram reveals a ferromagnetic
phase and two distinct valence bond solid (VBS) phases. The first VBS phase, referred to as D3-VBS, is typified
by the formation of valence bonds between third-neighbor spin-1/2’s, persisting as a continuation from the
J ′

1/J1 = 1 limit. Alternatively, the second VBS phase, referred to as mixed-VBS, exhibits a coexistence of both
second- and third-neighbor valence bonds, interpreted as a continuation from the J ′

1/J1 = 0 case. Remarkably,
both VBS states are identified as being of Haldane type, marked by a finite SOP and twofold ES degeneracy.
Unexpectedly, our analysis uncovers a significant enhancement of the valence bond stability at the boundary of
the two VBS phases. This study provides an empirical demonstration of a nontrivial quantum phase transition
between different topological VBS states in spin-1/2 chains. Moreover, we find that the ground state of the
relevant quasi-one-dimensional material LiCuSbO4 is classified as the D3-VBS state. Collectively, these results
mark a substantial stride forward in our comprehension of quantum phase transitions and topological states.
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I. INTRODUCTION

The interplay of magnetic frustration and low dimen-
sionality can lead to exotic states of matter in spin chains
due to extensive quantum fluctuations [1,2]. A simple rep-
resentative of such systems is the one-dimensional (1D)
J1-J2 model, where J1 and J2 represent the nearest-neighbor
and next-nearest-neighbor magnetic interactions, respectively.
This model has facilitated the understanding of the mag-
netic behavior of various materials, including certain quasi-1D
magnetic insulators such as copper-based compounds. While
the signs of the interactions can be influenced by a plethora
of factors—including the crystal structure, electronic config-
uration, as well as the nature of the magnetic ions and their
ligands—they can be broadly categorized as follows [3]: In
corner-shared cuprates, both J1 and J2 interactions are anti-
ferromagnetic (AFM) because the superexchange interaction
between the copper ions is mediated through an oxygen atom
at the corner, whereas in edge-shared cuprates, the nearest-
neighbor J1 interaction is typically ferromagnetic (FM), while
the next-nearest-neighbor J2 interaction remains AFM. The
FM J1 interaction comes about due to the direct overlap of
the copper and oxygen orbitals along the edge. Therefore,
the 1D J1-J2 model is straightforward enough to be studied
theoretically and numerically, but it offers a good starting
point to comprehend the intricate physics in real materials,
especially regarding frustration and magnetic ordering.

*clio.agrapidis@fuw.edu.pl

The ground state of the AFM-AFM J1-J2 chain at J2 �
0.241 is identified as a valence bond solid (VBS) state, as de-
fined by the Majumdar-Ghosh picture [4]. In contrast, recent
findings suggest that the ground state of the FM-AFM J1-J2

chain exhibits a distinct type of VBS state, characterized by
the formation of a valence bond dimer between third-neighbor
spin-1/2’s, referred to as the D3-VBS state [5]. This state is
especially intriguing as it represents a topologically nontrivial
phase, bearing similarities with the Haldane [6–9] or Affleck-
Kennedy-Lieb-Tasaki (AKLT)-like VBS state [10,11]. The
emergence of this state can be intuitively anticipated due to
the emergence of effective spin-1 degrees of freedom, result-
ing from the spontaneous formation of nearest-neighbor FM
dimers of spin-1/2’s.

The current work extends the rudimentary chain model
to consider the dimerized frustrated FM J1-J ′

1-J2 chain. This
model introduces a further complication of different types of
nearest-neighbor interactions, J1 and J ′

1 (|J1| > |J ′
1|), which

alternate in a dimerized pattern. The presence of this struc-
tural FM alternation was indeed predicted in the edge-shared
cuprate LiCuSbO4 [12]. However, it is largely unknown how
the ground state of this model changes as a function of dimer-
ization and frustration. From a theoretical perspective, the role
of such alternating interactions may even simplify the VBS
issue, given that the effective spin-1 degrees of freedom are
explicitly created on the J1 bond. This is equivalent to the
formation of a spin-triplet dimer on the J1 bond. In the strong
dimer limit J ′

1/J1 = 0, the J1-J ′
1-J2 chain can be effectively

mapped onto the spin-1 Heisenberg chain [13,14] (see, also,
Sec. II). This indicates that the ground state is no longer
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the D3-VBS one at J ′
1/J1 = 0. Thus, a crossover or phase

transition is feasible between the D3-VBS state at J ′
1/J1 = 1

and a symmetry-protected Haldane state at J ′
1/J1 = 0.

Prompted by this, we examine the J1-J ′
1-J2 chain using

the density-matrix renormalization group (DMRG) algorithm
[15,16]. We first detect the presence of the phase boundary by
observing the second derivative of the ground-state energy as
a function of the parameters. We then calculate the spin gap
and string order parameter (SOP) to confirm the presence of a
VBS state. Earlier, some of the present authors had estimated
the spin gap for this system [17]. However, in certain spe-
cific parameter regions, it was somewhat underestimated due
to insufficient management of the edge state since the VBS
structure was not well established. Consequently, it is revis-
ited in this work. Lastly, local spin-spin correlations and the
entanglement spectra (ES) are considered to further validate
the estimated phase boundary.

The remainder of the paper is organized as follows: Sec-
tion II elaborates on the model and details the applied
numerical method. Section III presents the ground-state phase
diagram based on the numerical results. Section IV is devoted
to summarizing the study and discussing the findings.

II. MODEL AND METHODS

The Hamiltonian for the J1-J ′
1-J2 chain is given by

H = J1

∑
i=even

Si · Si+1 + J ′
1

∑
i=odd

Si · Si+1 + J2

∑
i

Si · Si+2,

(1)
where Si are Heisenberg spin-1/2 operators at site i, J1 and
J ′

1 are FM alternating nearest-neighbor interactions, and J2 is
the AFM next-nearest-neighbor coupling. The lattice of our
model is depicted in Fig. 1. In our analysis, we parametrize
the model via the dimerization parameter β = J ′

1/J1 and the
frustration parameter α = J2/|J1|.

At β = 0 [Fig. 1(d)], our system (1) can be effectively
mapped onto an S = 1 Heisenberg chain [13,14] since two
spins coupled by J1, i.e., a rung in the ladder representation,
form a spin-triplet pair via three Sz states: |1〉i,i+1 =
|↑〉i |↑〉i+1, |0〉i,i+1 = (|↑〉i |↓〉i+1 + |↓〉i |↑〉i+1)/

√
2,

|−1〉i,i+1 = |↓〉i |↓〉i+1, for Sz = 1, 0, and −1 states,
respectively. Therefore, the effective model for β = 0 is

Heff = J2

2

∑
i

S̃i · S̃i+1 − J1

4
L, (2)

where S̃i is a spin-1 operator defined as a resultant spin S̃i =
S2i + S2i+1.

We study finite-size systems with lengths up to L = 600
sites using the DMRG method. Open boundary conditions
(OBCs) are applied, unless specified otherwise. As confirmed
below, our system is marked by a Haldane-like VBS state
throughout the entire range of the gapped phase. Hence, fol-
lowing Ref. [5], we explicitly control the edge states of our
system by imposing J ′edge

1 = 0 at both chain edges [18–22].
This effectively eliminates the degeneracy of edge spins and
facilitates the correct computation of the bulk spin gap (see,
also, Appendix A). We keep up to m = 5500 density-matrix
eigenstates in the renormalization procedure, resulting in an

FIG. 1. (a) Lattice structure of the J1-J ′
1-J2 chain. Snapshots of

(b) the D3-VBS, (c) the mixed-VBS, and (d) the symmetry-protected
J ′

1 = 0 Haldane state, where valence bonds are symbolized by red
ellipses and emergent spins-1’s are represented by bold lines. The
lattices illustrated in (b)–(d) are topologically equivalent ladder rep-
resentations of the lattice in (a). The J ′

1 on both edges (indicated by
dashed lines) are set to be zero in our calculations (refer to the main
text for further details).

error ε/L ∼ 10−8 for fixed system size. Consequently, we can
perform a reliable finite-size scaling analysis extrapolating to
the thermodynamic limit.

III. RESULTS

A. Ground-state phase diagram

It has been established that our system (1) is in a FM
phase for α < β/[2(1 + β )] and in a singlet gapped phase
for α > β/[2(1 + β )] [17]. However, the magnetic structure
of the gapped phase has not been determined yet, except at
β = 1 and β = 0. When β = 1, the ground state is a VBS
state with valence bond formation between third-neighbor
spin-1/2’s due to the order-by-disorder mechanism, lead-
ing to a spontaneous breaking of the translational symmetry
[Fig. 1(b)] [5]. This specific state is designated as the D3-VBS
state. However, at β = 0, the ground state is interpreted as
the so-called (symmetry-protected) Haldane state since the
system is effectively mapped onto a spin-1 Heisenberg chain
(2) [13,14,23,24]. This state translates into the formation of
a valence bond on either the diagonal pair or J2 bond in the
ladder representation of our system [Fig. 1(d)]. This state is
referred as the mixed-VBS state in the sense of the coexistence
of different types of valence bonds.

Our findings indicate that the gapped region within the
range 0 < β < 1 is predominantly characterized by the D3-
VBS or the mixed-VBS phase. These are considered as natural
extensions of the limiting cases at β = 1 and β = 0. Note that
unlike for the β = 0 limit, only one direction of the diagonal
valence bond is allowed in the mixed-VBS state at β > 0
because the mirror symmetry of the ladder is broken when
J ′

1 is finite [Fig. 1(c)].
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FIG. 2. (a) Example of second partial derivative of the ground-
state energy as a function of β for fixed α = 0.42. (b) Examples
of finite-size scaling analysis for the peak positions in the second
derivative. The linear scaling is achieved by plotting the peak posi-
tions as a function of 1/L2. The numbers enclosed within squares
correspond to the peaks in (a). The presence of two red lines is due
to the multiple-peak feature by finite-size effect (see text).

We have determined the phase boundary through the de-
tection of peaks in the second derivative of the ground-state
energy. For this analysis, periodic chains with up to 48 sites
are used. In Fig. 2(a), we plot the second derivative as a
function of β. Even though a discernible peak at a specific
β value for a fixed system size is noticeable, the peak position
seems to vary depending on the system size. Additionally,
multiple peaks appear in the parameter region adjacent to
the FM instability when plotted against β (not shown here).
This multiple-peak feature is typically interpreted as finite-
size effects arising from discrete quantum numbers relative to
the system size. Nevertheless, we can achieve a reasonable
extrapolation of the peak positions to a singular value in
the thermodynamic limit by performing a finite-size scaling
analysis of the second-derivative peaks using a linear function,
as illustrated in Fig. 2(b). Note that in this case, there are two
scaling lines for L = 4n due to the multiple-peak feature. Fur-
thermore, a more accurate convergence of extrapolated values
in the thermodynamic limit may be achieved if we employ a
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FIG. 3. Ground-state phase diagram of the J1-J ′
1-J2 chain in the

α-β plane. The FM phase line was determined via spin-wave theory
in Ref. [17]. The boundary between the D3-VBS and the mixed-VBS
phases is determined via the peak position of the second derivative
of the ground-state energy. At β = 1, the system is in the D3-VBS
phase for α > 1/4, as indicated by the green line. The black square
indicates the parameter set of LiCuSbO4.

polynomial function instead of a linear one. We also find that
other than the above peaks, we see a system-size-independent
single peak, indicating the FM and D3-VBS phase boundary.

The resultant α-β phase diagram is shown in Fig. 3, where
the width of the error bar is estimated based on the variations
in the extrapolated values derived from the preceding finite-
size scaling analysis. The green and yellow areas correspond
to the D3-VBS and the mixed-VBS phases, respectively. Note
that the gapped phase at β = 1 is in the D3-VBS at any
α(> 1/4) [5]. The two VBS phases can be generally distin-
guished based on the ratio of spin-spin correlations between
the second- and third-neighbor spin-1/2’s. Specifically, the
system is typified by the D3-VBS phase (or the mixed-VBS
phase) when the valence bond between the third neighbors is
more robust (or weaker) than that between the second neigh-
bors (see Sec. III D). However, this trend is less obvious as β

decreases, and the strength of the second- and third-neighbor
valence bonds becomes equivalent in the limit of α = β = 0.
An additional intriguing aspect is the identification of a hidden
AFM order validated by a finite SOP for both VBS states
[18] (see Sec. III C). Consequently, both VBS states can be
characterized as Haldane-like VBS states. This is further con-
firmed by the analysis of their entanglement spectra (ES) (see
Sec. III E).

B. Spin gap

We start by computing the spin gap as a function of
α and β. Since the whole gapped region is characterized
by a Haldane-like VBS state, we specifically eliminate the
ground-state degeneracy due to the edge states by setting
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FIG. 4. Spin gap in the α-β plane in terms of (a) |J1| and (b) J2.
Color bars shows the magnitude of the gap. The green lines denote
the boundaries between the FM, D3-VBS, and mixed-VBS phases.

J ′1,edge
1 = 0 at both ends of the chain [5,18,19,21]. By

evaluating the ground-state energy E0(Sz = 0)/L in the ther-
modynamic limit, we have confirmed that this choice of edge
structure does not affect the bulk ground-state properties (see
Appendix A). With the degeneracy of edge spins removed, we
can determine the spin gap as the energy difference between
the singlet ground state and the first excited triplet state,

� = lim
L→∞

�(L),

�(L) = E0(L, Sz = 1) − E0(L, Sz = 0), (3)

where L is the system size and E0(L, Sz ) is the ground-state
energy in the Sz spin sector for a fixed system size L. Exam-
ples of finite-size scaling for �(L) are shown in Appendix B.
The extrapolated spin gap � in the thermodynamic limit is
plotted in Fig. 4. As the mapping to the spin-1 model (2) is
the most efficacious at β = 0, the gap is expected to increase
with approaching β = 0.

Let us first see the gap at β = 0. When we consider the
gap in terms of |J1|, it increases almost linearly with α, re-
flecting the effective exchange coupling J2/2 in (2). On the

other hand, �/J2 increases slowly with decreasing α. This is
because the mapping to (2) is generally good for any β = 0,
but is exact only in the limit of α = β = 0. Consequently, the
gap saturates at �/J2 = 0.2045, which is that for the sim-
ple S = 1 Heisenberg chain with AFM exchange interaction
J2/2, with approaching α = β = 0 [17]. Given this, one might
naively anticipate the gap to reduce with increasing β due
to the potential obstruction of the effective spin-1 formation.
However, it is worth noting that the gap has a maximum
around the boundary between the D3-VBS and the mixed-
VBS phases with fixed β. This behavior is more evident when
taking the gap in units of J2 [Fig. 4(b)] than in unit of |J1|
[Fig. 4(a)]. Nevertheless, since the peak is relatively sharp,
its position remains nearly unaffected by the energy unit |J1|
or J2. This suggests that frustration is maximized around the
phase boundary where the two VBS phases highly compete.
The emergence of this peak significantly validates the exis-
tence of a phase transition.

We should also note that the present gap, particularly
within the small α and large β region, is somewhat larger than
the one previously estimated in Ref. [17]. In other words, the
gap was previously underestimated without explicit lifting of
the degeneracy of edge spins, meaning the free spin state at
the system edges within the VBS structure was not adequately
defined. This validates that the D3-VBS is a kind of Haldane
state.

C. String order parameter

As discussed above, it appears that the entire gapped phase
may be characterized by a Haldane-type VBS state, which
is topologically nontrivial. Thus, we proceed to calculate the
SOP which serves a good indicator to evaluate the stability
of such a VBS state. This quantity was originally defined for
spin-1 systems [25]. However, for spin-1/2 systems, the SOP
can be suitably redefined as [5,26,27]

Oz
string = lim

| j−k|→∞
(−1)

j−k−2
2

〈(
Sz

k + Sz
k+1

) j−1∏
l=k+2

Sz
l

(
Sz

j + Sz
j+1

)〉
,

(4)

where Sz
j is the z component of the spin-1/2 at site j. In

our model (1), the dimerization introduced by J ′
1 < J1 breaks

the translational symmetry of the chain. Hence, our system
has a stronger FM coupling between the even-odd sites than
between the odd-even sites. This leads to the emergence of
effective spins-1 degrees of freedom on each J1 bond. There-
fore, j and k in Eq. (4) must be even. Indeed, we have also
confirmed that if j and k are taken to be odd, the value of
Oz

string is always extrapolated to zero in the thermodynamic
limit. Since OBCs are applied here, we take k = L/4 and
j = 3L/4 to perform a systematic finite-size scaling with suf-
ficiently minimizing the influence of Friedel oscillations.

The extrapolated values of the SOP are plotted in Fig. 5.
We find that the SOP is finite throughout the gapped re-
gion of the phase diagram. Moreover, the trend of Oz

string
in the α-β space is very similar to that of �/J2, as seen
in Fig. 4(b). Specifically, it diminishes when moving from
the bottom to the top right corner, and it has a relatively
large value around the boundary of the two VBS phases.

205111-4



EXISTENCE OF TWO DISTINCT VALENCE BOND SOLID … PHYSICAL REVIEW B 108, 205111 (2023)

FIG. 5. String order parameter 〈Oz
string〉 in the α-β plane. The red

lines denote the boundaries between the FM, D3-VBS, and mixed-
VBS phases.

Intriguingly, the SOP around the phase boundary can exceed
Oz

string = 0.3743 for the S = 1 Heisenberg chain [15]: For
instance, at (α, β ) = (0.2, 0.4), the Oz

string is 0.4101, which
is even closer to Oz

string = 4/9 = 0.4444 . . . for the perfect
VBS state of the AKLT model [10]. This finding illustrates
a possible enhancement of valence bond formation by frustra-
tion. This enhancement of the SOP at the phase boundary is
reflected as a minimization of the lowest level in the ES (see
Sec. III E).

D. Existence of two distinct VBS states

Thus far, the existence of a Haldane-type VBS state has
been confirmed in the whole gapped region of the α-β pa-
rameter space. However, the exact arrangement of the valence
bond formation remains to be elucidated. It is known that
our system is in a Haldane mixed-VBS state when β = 0,
wherein the valence bonds are formed along both the J2

couplings and the diagonal directions of the ladder represen-
tation [Fig. 1(d)]. On the other hand, when β = 1, our system
exhibits a unique D3-VBS state, characterized by valence
bonds forming exclusively along third neighbors in a direction
dictated by spontaneous FM dimerization [5]. What remains
to be determined is how these two VBS phases develop in
the parameter region 0 < β < 1 and whether there exists a
possible additional VBS phase in any region of the α-β plane.

Given that we have verified that the SOP (assuming only J1

rungs to exhibit spin-1 degrees of freedom) is finite within the
whole gapped region, all valence bonds are likely to be formed
between neighboring J1 rungs. Considering the ladder repre-
sentation, a connection between neighboring J1 rungs involves
the nearest-, second-, and third-neighbor bonds in the original
chain. However, the formation of nearest-neighbor valence
bonds is disregarded except for β = 0, as it corresponds to
a FM J ′

1 coupling. Therefore, we can focus only on the pos-
sibility of the second- and/or third-neighbor valence bond
formations. A simple approach to determine the structure of
a VBS state is to calculate the dimerization order parameter

FIG. 6. Ratio between the second- and third-neighbor spin-spin
correlations in the α-β plane. The red lines denote the boundaries
between the FM, D3-VBS, and mixed-VBS phases.

defined by Dδ = limL→∞ |〈Si−δ · Si〉 − 〈Si · Si+δ〉|, where δ

assigns the length of the considered valence bond. Since the
dimerization between J1 and J ′

1 is explicitly introduced in our
system (1) for 0 � β < 1, Dδ is always finite for odd δ. This
order parameter can also detect spontaneous dimerization. We
thus calculate D2 for the second-neighbor bonds and find it to
be always zero in the thermodynamic limit (not shown). This
suggests that a VBS state composed solely of second-neighbor
valence bond formations does not exist. Accordingly, we con-
clude that the gapped region at 0 < β < 1 is covered by either
the D3-VBS or the mixed-VBS phase.

To ascertain how the two VBS phases are distributed within
the α-β plane, we evaluate the relative strength of second- and
third-neighbor spin-spin correlations. We define the ratio as

R = lim
L→∞

R(L),

R(L) =
∣∣∣∣ 〈SL/2 · SL/2+2〉
〈SL/2 · SL/2+3〉

∣∣∣∣. (5)

This is measured at the center of the chain to minimize the
effect of Friedel oscillations. In general, a larger correlation
does not always imply valence bond formation. Nevertheless,
in this context, the relative strength R should provide a good
indication as to the transfer between the D3-VBS and the
mixed-VBS phases since it represents a contiguous change
between the leg and the diagonal valence bonds within each
plaquette in the ladder representation, rather than a complete
redistribution of valence bonds.

When R > 1 (R < 1), the AFM spin-spin correlation be-
tween second-neighbor (third-neighbor) spins exceeds that
between third-neighbor (second-neighbor) spins. Note that
both second- and third-neighbor spin-spin correlations are
always AFM in the gapped region. Intuitively, a spin-singlet
formation on a bond with a larger AFM spin-spin correlation
is energetically favorable. Hence, we may expect our system
to be in the D3-VBS state for R < 1 and in the mixed-VBS
state for R > 1. Our results for R are plotted in Fig. 6. It
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exhibits a similar behavior to that of the gap �/J2 [Fig. 4(b)]
and of the SOP (Fig. 5). Indeed, we observe R ∼ 1 at the
boundary between the two VBS phases, indicating the com-
petition between second- and third-neighbor valence bonds.
This seems to reasonably explain the phase transition for
0 < β < 1.

It should be noted, however, that this approach is not uni-
versally reliable in detecting the valence bond’s structure. For
example, at β = 1, R is larger than 1 and simply increases
with α within the D3-VBS phase. For larger values of α, our
system can be regarded as weakly coupled AFM chains. In
such cases, avoiding the formation of the second-neighbor
valence bonds could be possible due to large fluctuation. Even
so, an unresolved issue remains: Do the physical quantities
asymptotically approach the undimerized limit β = 1 or does
this limit serve as a singular point? We believe that insights
into this question could be gained from an examination of the
Berry phase in the α-β plane, specifically near the β = 1 line.
Nonetheless, this goes beyond the scope of our current work.

E. Entanglement spectra

Entanglement-related quantities are often used to study the
topological properties of VBS states including the Haldane
state [28]. Having confirmed that both VBS states in our
phase diagram are classified to be of the Haldane-type, it is
interesting to confirm their topological nature by looking at
the low-lying eigenstates of the ES [29–32]. In our calcula-
tions, we consider the ES obtained by partitioning the system
into two subsystems A and B. Defining ξλ in the Schmidt
decomposition of the ground state |ψ〉 as

|ψ〉 =
∑

λ

e−ξλ/2 |λ〉A |λ〉B , (6)

where |λ〉A (|λ〉B) is the orthonormal basis for the subsystem
A (B), we can interpret the ES as the energy spectrum of
the entanglement Hamiltonian He defined as e−He = ρA =
TrB |ψ〉 〈ψ | = ∑

λ e−ξλ |λ〉A 〈λ|A. If the system size is suf-
ficiently larger than the correlation length, the ES can be
described by the two virtual edge states; the ES therefore rep-
resents the gapless edge modes in its lowest-lying eigenstate.
Since spin-spin correlations decay exponentially in the VBS
phase, the correlation length is expected to be quite short.

We now consider periodic chains with system size L =
4n + 2 = 2(2n + 1) and divide them in half. Since the two
subsystems consist of an odd number of sites, we can directly
detect the emergent spin-1/2 edge states, if they exist. Our
results for the ES with size L = 82 are shown in Fig. 7. We
clearly see twofold degeneracy of the lowest-lying eigenstate.
In our dimerized system, each of the subsystems contains only
one free spin-1/2 at one edge. Accordingly, two nonentangled
spin-1/2’s with total Sz = 0 lead to the observed twofold de-
generacy. Since this picture is valid for both the D3-VBS and
the mixed-VBS states, the twofold degeneracy is unchanged
through the phase boundary. It is worth mentioning that as
seen in Fig. 7(a), the lowest-lying level in the ES reaches
a minimum around the phase boundary. This is a reflection
of the stability of the VBS state as validated by the SOP.
Moreover, this supports the validity of the determined VBS
structures. We also find that the second eigenstate is sixfold

FIG. 7. Plots of the entanglement spectrum (ES) of a system with
PBC and size L = 82, (a) as a function of α for β = 0.6 and (b) as
a function of 1 − β for α = 0.35. The green region denotes the D3-
VBS state, while the yellow region denotes the mixed-VBS state.
Numbers indicate the degeneracy of the state.

degenerate, with four states located in the Sz = 0 sector and
the remaining two at Sz = ±1. More details are discussed in
Appendix C.

Note that the D3-VBS state exhibits fourfold degeneracy
in the lowest-lying eigenstate for the undimerized case β = 1
[5]. This is because there are two possible ground states with
spontaneous FM dimerization. As a result, the free spin-1/2
can be positioned at both edges of each subsystem. The
presence of this twofold degeneracy at both cut edges cumula-
tively leads to the fourfold degeneracy. More details are given
in Appendix C.

F. Evolution of the gap with explicit dimerization

Based on the above results, we have found that the gapped
region in the ground-state phase diagram is divided into two
kinds of VBS phases, namely, the D3-VBS and the mixed-
VBS phases. Nevertheless, the D3-VBS phase is confined
to only a narrow range near the FM instability, except for
the β = 1 line. To substantiate this observation, following
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FIG. 8. Spin gap as function of (J ′
3/|J1|)2/3 for (a) (α, β ) =

(0.3, 0.8), (b) (0.3, 0.1), and (c) (0.5, 0.5). Inset: The same quantity
as a function of J ′

3/|J1|. Solid lines are linear fits and dotted lines are
guides for eyes.

Ref. [5], we explore the dependence of the spin gap on an
additional AFM third-neighbor exchange interaction J ′

3. The
modified Hamiltonian is written as

H ′ = H + J ′
3

∑
i=even

Si · Si+3, (7)

where J ′
3(> 0) is added only for even i in Fig. 1. This third-

neighbor bond is associated with the valence bond in the D3-
VBS state. If the system is in the D3-VBS state, which is a
kind of spin-Peierls state, the spin gap is expected to increase

as � − �(J ′
3 = 0) ∝ J

′ 2
3

3 at small J ′
3 [33].

In Fig. 8(a), we plot the spin gap as a function of
(J ′

3/|J1|)2/3 for the D3-VBS state at (α, β ) = (0.3, 0.8). We
can see a power-law behavior of the spin gap with exponent

2/3 at 0 < J ′
3 � 0.002. We thus confirm that the D3-VBS state

can exist even if our system is away from β = 1. On the other
hand, the gap behavior clearly deviates from � − �(J ′

3 =
0) ∝ J

′ 2
3

3 for the mixed-VBS states at (α, β ) = (0.3, 0.1) and
(0.5, 0.5), as shown in Figs. 8(b) and 8(c). Note that these
(α, β ) points are in the mixed-VBS phase, but not very far
from the boundary to the D3-VBS phase. For these points, the
spin gap increases linearly with J ′

3, i.e., � − �(J ′
3 = 0) ∝ J ′

3.
This implies that the lowest spin excitation is given by the
collapse of a spin-singlet pair on the second-neighbor bond.
This is because the second-neighbor bond involves a direct
coupling by AFM J2 as well as an indirect coupling via FM
J1 and AFM J ′

3, i.e., a superexchange path through J1 and J ′
3,

so that the second-neighbor exchange interaction is effectively
linearly enhanced by J ′

3. Moreover, this also means that the va-
lence bond between the third-neighbor spins is stronger than
that between the second-neighbor spins in the mixed-VBS
phase, and their strengths become equivalent in the limit of
α = β = 0.

Furthermore, it is interesting to consider the difference
value δ�/δJ ′

3: We obtain 0.0367, 0.3633, and 0.8757 for
(α, β ) = (0.3, 0.1), (0.5, 0.5), and (0.3, 0.8), respectively.
Since the valence bonds are formed only on the J ′

3 bonds in
the D3-VBS phase, the increase of J ′

3 directly contributes to
the gap increase. The different values are obtained via the gap
increase from J ′

3 = 0 to 0.001. More detailed data is shown in
Appendix D.

IV. SUMMARY AND DISCUSSION

We studied the frustrated dimerized FM-AFM J1-J ′
1-J2

chain using the DMRG method. We obtained the ground-state
phase diagram for a wide range of J ′

1/J1 and J2/|J1| based on
the results for the second derivative of energy, spin gap, spin-
spin correlations, SOP, and ES. The phase diagram consists
of a FM and two gapped VBS phases. These VBS phases are
characterized as the D3-VBS and the mixed-VBS phases. In
the D3-VBS state, valence bonds are formed between third-
neighbor spin-1/2’s. The mixed-VBS state, on the other hand,
exhibits a coexistence of both second- and third-neighbor
valence bonds. Remarkably, these VBS states are identified
as being of the Haldane type, characterized by a finite value
of the SOP and the twofold degeneracy of the ES. It is re-
markable that the formation of valence bonds is significantly
stabilized at the boundary between the two VBS phases.
Moreover, at this boundary, the gap and SOP are maximized,
while the lowest-lying eigenstate of the ES is minimized.
These observations underscore the critical role of frustration
in the emergence of topological states in our system.

Finally, we briefly discuss the relevance to the experimen-
tal observations for LiCuSbO4. For this compound, density
functional theory (DFT) calculations have estimated the ef-
fective exchange parameters to be J1 ≈ −160 K, J ′

1 ≈ 90 K,
and J2 ≈ 37.6 K [12]. This set of parameters corresponds to
(α, β ) = (0.235, 0.5625) in our notation, putting this material
in the D3-VBS phase in our ground-state phase diagram,
as shown in Fig. 3. Intriguingly, the possibility of exotic
phenomena, such as multipolar states in the presence of a
magnetic field, has been experimentally suggested [12,34].
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FIG. 9. Finite-size scaling of the ground-state energy per site,
E0/L, for J ′edge

1 = 0 (blue) and J ′edge
1 = J ′

1 (orange) with (a) α = 0.8,
β = 0.2 and (b) α = 0.4, β = 0.6.

The presence of multipolar physics in 1D systems under an
applied field has been discussed only within the uniform J1-J2

chain case (β = 1) [35–37]. We thus believe that the effect of
dimerization on the multipolar physics is a question of interest
and should be the subject of future studies.

The present study represents a demonstration of a nontriv-
ial quantum phase transition between topological VBS states
in spin-1/2 chains, though the possibility of phase transitions
through a complete reconstruction of valence bond struc-
ture has been suggested in 2D systems [38–40], 1D systems
with alternating different spins [41–43], and higher spin sys-
tems [44,45]. It is very exciting that quasi-1D materials such
as LiCuSbO4 [(α, β ) = (0.235, 0.5625)] and Rb2Cu2Mo3O12

[(α, β ) = (0.37, 0.65)] [17,46] may be situated near the
boundary between two topological phases, and that transitions
between topological ordered states could potentially be ob-
served experimentally through controls such as pressure and
stretching.

ACKNOWLEDGMENTS

We thank Krzysztof Wohlfeld for fruitful discussion. This
work was supported by Narodowe Centrum Nauki (NCN,
Poland) under Project No. 2021/40/C/ST3/00177. This re-
search was carried out with the support of the Interdisciplinary
Center for Mathematical and Computational Modeling at the
University of Warsaw (ICM UW) under Grants No. G81-4 and
No. G93-1613. This project is funded by the German Research
Foundation (DFG) via the projects A05 of the Collabora-
tive Research Center SFB 1143 (Project No. 247310070).

0 0.005 0.01 0.015
1/L

0.02

0.03

0.04

0.05

0.06

0.07

Δ
(L

)/
|J 1

|

α = 0.6 β = 0.2

α = 0.5 β = 0.5

α = 0.6 β = 0.9

α = 0.2 β = 0.1
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The code to reproduce the data and figures presented in this
manuscript is available at Ref. [47].

APPENDIX A: SPECIAL OPEN BOUNDARY CONDITIONS

In this study, we applied special open boundary conditions
where the J ′

1 bonds at the chain edges are set to be zero,
i.e., J ′edge

1 = 0. This setting enables us to explicitly define the
emergent spin-1 formations on the J1 bonds, thereby offering
us a mechanism to exert demonstrable control over the edge
states of our Haldane-type VBS states. As a result, we are able
to correctly calculate bulk physical quantities such as the spin
gap as well as the SOP in the thermodynamic limit. In the ab-
sence of this setting, these quantities could be underestimated
due to a potential confluence of two symmetry-broken states.
More details are discussed in Ref. [5]. To substantiate our hy-
pothesis that the choice of boundary conditions does not affect
the bulk ground state, we calculate the ground-state energies
for the cases where J ′edge

1 = 0 and J ′edge
1 = J ′

1. Figure 9 shows
a comparison of the energy per site (E/L) between these two
scenarios for two sets of parameters (α, β). For both parameter
sets, it is observed that E/L for J ′edge

1 = 0 and J ′edge
1 = J ′

1 seem
to be extrapolated to the same value in the thermodynamic
limit. The difference in E/L at the thermodynamic limit be-
tween the two boundary conditions is found to be within the
range of numerical zero, i.e., �E/L = 10−8–10−7. We thus
conclude that the bulk ground state remains unaffected by the
choice of J ′edge

1 .

APPENDIX B: FINITE-SIZE SCALING OF THE SPIN GAP

In Fig. 10, we show some examples of finite-size scal-
ing analysis of the spin gap for various (α, β ) values: (0.6,
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FIG. 11. (a) Depiction of the partition of a periodic chain with
14 sites, where bold and thin lines represent J1 and J ′

1 interactions,
respectively. The blue ellipses represent the emergent spin-1 sites,
and the dashed-line ellipse denotes a fractionalized spin-1 site result-
ing from the partitioning. (b) Low-lying ES as a function of total Sz

of the subsystem for (α, β ) = (0.3, 0.8) and L = 82. The numbers
next to each point indicate the degree of degeneracy. (c) Level of the
lowest-lying twofold degenerate eigenstate in the ES as a function of
α for L = 22 (black), L = 26 (gray), and L = 82 (red) at β = 0.6.
Dashed vertical lines mark the position of the minimum for each L.

0.2) (blue line), (0.5, 0.5) (green line), (0.6, 0.9) (red line),
and (0.2, 0.1) (black line). In most cases, the scaling can
be reasonably performed by fitting the data with a quadratic
function �(L) = a/L2 + b/L + �, where a and b are fitting
parameters. In certain instances, particularly when the VBS
state is quite robust, an alternative fitting function �(L) =
a/L3 + b/L2 + � is used. In such cases, the spin-spin corre-
lation tends to decay rapidly with distance, leading to a fast
convergence of the spin gap with respect to the system size.

The parameter set (α, β ) = (0.6, 0.9) is representative of such
a case.

APPENDIX C: ADDITIONAL INFORMATION ABOUT
THE ENTANGLEMENT SPECTRUM

Here we provide additional information about our calcula-
tions for the ES. In our analysis for the ES, the system size is
chosen to be L = 4n + 2 = 2(2n + 1). Figure 11(a) illustrates
how the bipartite cutting acts on our periodic system when the
ES is calculated. Indeed, the cut goes through two inequivalent
bonds: one J1 bond corresponding to the emerging spin-1
site, and one J ′

1 bond. Thus, the cut creates two spin-1/2
edge states, one for each subsystem, leading to the twofold
degeneracy of the lowest-lying eigenstate in the ES, as shown
in Fig. 7.

In Fig. 11(b), the low-lying ES for (α, β ) = (0.3, 0.6) and
L = 82 is plotted as a function of total Sz of the subsystem. We
see that the sixfold degeneracy in the second level is resolved
to fourfold degeneracy at Sz = 0 and the remaining twofold
degeneracy at Sz = ±1. The states at Sz = ±1 may come from
a possible spin-triplet component of each subsystem.

Moreover, as stated in the main text, the phase boundary
between the two VBS states aligns with the minimum of
the lowest-lying twofold degenerate eigenstate in the ES. To
demonstrate this, we examine the behavior of the ES in the
vicinity of the phase transition between the two VBS states.
In Fig. 11(c), we plot the lowest-lying level of the ES as
a function of α for system sizes L = 22, 26, and 82 at a
fixed β = 0.6. It is apparent that the position of the minimum
promptly approaches the phase boundary as the system size
increases. This may be interpreted as the weight of the lowest-
lying density-matrix eigenstate becoming more pronounced

FIG. 12. Relative increase of the spin gap with J ′
3 in the α-β

plane. The size of the circles is proportional to the relative increase
of the gap at J ′

3 = 0.001|J1|. Results are superimposed on the phase
diagram for clarity.
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than those of the higher eigenstates at the phase boundary due
to the robustness of the VBS state.

APPENDIX D: SPIN GAP INCREASE WITH J′
3

As discussed in Sec. III F, the spin gap exhibits a linear in-
crease with the third-neighbor AFM interaction J ′

3 within the
mixed-VBS phase, and a 2/3 power-law relationship within
the mixed-VBS phase. This section elaborates further on the
disparate rates of increase observed in these two VBS phases.
Figure 12 presents the relative percentage increase of the spin
gap when comparing �(J ′

3 = 0) and �(J ′
3 = 0.001|J1|). The

data reveal that the overall increase in the mixed-VBS region
is of the order of ∼1%. The growth of the spin gap is smaller
if we increase the frustration parameter α, while the opposite
is true for the parameter β, with exceptions close to the critical
line. Among the considered points, we see the most significant
gap increase of 23.5% for (α, β ) = (0.3, 0.95). This increase
can be ascribed to the third-neighbor valence bond geometry
in the D3-VBS region. In the D3-VBS phase, the valence
bonds are formed only on the J ′

3 bonds, so that the increase of
J ′

3 directly enhances the spin gap, whereas in the mixed-VBS
phase, the spin gap is roughly estimated as an energy needed
to break a second-neighbor valence bond. Thus, the increase
of J ′

3 just indirectly affects the spin gap.
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