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Hermitian Dirac points play a fundamental role in topological phenomena. The introduction of gain or loss
leads to non-Hermitian systems, where Dirac points transform into pairs of exceptional points connected by
a Fermi arc. Open non-Hermitian systems also manifest bound states in the continuum (BICs), which are
nonradiating resonances located within the band of radiation states. So far, exceptional points have been shown to
be robust when interacting with BICs. However, our work unveils that the intersection of two BICs from distinct
energy bands along the Fermi arc can prevent the formation of exceptional points, restoring a genuine Hermitian
Dirac point instead, albeit surrounded by non-Hermitian states. This represents a different mechanism for the
formation of Dirac points embedded in the continuum of radiation, which combines the physics associated to
Dirac points and the resonant properties of BICs in non-Hermitian systems. The concept is analyzed using a
general model and further explored in a waveguiding photonic system based on hyperbolic dispersion media.
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I. INTRODUCTION

Degeneracy between energy bands has garnered interest
since the advent of quantum mechanics [1]. In a Hermi-
tian system, a Dirac point (DP) occurs at the intersection
of two dispersion bands, characterized by a conical surface
with a linear slope [2–4]. This degenerate state possesses
identical eigenvalues and two orthogonal eigenstates, prop-
erties that are tightly linked to the conservative character of
Hermitian systems. In contrast, non-Hermitian physics delves
into systems that lack energy conservation, primarily because
energy flows in and out of the Hilbert space under investiga-
tion [5]. Recently, the topological concepts and applications
of Hermitian systems have been extended to non-Hermitian
systems [6–8], with a focus on DPs [9–11]. However, in non-
Hermitian systems, the DP gives rise to a pair of exceptional
points (EPs) connected by a Fermi arc [12,13]. At the EP, the
two bands coalesce and the Hamiltonian is described by a non-
diagonal Jordan matrix with identical complex eigenvalues
and eigenstates [5]. The band crossing occurs along the Fermi
arc, forming two halves of a Riemann surface. Nonorthogonal
eigenstates in non-Hermitian systems result in nontrivial dy-
namics [5,14], including asymmetric mode switching [15,16],
topological half charges in polarization states [17], highly
sensitive measurements [18,19], and directional lasing and
chiral modes [20].

Complex Dirac points can persist in a non-Hermitian sys-
tem where the DP itself and its neighboring states possess
complex eigenvalues, leading to inherent losses [5,11]. Com-
plex DPs, also known as Dirac-like cones, have been identified
as crucial elements in achieving zero-index metamaterials in
photonic crystal slabs [21,22]. However, the radiation loss
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associated with these points has hindered their practical appli-
cations. To overcome this challenge, a solution was devised
by designing a photonic crystal slab in which the complex DP
is also a bound state in the continuum (BIC) [23,24]. This
approach, referred to as open-Dirac singularity, has recently
been employed to demonstrate single-mode laser operation
regardless of the cavity size [25].

Eigenstates in non-Hermitian radiative open systems cou-
ple to the continuum, thus exhibiting radiation loss. However,
BICs are special eigenstates where radiation is suppressed
through various mechanisms [26]. BICs exist as confined,
lossless states with real eigenvalues and infinite lifetimes,
even though they reside within the dispersion band of radi-
ating states that have complex eigenstates and finite lifetimes.
While BICs were initially proposed in the context of quantum
mechanics [27,28], they are a general wave phenomenon [26]
and have been described in diverse physical systems, includ-
ing acoustics [29], quantum systems [30], and, particularly,
photonic platforms [31–35].

In this paper, we demonstrate the formation mechanism
of Dirac points embedded in the continuum (DECs) using a
generic two-level system. Our findings reveal that DECs arise
from the interaction between two BICs residing in different
energy bands, which cross at the Fermi arc between EPs.
During this process, the EPs can cease to exist, transforming
the band structure from a Riemann surface into two conical
surfaces that intersect at a single point. At this point, the eigen-
states are orthogonal, the eigenvalues are real and degenerate,
and the surface slope is linear, resembling a genuine Hermi-
tian DP. However, this DP is surrounded by nonorthogonal
eigenstates with complex eigenvalues belonging to the non-
Hermitian continuum. We subsequently validate the concept
in a photonic system based on hyperbolic waveguides [36–39]
with an anisotropic substrate [40,41]. DECs are topologi-
cal entities potentially capable of retaining all the physics
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FIG. 1. Eigenvalue bands of a two-level system [Eq. (2)] in terms of the coupling parameter q and the phase mismatch �κ . κ1 = −κ2 with
α01 = 1 and α02 = 2 in all figures. In (a), w1 = w2 = 0, so losses remain constant for any value of q and �κ . In (c), w1 = 0.4 and w2 = 0, so
only the E1 level exhibits a BIC line. In (e), both bands feature a BIC line at q = 0, with w1 = w2 = 0.4, resulting in a DEC. (b), (d), (f) Cuts
of the band diagram at �κ = 0, illustrating the real eigenvalues (blue lines, left y axis) and imaginary eigenvalues (red lines, right y axis) for
the cases depicted in (a), (c), (e), respectively. Solid lines represent the upper band, while dashed lines represent the lower band.

associated with DPs (such as topologically protected edge
states and backscattering immune transport [42–44]), while
also incorporating the resonant properties linked to BICs [45].

II. THE TWO-LEVEL NON-HERMITIAN SYSTEM

The two-level system consists of two coupled resonances
with amplitudes E1 and E2, which evolve as a function of the
parameter z. The dynamics of the system can be described by
the momentum, κ j , the attenuation constant associated with
the radiation channel, α j , and the coupling between the two
resonances, q, as [14,15]

i
d

dz

[
E1

E2

]
= H

[
E1

E2

]
=

[
κ1 − iα1 q

q κ2 − iα2

][
E1

E2

]
, (1)

where H is its Hamiltonian. Equation (1) supports harmonic
solutions, Ej = a jeiβ j z. The eigenvalue β can be described
in terms of the momentum mismatch, �κ = κ2 − κ1, and the
attenuation mismatch, �α = α2 − α1, as

β = (
κav − iαav ± 1

2

√
4q2 + (�κ − i�α)2

)
, (2)

where κav = (κ2 + κ1)/2 and αav = (α2 + α1)/2 are the av-
eraged momentum and attenuation constant, respectively. For
simplicity, and since κav only adds an offset to the eigenvalue,
we adopt the standard convention of setting κav = 0 in our
calculations.

Figure 1(a) shows the typical eigenvalue bands of the sys-
tem as a function of q and �κ . The EP appears at �κ = 0
and q = �α/2, with eigenvalue β = κav − iαav . The Fermi
arc is observed connecting the two EPs in Fig. 1(a) at �κ = 0,
where both bands intersect with equal Re(β ) but different
Im(β ) [see Fig. 1(b)]. When �α = 0, the two EPs collapse at

�κ = 0, q = 0 into a single EP, or complex DP, with one com-
plex eigenstate [11]. Consequently, an attenuation mismatch is
needed for the existence of the Fermi arc.

The most common problem in non-Hermitian physics is
typically associated with absorption losses or amplification.
However, our specific focus is on radiating open systems,
which have two important implications. First, as the sys-
tem in Eq. (1) is non-Hermitian, in this framework, all the
eigenvalues provided by Eq. (2) define the radiation contin-
uum. Second, unlike absorption losses, radiation losses are
determined by the structural and geometrical parameters of
the system. Consequently, the values of αi can vary with
changes in the structural parameters q and �κ . In certain
instances, these changes can lead to the formation of a BIC
at a specific energy level within the parameter space where
αi equals zero. Such BICs would exhibit an infinite lifetime
or propagation distance. BICs manifest as isolated points
within the dispersion band in systems with multiple radiation
channels [26,34,45] or as continuous lines in systems with a
single radiation channel [40,46–48]. The quality factor Q at a
BIC is infinite, exhibiting a scaling rule in its proximity such
that Q ∝ α−1

i ∝ κ−2 [45]. Assuming a similar behavior for
the coupling q, so that αi ∝ q2, and an asymptotic behavior
when q → ∞, losses in level i can be locally modeled by an
absorption,

αi = α0iq
2
/(

q2 + w2
i

)
, (3)

where wi is the width of the BIC resonance in level i, and
α0i is the radiation loss far away from the BIC (q � wi).
Equation (3) defines a BIC at q = 0 because αi = 0 leads to
αav = ±�α, resulting in Im{β1} = 0 in Eq. (2).

BICs and EPs coexist in non-Hermitian systems, interact-
ing to produce phenomena such as position swapping [49],
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band exchange at the Fermi arc [48], or ultra-low loss EPs in
a dual-BIC scheme [50]. The scenario described in Ref. [48]
can be simulated by considering a single BIC in the E1 reso-
nance, as shown in Fig. 1(c) for w1 = 0.1. In this case, a BIC
line intersects the Fermi arc and exchanges dispersion bands,
while the positions of the EPs remain relatively unchanged.
BICs with broader resonance can impact the positions of EPs,
but the EPs themselves do not disappear.

A more intriguing scenario arises when both resonances
possess BICs. By tuning the system parameters, these two
BICs can coincide at the Fermi arc, resulting in a band
exchange. Figure 1(e) illustrates this situation for two BIC
lines with equal widths (w1 = w2 = 0.4). A gap between
the two bands opens all along the Fermi arc, except at
the crossing between the two BICs. Examining this point
reveals the coexistence of two orthogonal eigenstates with
identical real eigenvalues, exhibiting a linear slope and a
conical surface [Fig. 1(f)]. This point does not represent
the merging of two bands into a single EP or complex
DP [11], as the eigenvalue is real. It also differs from a
non-Hermitian DP where gain and losses are balanced [9],
as the radiation losses at the intersection of the two BICs
are zero, making the system locally Hermitian. However,
the surrounding eigenvalues remain complex and are non-
Hermitian. Therefore, this point possesses the properties of
a DP; however, it is located within the parameter space that
corresponds to the radiation continuum. In other words, it
is a Dirac point embedded in the continuum (DEC). The
existence of DECs only requires two BICs with sufficiently
broad resonances to prevent the occurrence of EPs. BICs
exchanging branches and DECs also appear when the inter-
secting BICs are points within the dispersion band, as shown
in Figs. 2(a) and 2(b), respectively. This resembles the results
in Refs. [23,24] and does not depend on the specific form of
Eq. (3).

III. THE HYPERBOLIC WAVEGUIDE

To demonstrate the existence of DECs in a specific system,
we examine the planar hyperbolic waveguide in Fig. 3(a).
This structure resembles experimental setups utilizing hyper-
bolic natural materials [51]. The waveguide consists of a film
with a thickness D, which is a type-II hyperbolic medium
with positive extraordinary and negative ordinary permittivity
(εe f > 1, εof < 0) [39]. The substrate is an elliptical negative
birefringent substrate with εos > εes > 1. The cladding is air
(εc � 1). Each medium is characterized by a diagonal per-
mittivity tensor given by ε̂ = diag(εo, εo, εe). The optical axes
(OAs) of the film and substrate are aligned and parallel to the
waveguide interfaces. The angle φ represents the propagation
direction with respect to the OA. Without loss of generality,
we assume εc = 1, εe f = 1.752, εof = −1.77, εes = 1.252,
and εos = 4. Nonlocal effects and material absorption are not
considered [52]. The boundary condition problem is solved
using a transfer matrix method, which is an exact solution
of Maxwell’s equations (see the Appendix). The method
has been further enhanced with analytical routines to im-
prove accuracy[46,53,54], and provides the effective index
N = β/k0, with k0 = 2π/λ, which is the eigenvalue in this
problem. Figure 3(b) schematically shows the momentum

FIG. 2. Eigenvalue bands are depicted in terms of the coupling
parameter q and the phase mismatch �κ . (a) In level E1, a BIC
point occurs at the Fermi arc (q = 0 and �κ = 0) with a width
resonance of w1 = 0.1 and α01 = 1. In level E2, radiation losses
remain constant regardless of q and �κ , with α02 = 2 and w2 = 0,
resulting in �α = 1 when q, �κ � w1. The result shows how the
BIC exchanges bands. (b) A BIC point is present in each energy level
for q = 0 and �κ = 0, with a width resonance w1 = 0.4, resulting
in a DEC.

dispersion diagram of the structure, highlighting the regions
where various modes with hybrid transverse electric and mag-
netic (TE/TM) polarization exist. The resonant angle φRC is
the asymptotic solution of bulk hyperbolic waves and can
be expressed as tan φRC =

√
|εe f /εof |. φRC divides the dis-

persion diagram into four regions. For propagation near the
OA [φ ∈ (−φRC, φRC), green and light-blue regions in the
figure], the waveguide supports an infinite number of hybrid
but TM-dominant anomalously ordered hyperbolic (TMAH)
modes. At higher propagation directions [φ ∈ (φRC, 180◦ −
φRC), dark-blue and orange regions], a finite number of TE-
dominant normally ordered hyperbolic (TENH) modes are
supported, along with a hybrid, TM-dominant (TMd) plas-
mon (for more details, see Ref. [54]). Furthermore, depending
on the effective index N , all these modes can be guided
modes when N > nos (green and orange regions in the figure)
and leaky modes when nes < Re{N} < min{nos, ne f }, (dark-
and light-blue regions). Leaky modes correspond to improper
complex solutions of the eigenmode equation, providing an
accurate description of the field near the film. Here, Re{N}
gives rise to resonant bands or leaky bands, while Im{N} pro-
vides an approximation of the radiation losses. BICs appear
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FIG. 3. (a) Waveguide consisting of a hyperbolic film, a nega-
tive birefringent substrate, and an isotropic cladding. (b) Scheme of
the dispersion diagram showing the modes supported by the struc-
ture. The momentum components are given by ky = Nk0 sin φ and
kz = Nk0 cos φ. The ellipsis (blue line) and the circle (green line)
correspond to the substrate extraordinary (nesk0) and ordinary (nosk0)
bulk momenta. The solid orange line represents the momentum for
the extraordinary wave for the bulk hyperbolic material at the film
(ne f k0), which approaches the resonant angle φRC asymptotically.

within the leaky bands in the dark-blue region in Fig. 3(b)
when Im{N} = 0.

According to the previous discussion, hybrid polarized
eigenmodes arise due to the coupling between TE and TM
modes for any direction φ. However, at propagation directions
φ = 0◦ and 90◦, the hybrid modes show pure TE and TM
polarization [55]. Therefore, for the present purposes, the
mode coupling q can be associated with the propagation direc-
tion φ. Similarly, the momentum mismatch between modes,
�κ , depends on the normalized film thickness D/λ, where
λ represents the free-space wavelength. Thus, the waveguide
can be related to the two-level system in Eq. (1), establish-
ing the equivalence q ⇒ φ (with the origin at φ = 90◦) and
�κ ⇒ D/λ, where the eigenvalue in this case corresponds to
the effective index N = β/k0.

Near φ = 90◦, our structure exclusively supports leaky
modes. This is shown in the angular dispersion plot in
Fig. 4(a). For D/λ < 0.307, the fundamental mode is a leaky
TMd hybrid plasmon, showing both TE and TM components,
as demonstrated in Fig. 4(b). The leakage is identified as a
nondecaying Hy component at the substrate (x < 0), resulting
in the radiating channel. As is typical in semi-leaky modes, the
TE component is confined. The mode becomes purely TM po-
larized (absence of an Ey component) at φ = 90◦ [Fig. 4(c)].
The effective index at this point is ReN = 1.506, a value

that primarily depends on the properties of the film/cladding
interface and is minimally affected by variations in D/λ. As
N increases with increasing D/λ, bands of the TENH modes
emerge from the cutoff. Thus, in contrast to conventional
hyperbolic modes, these modes exhibit normal ordering [54],
and hence the denomination used in this work. Figure 4(a)
shows the first band of these modes, displaying hybrid po-
larization at φ 
= 90◦ [Fig. 4(d)]. As in the TMd band, the
Hy component is leaky but exhibits a much lower radiation
tail at the substrate. This radiating tail will decrease as the
OA orientation approaches the interference BICs (INT-BIC) at
φ = 77.4◦. At this point, total destructive interference cancels
the radiation channel, thus resulting in the INT-BIC. At φ =
90◦, the mode becomes pure TE polarized with N = 1.4054
[Fig. 4(e)], being a zero-order mode. Note the absence of the
TM component, resulting in no radiation and the formation
of a polarization-separable BIC (PS-BIC) [40]. This is equiv-
alent to a symmetry-protected BIC in other systems, as the
PS-BICs exhibit TE polarization, which is orthogonal to the
TM radiation channel.

As the film thickness increases, reaching a value D/λ =
0.307, the two bands in the dispersion diagram in Fig. 4(f)
appear to merge at what seems like a single point. However,
upon closer inspection, it becomes evident that there are two
EPs joined by a Fermi arc. This becomes more apparent when
zooming in on the region of interest and plotting the effec-
tive index bands in terms of φ and D/λ (Fig. 5). The field
amplitudes at the Fermi arc (φ = 90◦) show a TE-polarized
mode (with a null Hy component) corresponding to a PS-BIC
[Fig. 4(g)]. The second solution at the Fermi arc is shown in
Fig. 4(h), corresponding to the TM leaky plasmon. In both
of these cases, the effective index (eigenstate) of the two
eigenmodes falls on the Fermi arc, with the same value of
ReN = 1.515, but with different values of ImN . Notably, ImN
is null for the TE-polarized PS-BIC. In contrast, at the EP with
φ = 90.017◦, as the eigenmode coalesces, there is only one
solution with hybrid polarization, containing both TE and TM
contributions, as shown in Fig. 4(i).

Consequently, the first TENH0 mode and the TMd mode
intersect at D/λ = 0.307. The band structure in terms of the
propagation direction φ (coupling) and D/λ (momentum mis-
match) in Fig. 5 shows two EPs connected by a Fermi arc.
Similar to Fig. 1(c), the Fermi arc is crossed by a BIC, which
in this case corresponds to a PS-BIC. The presence of the
BIC does not compromise the existence of the EP; the main
effect is the band exchange. Note that at the point φ = 90◦ on
the Fermi arc, there are two solutions for N : one is real (the
BIC) and the other is complex (the TMd plasmon). Therefore,
the system exhibits non-Hermitian behavior for all points in
Fig. 5.

Another interesting effect occurring at the Fermi arc
is the exchange of polarization states. For D/λ < 0.307,
the upper band corresponds to TMd modes and the lower
band corresponds to TENH0 modes, as discussed above in
Figs. 4(a)–4(e). However, for D/λ > 0.307, this order is re-
versed. This can be observed in the dispersion diagram for
D/λ = 0.45 in Fig. 4(j) and by comparing the field amplitudes
at the upper branch in Fig. 4(k), which now corresponds to
the TE-polarized PS-BIC with N = 1.56, with the field at the
lower branch, which now corresponds to the leaky plasmon
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FIG. 4. Angular dispersion diagrams depict bands of mode effective index N as a function of the propagation direction φ, along with
mode fields corresponding to each band. (a), (f), (j) Dispersion diagrams at D/λ = 0.20, D/λ = 0.307, and D/λ = 0.45, respectively. In these
diagrams, the color scale represents the normalized leaky mode propagation length L = (ImNk0)−1 relative to λ, with dark red indicating
the presence of BICs. The black dotted and dash-dotted lines mark the substrate’s extraordinary (nes) and ordinary (nos) refractive indices,
respectively. The labels TMd and TENH0 correspond to the TM-dominant plasmon and the zero-order TE-dominant normally ordered
hyperbolic mode, respectively. The labels in (a) indicate the points where field components are plotted for the TMd band, with (b) at φ = 80◦

and (c) at φ = 90◦. Similarly, for the TENH0 band, (d) indicates the point at φ = 80◦ and in (e) at φ = 90◦. (f) A band crossing with two EPs
(refer to Fig. 5) near φ = 90◦. Field components for the (g) TE and (h) TM eigenmodes at the Fermi arc (N = 1.515 and φ = 90◦), and (i) at
the EP (φ = 90.017◦). Labels in (j) indicate points at φ = 90◦ where field components are plotted for (k) the TENH0 and (l) the TMd bands,
revealing a mode order exchange between the two bands.

as shown in Fig. 4(l) (all fields are plotted at φ = 90◦). This
exchange occurs because the TENH0 band increases ReN
with D/λ, while the TMd band remains almost unchanged
with ReN = 1.516 at φ = 90◦. In this process of polarization
exchange, the TENH0 band retains the PC-BIC, while the
two INT-BICs [red dots in Fig. 4(j)] now belong to the TMd
band. The proximity of these two BICs to φ = 90◦ results in
a significant reduction in radiation losses at this point, and

FIG. 5. Effective index bands for the TMd and TENH0 modes
are depicted in terms of φ and D/λ. This representation highlights
the two EPs and one PS-BIC crossing the Fermi arc. The color
scale represents the normalized leaky mode propagation length L =
(ImNk0)−1 relative to λ.

although ImN 
= 0, the leakage is not appreciable in the field
profile of the TMd plasmon in Fig. 4(l).

INT-BICs propagate at values of φ that can be adjusted
by tuning the waveguide parameters, as demonstrated in the
dispersion panels in Fig. 4. Here, it is evident that as D/λ in-
creases, the two INT-BICs on the lower branch approach each
other and become closer to φ = 90◦. Similarly to previous
findings [45], the process of approaching continues until the
two INT-BICs merge at φ = 90◦, exhibiting a wide region of
low losses [see Fig. 6(a)] and forming a single TM-polarized
BIC [see Fig. 6(c)]. In addition to the TENH0 band [see
Fig. 6(b)], a new TENH band emerges from the cutoff. The
field amplitude examination in Fig. 4(d) reveals that this is
a first-order band, i.e., TENH1, which exhibits a PS-BIC at
φ = 90◦. The effective index of this new band increases with
D/λ. At approximately D/λ ≈ 0.88, the TMd and TENH1

bands intersect [Fig. 4(e)], and at this intersection point (φ =
90◦), both bands feature a BIC. Figure 7 depicts the band
structure at the intersection, showcasing a type-II DP [56]
at φ = 90◦ and D/λ = 0.8804. At this point, there are two
eigenmodes, each showing orthogonal field amplitudes [see
Figs. 4(f) and 4(g)], with degenerated eigenvalue N , and, as
both fields correspond to BICs, N is real. Therefore, this point
is a DEC, exhibiting local Hermiticity and closely resembling
the bands depicted in the simpler two-level model of Fig. 1(e).
As D/λ increases, the two bands diverge, exchanging polar-
ization characteristics once more [see Figs. 4(i)–4(l)].
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FIG. 6. Same as Fig. 4(a); shows the angular dispersion diagram at D/λ = 0.75. (b)–(e) The points where the field components are,
respectively, plotted in (b) the TENH0, (c) the TMd, (d) the TENH1 bands, all of them at φ = 90◦. (e) Dispersion diagram at D/λ = 0.88
displaying the band crossing at the DEC (see Fig. 7). (f), (g) The eigenmode TM and TE field components at the DEC (N = 1.516 and
φ = 90◦). (h) Dispersion diagram at D/λ = 0.95. (i),(l) The points at φ = 90◦ where the field components are, respectively, plotted in (i) the
TENH0, (j) the TENH1, and (k) the TMd bands, showing mode order exchange between the last two bands. (l) The field components for the
newly emerged TENH2 band. BICs in the dispersion plots appear in red.

The DEC properties were verified through propagation
simulation with the finite-difference time-domain (FDTD)
method using the MEEP software package [57]. Figure 8(a)
shows propagation for both the TENH1 and TMd orthogonal
modes at the DEC, demonstrating that at the DEC, both the
TENH1 and TMd modes are radiationless. However, when the
propagation direction is adjusted to φ = 80◦, after some initial
reshaping of both polarizations, the fields amplitudes exhibit
radiation losses directed towards the substrate, in particular
the TM component [Fig. 8(b)].

To further validate the concept, we investigate DECs within
a cavity consisting of a waveguide section between perfect
electric conductors. The length of the cavity is set as Lc =
2λ/N , where N is chosen for the TENH1 mode to ensure
its resonance within the cavity. The quality factor Q was
numerically calculated using the Harminv tool provided by

FIG. 7. Same as Fig. 5, but for the TMd and TENH1 bands,
showing the DEC.

MEEP [57]. The results demonstrate that at the DEC, where
both the TENH1 and TMd modes share the same effective
index N , the cavity exhibits a theoretically infinite quality
factor (Q) for both the TE and TM components [Fig. 8(c)].
This double resonance is not possible when the cavity is tuned
away from the DEC. For example, changing D/λ preserves
the BIC nature for both components; however, as the cavity
length Lc is optimized for the TENH1 mode, it exhibits a the-
oretically infinite Q, while the TMd mode is slightly detuned
from resonance, resulting in a lower Q [Fig. 8(d)]. In addition,
when φ is changed, the supported modes in the cavity are
hybrid leaky modes, which display radiation losses. As a
consequence, the quality factor Q is significantly reduced, as
is the case for φ = 85◦ [Fig. 8(d)], where Q has decreased
by five orders of magnitude. These results demonstrate that
in addition to the spectral resonances provided by the cavity,
DECs also offer directional resonance characteristics for both
orthogonal polarizations.

IV. DISCUSSION AND CONCLUSIONS

DECs are a topological entity enriching the field of topo-
logical physics. DECs occur at the intersection of conical
eigenvalue surfaces, featuring a single real eigenvalue and
two orthogonal eigenstates. Unlike Hermitian DPs, DECs are
Hermitian states surrounded by non-Hermitian states. In con-
trast to other DPs in non-Hermitian systems, where all states,
including the DP, are non-Hermitian [10,11,22] or exhibit PT
symmetry [9], DECs are nonradiating states in the presence
of radiating states without PT symmetry. In this context, they
are similar to open-Dirac singularities [23–25], but with a
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FIG. 8. FDTD simulations showing the electric and magnetic
real field amplitudes Ey and Hy. Propagation at (a) the DEC, with
propagation direction φ = 90◦ and D/λ = 0.8804, and at (b) for
φ = 80◦. Cavity simulations for (c) the DEC, (d) D/λ = 0.8 but
keeping φ = 90◦, featuring BICs in both branches but outside the
DEC, and (e) keeping D/λ = 0.8804 but with φ = 85◦, which do
not features BICs. The cavity length in all panels is set to Lc = 2λ/N ,
with N corresponding to the TENH1. This configuration ensures that
only the TENH1 mode is expected to be resonant. The upper row
displays the Ey component associated with the TENH1 mode, while
the lower row shows the Hy component associated with the TMd
mode. Green dashed lines denote the waveguide interfaces, while the
gray areas represent perfect electric conductors.

different origin. Open-Dirac singularities are created from
complex DPs [11] that become lossless by synthesizing a BIC
at these points, while DECs arise from the interaction of two
BICs, preventing the existence of EPs. Compared to standard
BICs, DECs exhibit a unique characteristic: a degenerate res-
onance enabling infinite propagation distances or lifetimes for
two orthogonal states. Consequently, the physical properties
of DPs in both Hermitian and non-Hermitian systems need
to be reexamined in the context of DECs, which could lead
to novel forms of electromagnetic and quantum wave state
manipulation.

Hyperbolic photonic waveguides provide a suitable plat-
form to put forward the DEC concept. The presence of a
hyperbolic film provides a leaky TMd plasmon that can sup-
port INT-BICs. As the leaky plasmon is a surface wave,
the effective index N remains relatively constant as D/λ in-
creases. This allows for interaction with the successive new
leaky TENHn bands with PS-BICs that emerge from the
cutoff, enabling the formation of DECs. In this particular sys-
tem, the degenerate eigenstates yield a waveguide that exhibits
polarization-independent propagation, a characteristic of sig-
nificance in photonic integrated circuits [58,59]. This attribute

is shared with more conventional anisotropic waveguides that
possess Dirac points [41]. However, points around the DEC
are non-Hermitian, leading to radiation losses. Consequently,
lossless propagation exclusively occurs in the direction where
the DEC exists, resulting in spatial filtering within the planar
waveguide. In a cavity configuration with amplification, this
spatial filtering effect could indeed result in collimated lasers,
eliminating the need for additional optical elements.
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APPENDIX: THE TRANSFER MATRIX METHOD

The above modes are calculated using a transfer matrix
method. The permittivity tensor for a given layer when the
optic axis is aligned in the z direction is given by

ε̂ = diag(n2
o, n2

o, n2
e ).

The optic axis can be reoriented using the appropriate rotation
matrix Rx(φ). The normalized propagation constants in the z
direction for the ordinary and extraordinary waves are

κo = ±
√

n2
o − N2,

κe = ±
√

n2
e − N2

[
sin2 (φ) +

(
n2

e

n2
o

)
cos2 (φ)

]
,

where N is the mode effective index. The basis for the field
components is given by

−→
F o =

⎡
⎢⎢⎢⎣

κo sin (φ)
n2

o sin (φ)
−κo cos (φ)
κ2

o cos (φ)

⎤
⎥⎥⎥⎦,

−→
F e =

⎡
⎢⎢⎢⎣

κ2
o cos (φ)

εoκe cos (φ)
εo sin (φ)

−εoκe sin (φ)

⎤
⎥⎥⎥⎦,

where each element corresponds to the tangential field com-
ponents Ey, η0Hz, Ez, and η0Hy, respectively, and η0 is the
vacuum impedance. We write the 4 × 4 field matrix F̂ using
the Berreman transfer matrix formalism as

F̂ =
[−→
F+

o

−→
F−

o

−→
F+

e

−→
F−

e

]
,

where the superscript +(−) is the basis waves propagating
forward (backward) along x. Then, the total field in a layer in
terms of a 4 × 1 column vector containing the amplitudes −→a
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of the respective basis waves is
−→m = F̂−→a .

The propagation within the same layer separated by a distance
D is given by the phase matrix

ÂD = diag
(
e−ik0κ

+
o D, e−ik0κ

−
o D, e−ik0κ

+
e D, e−ik0κ

−
e D

)
.

Finally, the 4 × 4 characteristic matrix M̂ for a film f of
thickness D can be defined as

M̂ = F̂−1
f ÂDF̂f .

The cladding and the substrate are semi-infinite and only two
(one ordinary and one extraordinary) out of the four basis
waves must be selected for these layers.

Guided modes are found when the sign in κo,e is se-
lected to decay exponentially upon moving away from the
interfaces for all the polarizations. Leaky modes are selected
choosing the sign in κo,e that grows exponentially upon mov-

ing away from the interface, but only for the polarization
that corresponds to the radiation channel, which in our case
is the ordinary wave. Any other polarization is described by
evanescent waves.

The fields at the two interfaces at x = 0 and x = D are then
related using the characteristic matrix M̂ as

as
o · −→

F s
o + as

e · −→
F s

e = ac
o · M̂

−→
F c

o + ac
e · M̂

−→
F c

e,

where s and c denote the substrate and cladding, respectively,
and ai

j is the amplitude of the corresponding basis wave.
Rewriting the previous equation, a homogeneous system of
linear equations can be written as

Ŵ −→a = [−M̂
−→
F c

o − M̂
−→
F c

e
−→
F s

o
−→
F s

e

]−→a = 0

and the condition for the existence of nontrivial solutions,
|Ŵ | = 0, provides the dispersion equation to obtain the values
of N for the semi-leaky modes.
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