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We demonstrate that a complete class of flat-band lattices with underlying commutative local symmetries
exhibit a locally fragmented Hilbert space. The equitable partition theorem ensures distinct parities for the
compact localized states (CLSs) present in this class of flat-band lattices and the extended eigenstates of the
system. In the presence of on-site bosonic interactions, such models exhibit a conserved quantity, the parity of
the number of particles located in all the CLSs in a unit cell. As a consequence, the Hilbert space presents local
fragmentation, which is only revealed upon rotating the basis of the Hamiltonian that decouples the CLSs at
the single-particle level. We find that the fragmentation is strong and also robust to the addition of long-range
interactions. As an example, we numerically analyze the fragmentation of the one-dimensional pyrochlore chain,
which exhibits nonintegrable sectors, effective single-particle sectors, and frozen states. We also show that the
entanglement entropies form a nested-dome structure typical of these fragmented systems and that thermalization
is restricted to each subsector.
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I. INTRODUCTION

Compact localized states (CLSs) are eigenstates of a
Hamiltonian that have nonzero amplitudes on (typically few)
close-by sites and whose amplitude strictly vanishes on the
rest [1,2]. CLSs arise due to geometrical frustration through
the interplay between the geometry and the tunneling ampli-
tudes of the model. If the system is periodic, CLSs lead to a
macroscopic number of degenerate eigenstates that constitute
a flat band. Flat bands have an energy independent of the
quasimomentum, such that transport is strongly suppressed.
They can generally be related to the presence of CLSs, as these
can be constructed as a superposition of degenerate Bloch
states [3].

There are multiple methods of construction to generate flat
bands, such as the use of Fano lattices [1], origami rules [4],
fractals [5,6], bipartite graphs [7], and others [8–10]. More
general procedures also exist, such as solving inverse eigen-
value problems [2,11–13], performing band engineering [14],
or using strictly local projectors [15,16]. Although there is no
framework capable of generating all systems known to exhibit
flat bands, many CLSs arise as a result of local reflection
symmetries in the Hamiltonian. For this class of CLSs, a gen-
eral formalism has been proposed using the equitable partition
theorem (EPT) from graph theory [17], and its generalization
to complex matrices [18–20]. This theorem allows one to link
the presence of commutative local symmetries to the presence
of CLSs [21].

Local Hilbert space fragmentation has been recently shown
to arise in a family of diamond necklace lattices with on-site
bosonic interactions, which possess local reflection symme-
tries and single-particle CLSs [22]. The interplay between
CLSs and interactions leads to the appearance of a conserved
quantity that fragments the Hilbert space into exponentially
many disconnected sectors: The parity of the number of

particles in each CLS. In locally fragmented systems, the
conserved quantities that shatter the Hilbert space are strictly
local [23–27], in analogy with the conserved local quantities
in disorder-free localization [28] and in lattice gauge theories
[29–32]. In contrast, standard fragmentation is due to the pres-
ence of the recently coined crypto-local conserved quantities,
those that cannot be expressed as sums of local operators [33].

A natural question arises: Is there a general local frag-
mentation mechanism that arises in flat-band lattices? In this
paper, we answer this question affirmatively for arbitrary flat-
band lattices possessing commutative local symmetries that
correspond to local reflection symmetries, thus obeying the
EPT theorem.

The rest of the article is organized as follows. In Sec. II,
we define a class of flat-band systems with commutative local
symmetries, and in Sec. III, we demonstrate that they exhibit
strong local Hilbert space fragmentation in the presence of
on-site bosonic interactions. In Sec. IV, we discuss the effect
of long-range interactions on the conserved quantities. Finally,
we provide a numerical example in Sec. V and discuss the
conclusions in Sec. VI.

II. FLAT-BAND LATTICES FROM COMMUTATIVE
LOCAL SYMMETRIES

Let us consider the real symmetric matrix associated with
a time-reversal invariant and Hermitian Hamiltonian Ĥ. One
might interpret this matrix as an adjacency matrix represent-
ing an undirected weighted graph that might contain loops.
The vertices of such a graph represent the basis states of
the Hamiltonian, while the edges are the adjacency relations
between the vertices, i.e., the nonzero matrix elements of Ĥ.
Graphs might present automorphisms, permutations of ver-
tices such that the adjacency relations of the associated matrix
are left invariant. Let us take, for example, a single unit cell
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FIG. 1. (a) Adjacency graph exhibiting a commutative local symmetry S = (1)(2, 3) which corresponds to a local reflection of sites 2 and
3, where the sites of a unit cell are shown in black. (i) Examples of flat-band lattices with underlying basic commutative local symmetries of
order two and (ii) their rotated models composed of dispersive states and spinal sites (top row) and CLSs decoupled at the single-particle level
(bottom row). (b) Diamond chain, (c) Creutz ladder, (d) 1D pyrochlore chain, (e) double diamond chain, and (f) 2D diamond necklace lattice.
Examples of CLSs for lattices (b)–(e) are given in color, with the radius representing the amplitude and the color representing the phase, where
red is a π phase and blue is a phase zero. We also indicate the annihilation operators associated with the spinal, top, bottom, dispersive, and
CLS sites for a given unit cell k.

of the diamond chain, shown in black in Fig. 1(a), where we
have numbered the vertices as 1, 2, and 3. The permutation
of vertices (or sites) 2 and 3 leaves the graph invariant. This
automorphism can be represented as a permutation that in
cyclic notation reads as follows:

S = (1)(2, 3), (1)

where each parenthesis indicates an orbit whose size is the
number of elements it contains. An orbit of size 1 is called a
trivial orbit, as it leaves its element unchanged. A permutation
S can also be represented in matrix form �S , which in the
above example would read, in the ordered {|1〉, |2〉, |3〉} basis,

�S =

⎛
⎜⎜⎝

1 0 0

0 0 1

0 1 0

⎞
⎟⎟⎠. (2)

One might consider an enlarged Hamiltonian by taking the
black sites that form a diamond in Fig. 1(a) as a unit cell and
constructing a lattice from it [Fig. 1(a) including the gray sites
and couplings]. We will adopt the definition of a commutative
local symmetry of a Hamiltonian Ĥ proposed in Ref. [21] as a
permutation symmetry S that fulfills

Ĥp,q = ĤS(p),S(q) ∀p, q ⇐⇒ [Ĥ,�S ] = 0. (3)

A commutative local symmetry is basic and of order o if
all the nontrivial orbits of S have the same size o. For basic
commutative local symmetries of order two, the permutation
matrix fulfills �2

S = I. Then, if S is a commutative local
symmetry, the eigenstates of Ĥ are also eigenstates of �S and
have a well-defined parity ±1 with respect to this symmetry.

The equitable partition theorem (EPT) provides a
symmetry-induced decomposition of a matrix associated
with a graph exhibiting an automorphism into a direct
sum of smaller matrices that determine its spectrum and

eigenstates [17]. It was originally stated for unweighted
graphs, which can be represented by unweighted adjacency
matrices, but was later generalized to complex square matri-
ces, thus representing generic Hamiltonians [18,20]. There are
two consequences of the EPT that are of interest here. The
EPT states that a system with a commutative local symmetry
has two classes of eigenstates: Eigenstates that are symmetric
under the action of S and eigenstates that are not symmetric
and that have support only on the permuted sites [18,19].
Therefore, the EPT ensures the presence of one or more CLSs
(depending on the geometry of the Hamiltonian). We refer
the interested reader to Ref. [21] for a review of the EPT. If
the commutative local symmetry S is basic and of order two,
these CLSs will have a well-defined negative parity while all
the other states will have a positive parity. Such a permutation
can be interpreted visually as a local reflection symmetry with
respect to an axis in the adjacency graph of the Hamiltonian
[as shown in Fig. 1(a) for the diamond chain]. This interpre-
tation depends on the depiction of the Hamiltonian as a graph
but provides an intuitive picture of the destructive interference
mechanism that generates the CLSs.

In this work, we will consider lattice models exhibiting
CLSs that stem from commutative local symmetries of order
two in each unit cell. We represent an arbitrary lattice model
with n sites per unit cell as a set of pairs of sites that we
call top and bottom and form a rung. These make explicit
the permutation symmetries of the Hamiltonian as a local
y-reflection symmetry in the Hamiltonian graph. Additionally,
each unit cell may present spinal sites that remain invariant
under the reflection. Our lattice will have n = n1 + n2 sites
per unit cell, where n1 is the number of spinal sites, with asso-
ciated annihilation operators ŝ j,k ( j = 1, ..., n1), and n2 is the
number of top and bottom sites, with annihilation operators
t̂ j,k and b̂ j,k ( j = 1, ..., n2/2), respectively. The EPT theorem
ensures that such a system presents n2/2 negative-parity CLSs
that have support only on the top and bottom sites. Some
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examples of lattices containing this class of CLSs and an
example of their CLSs are given in the top row of Fig. 1:
(bi) diamond chain, (ci) Creutz ladder, (di) one-dimensional
(1D) pyrochlore chain, (ei) double diamond chain (fi), and
two-dimensional (2D) diamond necklace lattice. Note that
while some of these lattices [(ai) and (bi)] present one CLS per
unit cell, the 1D pyrochlore chain presents two and the double
diamond chain presents three. Also, the double diamond chain
can be recast into a top-bottom configuration by reordering the
sites. Other examples not depicted in Fig. 1 include the square
root versions of the diamond chain [34] or the 2D Creutz
ladder [35].

III. HILBERT SPACE FRAGMENTATION

One can also classify CLSs phenomenologically in terms
of the number of unit cells that they occupy. CLSs extending
to more than a single unit cell can appear both in lattices with-
out a magnetic flux [1] or as a consequence of inserting a finite
magnetic flux per plaquette [36–40]. In these models, adjacent
CLSs of a flat band have spatial overlap, which can be used
to generate interaction-driven dynamics [41] and topological
effects [42,43] in many-body systems. CLSs that occupy a
single unit cell can form an orthogonal basis that allows one
to detangle each CLS at the single-particle level [1]. For
CLSs with underlying commutative local symmetries, this is
ensured by the EPT theorem, which restricts the support of the
CLSs to the permuted sites. Thus, there is no overlap with the
CLSs in adjacent unit cells and they can form an orthogonal
basis. Negative parity CLSs, those with an associated basic
commutative local symmetry S of order two, constitute a new
basis that is completed by their symmetric counterparts. The
corresponding annihilation operators are

ĉl,k =
n2/2∑
j=1

αl
j,k (t̂ j,k − b̂ j,k ), d̂l,k =

n2/2∑
j=1

αl
j,k (t̂ j,k + b̂ j,k ), (4)

where k labels the unit cell, j labels the rung, and the coef-
ficients αl

j,k determine the amplitudes at each rung for each
CLS and dispersive state l = 1, ..., n2/2 in unit cell k. In this
basis, the CLSs become decoupled at the single-particle level
while the symmetric states, which we refer to as dispersive
states, remain coupled and compose a dispersive chain sup-
porting extended states. In our notation, the dispersive chain
can also include spinal sites, which remain invariant under this
rotation. Figures 1(ii) represent the rotated models of the (bii)
diamond chain, (cii) Creutz ladder, (dii) 1D pyrochlore chain,
(eii) double diamond chain, and (fii) 2D diamond necklace
lattice. Each model presents one or more decoupled CLS for
each unit cell.

The many-body Hamiltonian reads Ĥ = J Ĥ0 +
0.5UĤint , where J and U indicate the magnitudes of
the independent-particle Hamiltonian and the interaction
Hamiltonian, respectively. The term Ĥ0 can be written as a
sum of local operators in each unit cell Ĥ0 = ∑

k f̂k , where
the operators f̂k include particle-conserving products of the
operators ν̂ j,k , with ν = t, b, s. We consider the addition of
on-site bosonic interactions of the form n̂ν j,k (n̂ν j,k − 1), where
n̂ν j,k = ν̂

†
j,k ν̂ j,k are the number operators at each site. The

interaction Hamiltonian at the top and bottom sites can be

written as

Ĥint
t,b =

∑
k

n2/2∑
j=1

[t̂†
j,kt̂†

j,kt̂ j,kt̂ j,k + b̂†
j,k b̂†

j,k b̂ j,kb̂ j,k]. (5)

It has been recently shown that the parity of the number
of particles in each CLS commutes with the Hamiltonian of
a diamond chain [22]. However, the associated conservation
quantity remains hidden in the product state basis. We denote
the rotated basis using its associated collection of annihilation
operators, {ĉl,k, d̂l,k}, and the product state basis as {t̂ j,k, b̂ j,k}.
We will show that a similar mechanism occurs for arbitrary
flat-band lattices with basic commutative local symmetries of
order two, which may have more than one CLS per unit cell.
In this general case, we postulate that the conserved quantity
is the parity of the number of particles in all CLSs of a unit
cell. Thus, the operator

P̂k = eiπ
∑n2/2

l=1 n̂cl,k (6)

commutes with the Hamiltonian, [P̂k, Ĥ′] = 0, where Ĥ′ is
the total Hamiltonian in the rotated basis, n̂cl,k = ĉ†

l,k ĉl,k , and
n2/2 is the number of CLSs in each unit cell. This conser-
vation law leads to the fragmentation of the Hilbert space
in the rotated or entangled basis, while it remains hidden
in the product-state basis. Therefore, this is an instance of
quantum Hilbert space fragmentation, also shown to appear
in Temperley-Lieb chains [44], the quantum East model [45],
and spin-1/2 chains with hard rod deformations [46]. In con-
trast to quantum fragmentation, most examples of Hilbert
space fragmentation are classical, leading to a fragmentation
structure that is reproducible in classical Markov generators
[44,47].

Given that the CLSs only have support on the top and
bottom sites, the spinal part of the interaction Hamiltonian
trivially commutes with P̂k . The rotated interaction Hamilto-
nian on the top and bottom sites can be obtained by expressing
the top and bottom operators in terms of CLSs and dispersive
operators [Eq. (4)]. Due to the periodicity of the lattice, it is
enough to consider a single unit cell k. Thus, we omit the unit
cell index k in the demonstration, for ease of reading. The
reduced interaction Hamiltonian in the rotated basis reads

Ĥint′
t,b =

∑
ρ̂,σ̂ ,τ̂ ,υ̂

n2/2∑
{li}=1

(



l1,l2,l3,l4
ρ̂,σ̂ ,τ̂ ,υ̂

)
ρ̂

†
l1
σ̂

†
l2
τ̂l3 υ̂l4 , (7)

where {ρ̂, σ̂ , τ̂ , υ̂} = {ĉ, d̂} are the annihilation operators
of either a CLS or a dispersive state, respectively; {li} =
1, ..., n2/2 are the CLS and dispersive state indices (with
i = 1, 2, 3, 4); and 


l1,l2,l3,l4
ρ̂,σ̂ ,τ̂ ,υ̂ are the coefficients of each term.

Only those terms with an odd number of ĉ(†)
l and of d̂ (†)

l oper-
ators do not commute with P̂k . Those terms, e.g., ĉ†

l1
d̂†

l2
d̂l3 d̂l4 ,

exchange one particle between the CLSs and the dispersive
states, thus violating parity. Then, it is enough to prove that
the coefficient 


l1,l2,l3,l4
ρ̂,σ̂ ,τ̂ ,υ̂ vanishes for terms of this form.

The rotation matrix from the product-state basis {t̂ j, b̂ j} to
the rotated basis {ĉl , d̂l} in each unit cell can be written as a
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Kronecker product K = L ⊗ M, with

L =

⎛
⎜⎜⎝

α1
1 α1

2

α2
1 α2

2 . . .

...
. . .

⎞
⎟⎟⎠ and M =

(
1 1

−1 1

)
, (8)

where we have ordered the basis as {b̂1, t̂1, b̂2, t̂2, ...} and
{d̂1, ĉ1, d̂2, ĉ2, ...}, and made use of Eq. (4). The inverse of
matrix K is K−1 = (L ⊗ M)−1 = L−1 ⊗ M−1, and indicates
the expressions of {t̂ j, b̂ j} in terms of {ĉl , d̂l}. By writing L−1

as an arbitrary matrix, K−1 takes the following general form:

K−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1
1 −β1

1 β1
2 −β1

2

β1
1 β1

1 β1
2 β1

2

β2
1 −β2

1 β2
2 −β2

2

β2
1 β2

1 β2
2 β2

2 . . .

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

Thus, one can express the annihilation operators t̂ j and b̂ j in
terms of ĉl and d̂l ,

t̂ j,k =
n2/2∑
l=1

β
j
l,k (d̂l,k + ĉl,k ), b̂ j,k =

n2/2∑
l=1

β
j
l,k (d̂l,k − ĉl,k ). (10)

Then, the coefficient 

l1,l2,l3,l4
ρ̂,σ̂ ,τ̂ ,υ̂ for the terms containing an odd

number of CLS and dispersive operators takes two forms: (i)
for the terms with one CLS operator and three dispersive state
operators and (ii) for the terms with three CLS operators and
one dispersive state operator. These two terms are

(i)
n2/2∑
j=1

[
β j

r β
j
mβ j

pβ
j
o + ( − β j

r

)
β j

mβ j
pβ

j
o

] = 0,

(ii)
n2/2∑
j=1

[
β j

r β
j
mβ j

pβ
j
o + β j

r

( − β j
m

)( − β j
p

)( − β j
o

)] = 0.

(11)

For both cases, it vanishes at each rung j. As all the other
terms commute with P̂k , the parity of the number of particles
in all the CLSs in a unit cell is conserved. The only terms
in the rotated Hamiltonian that produce a particle exchange
between the CLSs and the dispersive states are of the form
d̂†

l1,k
d̂†

l2,k
ĉl3,k ĉl4,k and ĉ†

l1,k
ĉ†

l2,k
d̂l3,kd̂l4,k . These denote a two-

particle tunneling between CLSs and dispersive states that
preserves P̂k . This mechanism is a direct consequence of
the commutative local symmetry of these lattices: The well-
defined parities of the eigenstates determine the structure of
the basis states (4), which in turn determines the form of M−1.
Note that this result is not restricted to one dimension, as the
underlying permutations can exchange sites in any axis [see
Fig. 1(f)].

As the operator P̂k in each unit cell k commutes with the
rotated Hamiltonian Ĥ′, one can also define the total CLS
number parity as P̂ = ∑

k P̂k , which also commutes with
Ĥ′. The rotated Hamiltonian is then composed of a series of
sectors defined by the eigenvalues of P̂ , and within those,
one or more subsectors determined by the eigenvalues of

TABLE I. Eigenvalues of the local P̂k and total P̂ parities, and
number of associated subsectors Pk and sectors P for a number of
particles N larger, equal to, or smaller than the number of unit cells
Nc.

No. of sectors and subsectors

Eigenvalue N > Nc N � Nc

Pk = ±1 2Nc
∑N−1

k=0

(Nc
k

)+(Nc
N

)
( n2

2 )N

P = −Nc, −Nc + 2, ..., Nc Nc + 1 N + 1

P̂k . The eigenvalues of P̂ and P̂k are given in Table I as
well as the number of sectors and subsectors in terms of the
number of particles N and the number of unit cells Nc. The
number of subsectors grows exponentially with system size,
signaling Hilbert space fragmentation [44]. In particular, this
mechanism produces local Hilbert space fragmentation, as
the shattering of the Hilbert space stems from a strictly local
conservation law, [P̂k, Ĥ′] = 0 [23].

The degree of fragmentation can be measured by calcu-
lating the ratio of the dimension of the largest sector of the
Hilbert space to the total dimension of the space [48]. For our
class of models, the dimension of the largest subsector is

Dmax =
� N

2 	∑
�=0

[((
n1 + n2

2

)
Nc + N − 2� − 1

N − 2�

)

×
∑

(δ1,...,δNc )∈Q

Nc∏
k=1

( n2
2 + 2δk − 1

2δk

)]
, (12)

where the indices � and δk count the number of pairs of
particles that populate the CLSs, in total and for a unit cell
k, respectively; N is the number of particles; and the set
Q fulfills Q(�, Nc) = {(δ1, ..., δNc )|� = δ1 + δ2 + ... + δNc}.
The dimension of the full Hilbert space is

D =
(

(n1 + n2)Nc + N − 1

N

)
. (13)

The ratio Dmax/D tends to zero at the thermodynamic
limit, indicating strong Hilbert space fragmentation (see Ap-
pendix A for a numerical illustration). By contrast, a limit
of one would indicate weak fragmentation, where the largest
sector dominates.

Let us consider some examples. For the class of models
with only one CLS per unit cell [Figs. 1(bi) diamond chain and
1(ci) Creutz ladder], the conserved quantity simplifies to P̂k =
eiπ n̂ck . The double diamond chain, Fig. 1(ei), is an unusual
example: It presents multiple commutative local symmetries
of order two, such as

S1 = (1)(4)(5)(2, 3), S2 = (1)(2)(3)(4, 5),

S3 = (1)(2)(5)(3, 4), S4 = (1)(2)(4)(3, 5). (14)

Taking, for example, S1 and S2, these are independent com-
mutative local symmetries that lead to nonoverlapping CLSs
and thus to independently conserved quantities. However, af-
ter decoupling these CLSs the dispersive lattice still presents
an unresolved local symmetry [see Fig. 1(eii)]. The third
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CLS occupies all diamond sites in Fig. 1(ei) and corresponds
to the permutation S = (1)(2, 5)(3, 4). One can perform a
second rotation to decouple this state at the single-particle
level. However, the third CLS will not be decoupled from
the dispersive chain at the many-body level due to the pres-
ence of interaction-induced one-particle tunnelings between
the dispersive chain and the CLS. In contrast, the 1D py-
rochlore chain presents the symmetry S = (1, 2)(3, 4) [see
Fig. 1(di)], which cannot be decomposed into two inde-
pendent permutations. As a consequence, it presents two
overlapping CLSs per unit cell that lead to a single conserved
quantity P̂k = eiπ (n̂c1,k +n̂c2,k ). Therefore, each independent lo-
cal reflection symmetry with an underlying basic commutative
local symmetry S of order two leads to a conserved quantity.
These require a single rotation to detangle the associated CLSs
and thus lead to the conservation of parity and fragmenta-
tion. Some lattices, such as the double diamond chain, might
present more than one independent local symmetry per unit
cell, which leads to a multiplicity of conserved quantities. For
example, one might create an enlarged unit cell by uniting
Creutz and 1D pyrochlore unit cells, which will lead to two
independent sets of conserved quantities per unit cell.

IV. LONG-RANGE INTERACTIONS

Let us consider how the block-diagonal structure of the
Hamiltonian is affected by the presence of long-range interac-
tions. There are mainly three classes of long-range interaction
terms for a 1D system. Considering interactions that respect
the y-reflection symmetry of the system, these read

(i) Ĥint
1 =

∑
k,k′

∑
j, j′

ξ
j, j′

k,k′
(
n̂s j,k n̂t j′ ,k′ + n̂s j,k n̂b j′ ,k′

)
,

(ii) Ĥint
2 =

∑
k

∑
j

ϑ j n̂t j,k n̂b j,k ,

(iii) Ĥint
3 =

∑
k,k′

∑
j, j′

�
j, j′
k,k′

(
n̂t j,k n̂t j′ ,k′ + n̂t j,k n̂b j′ ,k′

+ n̂b j,k n̂t j′ ,k′ + n̂b j,k n̂b j′ ,k′
)
. (15)

In term (iii), we have assumed that the cross terms, e.g.,
n̂t j,k n̂b j′ ,k′ , have the same strength as the horizontal terms, e.g.,
n̂t j,k n̂t j′ ,k′ . There can also be interactions between spinal sites,
which remain invariant under the basis rotation and thus pre-
serve fragmentation. In order to understand the effect of these
terms, we can write them in the rotated basis determined by

the annihilation operators ˆ̃c j,k = (t̂ j,k − b̂ j,k )/
√

2 and ˆ̃d j,k =
(t̂ j,k + b̂ j,k )/

√
2. In contrast with the basis considered before

[see Eq. (4)], the states annihilated by ˆ̃c j,k are not eigen-
states of the system, i.e., they are not the CLSs, except for
the cases of the diamond chain and Creutz ladder, where the
CLSs occupy a single rung j [Figs. 1(bi) and 1(ci)]. Thus,
the CLSs do not generally become decoupled through this
rotation. For arbitrary lattices, the antisymmetric states rep-
resented by ˆ̃c j,k are superpositions of the CLSs of unit cell k,
and thus remain coupled between them within a unit cell at the

single-particle level. The symmetric states given by ˆ̃d j,k form
a dispersive chain that is decoupled from the states given by

ˆ̃c j,k . The rotated interaction Hamiltonians in this basis read

(i) Ĥint′
1 =

∑
k,k′

∑
j, j′

ξ
j, j′

k,k′

(
n̂d̃ j,k

n̂s j′,k′ + n̂c̃ j,k n̂s j′,k′

)

(ii) Ĥint′
2 =

∑
k

∑
j

ϑ j

4

[
n̂d̃ j,k

(
n̂d̃ j,k

− 1
) + n̂c̃ j,k

(
n̂c̃ j,k − 1

)

− ˆ̃c†
j,k

ˆ̃c†
j,k

ˆ̃d j,k
ˆ̃d j,k − ˆ̃d†

j,k
ˆ̃d†

j,k
ˆ̃c j,k ˆ̃c j,k

]
(iii) Ĥint′

3 =
∑
k,k′

∑
j, j′

�
j, j′
k,k′

(
n̂d̃ j,k

n̂d̃ j′,k′ + n̂c̃ j,k n̂c̃ j′,k′

+ n̂d̃ j,k
n̂c̃ j′,k′ + n̂c̃ j,k n̂d̃ j′,k′

)
. (16)

The Hamiltonians (i) and (iii) are defined for any distance
between the first k and second k′ unit cells, and might involve
different pairs of rungs j, j′. Thus, they represent not only
nearest-neighbor (NN) interactions but arbitrary long-range
interactions. These only include density-density interaction
terms in the rotated basis. Thus, they conserve the number
of particles in all CLSs of a unit cell, as particles are free to
move between the states given by ˆ̃c j,k of a single unit cell.
The Hamiltonian (ii) also includes two particle tunnelings

between the states annihilated by ˆ̃c j,k and ˆ̃d j,k , such that only
the parity of the number of particles in all CLSs of a unit cell is
conserved. Therefore, all these terms preserve the fragmenta-
tion of the Hilbert space and the parity sectors determined by
on-site interactions. If one considers the case where there are
no on-site interactions and only long-range interactions of the
form (i) and (iii), then the structure of the fragmented Hilbert
space changes, as each subsector is given by the number of
particles in each CLS (not the parity), and the number of
subsectors proliferates, leading to a stronger fragmentation.
As the authors of Ref. [49] point out, all density-density
interactions invariant under the graph automorphism associ-
ated with the local symmetry will preserve fragmentation. In
particular, they study the Creutz ladder, diamond chain, and
dice lattice with flux. Their formalism can be used to analyze
the generic class of flat-band lattices with commutative local
symmetries studied here, as we show in Appendix B. Similar
considerations have been pointed out for the case of all-bands-
flat lattices [50].

V. EXAMPLE: PYROCHLORE LATTICE

In this section, we numerically study the 1D pyrochlore
chain [Fig. 1(di)] as an example. Each unit cell contains two
CLSs that, together with two dispersive states, form a new
basis. The associated annihilation operators are given by

ĉ1 = 1
2 (t̂1 + t̂2 − b̂1 − b̂2), ĉ2 = 1

2 (t̂1 − t̂2 − b̂1 + b̂2),

d̂1 = 1
2 (t̂1 + t̂2 + b̂1 + b̂2), d̂2 = 1

2 (t̂1 − t̂2 + b̂1 − b̂2),
(17)

where we have omitted the unit cell index k. Note that these
CLSs occupy two rungs, in contrast to the states defined by
ˆ̃c j,k in the previous section. The single-particle energies of the
CLSs are Ec1 = 1 and Ec2 = −1, and thus the states ˆ̃c j,k are
not eigenstates of the single-particle Hamiltonian. If the CLSs
were degenerate, the states given by ˆ̃c j,k would also be eigen-
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FIG. 2. Numerical results for the 1D pyrochlore chain with N = 4 particles in Nc = 4 unit cells and J = U = 1. (a) Half-chain bipartite
von Neumann entanglement entropy of each eigenstate as a function of the energy. The horizontal lines are the sector-restricted Page values
for each sector and the color of the dots indicates the normalized density of data points, increasing with warming colors. (b) Adjacency graphs
corresponding to the dome structures in (a) for each sector P , where the color of the nodes represents the diagonal terms of the rotated
Hamiltonian ε. (c) Average of the entanglement entropy evolution for 20 random rotated basis states of each sector with eigenvalue P . Inset:
Beginning of the 1D pyrochlore chain with one spinal site and bipartitions (dashed blue lines) resulting in a zero entanglement entropy for the
CLSs. In (a) and (c), the entropy is normalized to the number of sites in the subsystem, S̃ = S/NL .

states. In this basis, the interaction Hamiltonian contains only
terms that commute with P̂k , thus conserving the parity of the
number of particles in the two CLSs, P̂k = eiπ (n̂c1,k +n̂c2,k ). In a
unit cell k, it reads

Ĥint′ =1

4

∑
l,l ′

(d̂†
l d̂†

l ĉl ′ ĉl ′ + H.c.)

+ 1

4

∑
l,l ′

(d̂†
l d̂†

l d̂l ′ d̂l ′ + ĉ†
l ĉ†

l ĉl ′ ĉl ′ )

+ n̂d1 n̂d2 + n̂c1 n̂c2 +
∑
l,l ′

n̂dl n̂cl′

+
∑
l,l ′

ĉ†
l d̂†

l ′ ĉl̄ d̂l̄ ′ +(ĉ†
1ĉ†

2d̂1d̂2 + H.c.), (18)

where l̄ (′) indicates the opposite index of l (′), i.e., l̄ (′) �= l (′).
The terms include on-site interactions, two-particle tunnel-
ings, and NN interactions in the basis {ĉl , d̂l}. The two-particle
tunnelings and NN interactions both include terms between
the dispersive states and CLSs and within these two groups.

Figure 2 presents the numerical results for the 1D py-
rochlore chain with N = 4 particles in Nc = 4 unit cells, with
J = U = 1, and open boundary conditions. The lattice starts
with the sites hosting the CLSs, presents an integer number
of unit cells, and has one spinal site [see inset in Fig. 2(c)].
Figure 2(a) shows the von Neumann half-chain bipartite en-
tanglement entropy of each eigenstate as a function of the
energy. We represent the entanglement entropy normalized
to the number of sites in the left subsystem, S̃ = S/NL. The
horizontal lines are the sector-restricted Page values [22,51],
i.e., the average value of S̃ for random states belonging to
a particular sector P . The entanglement entropies present a
nested-dome structure that can be understood by analyzing
the adjacency graph of the many-body Hamiltonian in the

rotated basis, shown in Fig. 2(b). The eigenstates that compose
each dome correspond to a total sector of the Hamiltonian
with eigenvalue P , composed of one or more subsectors with
eigenvalues P = (P1, . . . ,PNc ), where the vector P con-
tains the eigenvalues of P̂k at each unit cell k. The color
of the nodes in Fig. 2(b) represents the diagonal terms of
the rotated Hamiltonian, ε = 〈 f |Ĥ′| f 〉, where | f 〉 is a basis
state, which highlights that the different subsectors of a given
sector are not degenerate. The entanglement entropies of the
CLSs are exactly zero along several bipartitions of the lattice,
one of which coincides with the half-chain cut considered in
Fig. 2(a). Thus, particles located in a CLS do not contribute to
the entanglement entropy of the eigenstates. The two-particle
tunneling terms in Eq. (18) allow pairs of particles to jump to a
CLS. However, those special basis states form a small fraction
of the basis states in each subsector, and thus the main basis
states determine the structure of the entanglement entropies.
For the upper dome, most basis states have all particles in a
dispersive state, thus obtaining the maximum entanglement
entropy. For the lower domes, the presence of basis states with
one or more particles in a CLS imposes an upper bound to
the entanglement entropy of the corresponding eigenstates. In
the sector with P = −4, all particles occupy CLSs in distinct
unit cells. The single particle energies of the CLSs in Eq. (17)
are Ec1 = 1 and Ec2 = −1, thus the available energies for
the frozen states are {−4,−2, 0,−2, 4}, with degeneracies
{1, 4, 6, 4, 1}. The two nondegenerate states with energies ±4
have exactly zero entanglement entropy and correspond to the
case where all particles populate the same CLS in distinct unit
cells. The additional frozen states are degenerate and thus a
higher value of S̃ is obtained numerically.

The nested-dome structure of the entanglement entropies
is a direct consequence of the fragmentation of the Hilbert
space and the low entanglement of the CLSs. Thus, it is
generally present in the class of flat-band lattices with basic
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commutative local symmetries of order two. However, the dis-
tinguishability of the different domes is not guaranteed, as it
depends on several factors such as the presence of symmetries,
the particle filling, the boundary conditions, and the sparsity
of the CLS compared to the dispersive states [22]. Here, the
visibility of the domes is enhanced by introducing one spinal
site that makes the CLSs more sparse while also breaking the
x-reflection symmetry of the model [see inset in Fig. 2(c)].
The nested-dome structure is partly determined by the number
of sectors of the system, given in Table I. If there are more
particles N than unit cells Nc, the number of sectors is always
the same, Nc + 1. However, for each extra particle added with
respect to N = Nc, a dome is added on top while one sector
disappears from the bottom. Additionally, the nested-dome
structure slightly shifts to the right, as the higher number
of particles causes an increase in the interaction energy of
the eigenstates since the interactions are assumed to be pos-
itive semidefinite. Note that for N > Nc the frozen states are
unavailable since there are extra particles that can populate
the dispersive chain and are thus free to move. For N < Nc,
the number of sectors is N + 1, such that removing particles
causes the disappearance of the uppermost domes while the
frozen states gain degeneracy due to the multiplicity of the
available CLSs.

The Hilbert space presents both integrable and noninte-
grable subsectors. The integrable subsectors comprise the
frozen states and those in sector P = −2, for which only one
particle is free to move in the dispersive chain, thus forming
an effective single-particle model. All the other subsectors
are nonintegrable, as they present Wigner-Dyson statistics
(numerical evidence is given in Appendix C). Figure 2(c)
shows the evolution of the average entanglement entropy
for 20 random initial states belonging to particular sectors.
The entanglement entropy grows for all cases while remain-
ing bounded by the sector-restricted Page value indicated in
Fig. 2(a). This is a direct consequence of the fragmentation
of the Hilbert space, which restricts thermalization within
each subsector. Such behavior is consistent with the exten-
sion of the eigenstate thermalization hypothesis through the
use of generalized Gibbs ensembles [52], which are usually
employed to characterize the behavior of integrable models.
Within this framework, conservation laws are used to fur-
ther restrict the statistical ensembles that determine thermal
equilibrium.

VI. CONCLUSION

We have demonstrated a general mechanism for local
Hilbert space fragmentation for a large class of flat-band lat-
tices exhibiting commutative local symmetries. These lattices
obey the equitable partition theorem (EPT), which ensures the
presence of CLSs and extended states with distinct parities.
Upon rotating the basis, such CLSs become decoupled at the
single-particle level, and in the presence of bosonic on-site
interactions, we have demonstrated that this leads to the quan-
tum fragmentation of the Hilbert space. We have shown that
these lattices conserve the parity of the number of particles in
all the CLSs in a single unit cell. For lattices presenting more
than one set of independent local symmetries, multiple con-
served quantities per unit cell can arise. Additionally, we have

found the dimension of the largest subsector of the Hilbert
space and have characterized the fragmentation as strong.

The mechanism for local Hilbert space fragmentation stud-
ied here is robust to large classes of long-range interactions,
which in some cases causes the conserved quantity to change
from the parity to the total number of particles in the CLSs.
By studying one particular example numerically, the 1D py-
rochlore chain, we have shown that the fragmentation of the
Hilbert space in these lattices leads to a nested-dome struc-
ture in the entanglement entropies. These structures can be
understood through the adjacency graphs of the many-body
Hamiltonian and are a consequence of the low entanglement
of the CLSs. Also, thermalization is restricted to each subsec-
tor, which causes the entanglement entropy to be bounded by
the sector-restricted Page value.

This work leaves open the study of other classes of flat-
band lattices which might present similar mechanisms of
fragmentation. One could consider, for instance, lattices with
flux, where conserved quantities were observed in the dia-
mond chain, Creutz ladder, and dice lattice [49].
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APPENDIX A: FRAGMENTATION STRENGTH

In this Appendix, we numerically illustrate the strong
fragmentation of the Hilbert space as given by the ratio of
dimensions Dmax/D of Eqs. (12) and (13). Figure 3 shows
the ratio Dmax/D as a function of the number of unit cells
Nc for the diamond chain (D) and the 1D pyrochlore lattice
(P) with n1 = 1, n2 = 2, and n1 = 0, n2 = 4, respectively,
and different filling factors (FF). All cases rapidly tend to
zero even for a low number of unit cells, indicating strong
fragmentation in the thermodynamic limit.

APPENDIX B: INTERTWINING OPERATORS

In this subsection, we apply the argument used in Ref. [49]
for the Creutz ladder, diamond chain, and dice lattice with
flux, to arbitrary flat-band lattices with basic commutative
local symmetries of order two. The authors in Ref. [49] define
the so-called intertwining operators U j,k , which realize the au-
tomorphisms of the single-particle graph in the field operators.
In our notation, they swap the top and bottom operators in
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FIG. 3. Ratio of dimensions Dmax/D as a function of the number
of unit cells Nc. This ratio indicates the strength of the fragmentation
as obtained from Eqs. (12) and (13) for the diamond chain (D), where
n1 = 1 and n2 = 2, and the 1D pyrochlore lattice (P), with n1 = 0 and
n2 = 2, and different values of the filling factor (FF).

a rung j of a unit cell k while leaving the other operators
invariant,{

U j,kt̂ j,kU†
j,k = b̂ j,k

U j,k b̂ j,kU†
j,k = t̂ j,k

and

{
U j,kt̂ j′,kU†

j,k = t̂ j′,k

U j,k b̂ j′,kU†
j,k = b̂ j′,k

for j �= j′,

(B1)
while U j,k ŝ j′,k′U†

j,k = ŝ j′,k′ for a spinal site in any rung j′

and any unit cell k′. For each lattice, the Hamiltonian will
remain invariant under a set of local permutations repre-
sented by the combined action Rk = ∏n2/2

j=1 U j,k , such that

RkĤR†
k = Ĥ. Note that, in contrast with Ref. [49], here we

deal with flat-band lattices without flux. As a consequence,
the intertwining operators do not cause the insertion of a π

flux and the conserved quantity does not include an additional
gauge transformation.

The effect of the intertwining operators on the CLSs and
the dispersive states we defined in Eq. (4) is the following:

n2/2∏
j1=1

U j1,k ĉl,k

[ n2/2∏
j2=1

U j2,k

]†

=

=
n2/2∏
j1=1

U j1,k

n2/2∑
j=1

αl
j,k (t̂ j,k − b̂ j,k )

[ n2/2∏
j2=1

U j2,k

]†

=
n2/2∑
j=1

αl
j,k (b̂ j,k − t̂ j,k ) = −ĉl,k . (B2)

If the intertwining operators are applied to a dif-
ferent unit cell, the CLS operators remain invariant,∏n2/2

j1=1 U j1,k ĉl,k′
∏n2/2

j2=1 U
†
j2,k

= ĉl,k′ , for k �= k′. Due to the
positive sign in the expression of the dispersive states,
Eq. (4), they remain invariant under such operation,∏n2/2

j1=1 U j1,kd̂l,k′
∏n2/2

j2=1 U
†
j2,k

= d̂l,k′ , for any pair k, k′. For
an on-site bosonic interaction, the Hamiltonian is composed
of a series of terms of the form ρ̂

†
l1,k

σ̂
†
l2,k

τ̂l3,kυ̂l4,k , where

{ρ̂, σ̂ , τ̂ , υ̂} = {ĉ, d̂} are the annihilation operators of either
a CLS or a dispersive state [see Eq. (7)]. The terms with an

TABLE II. Mean level spacing ratio for the subsectors with
P = 4, 2, 0, −2 of the 1D pyrochlore chain, with N = 4 particles
in Nc = 4 unit cells, open boundary conditions, and one spinal site.
The value corresponding to the Gaussian orthogonal ensemble is
〈r〉GOE = 0.536, while the value for a Poisson distribution is 〈r〉P =
0.386. We also indicate the standard errors of the mean. The plus
and minus signs indicate the positive or negative parity of the vector
P = (P1, . . . ,PNc ) in each unit cell k.

Sector P Subsector Pk 〈r〉 Standard error

4 (+,+, +, +) 0.520 0.005

2 (−,+, +, +) 0.508 0.008
2 (+,−, +, +) 0.515 0.008
2 (+,+, −, +) 0.524 0.008
2 (+,+, +, −) 0.526 0.008

0 (−,−, +, +) 0.538 0.014
0 (−,+, −, +) 0.529 0.014
0 (−,+, +, −) 0.531 0.014
0 (+,−, −, +) 0.538 0.013
0 (+,−, +, −) 0.515 0.014
0 (+,+, −, −) 0.503 0.013

−2 (−,−, −, +) 0.40 0.03
−2 (−,−, +, −) 0.40 0.03
−2 (−,+, −, −) 0.36 0.03
−2 (+,−, −, −) 0.43 0.03

odd number of CLS creation or annihilation operators change
sign under the action of the intertwining operators, while the
others remain invariant. As we showed in the main text, those
terms always vanish, such that

P̂k = eiπ
∑n2/2

l=1 n̂cl,k (B3)

is a conserved quantity of the complete system.

APPENDIX C: LEVEL STATISTICS
AND NONINTEGRABILITY

Below we give numerical results on the level statistics
of the 1D pyrochlore chain [Fig. 1(di)]. We consider the
ordered eigenvalues En and the associated nearest-neighbor
gaps sn = En+1 − En, from which one can define the spac-
ing ratios rn = min(sn,sn+1 )

max(sn,sn+1 ) . The level-spacing distribution of
integrable systems is known to approximate a Poisson dis-
tribution, characterized by a mean value 〈r〉P = 0.386. In
contrast, nonintegrable systems with time-reversal symmetry
tend to the probability distribution of the Gaussian orthogonal
ensemble, with 〈r〉GOE = 0.536 [53]. In Table II, we show
the mean spacing ratio for each subsector P = (P1, . . . ,PNc )
of the pyrochlore chain considered in Sec. V, with N = 4
particles in Nc = 4 unit cells, open boundary conditions, and
one spinal site per unit cell. Most subsectors tend to the
Wigner-Dyson value signaling nonintegrability within each
subsector. The subsectors belonging to P = −2, for which
the dimension of the subsectors is very small, tend to the
Poisson regime, as those correspond to the integrable effective
single-particle subsectors. The sectors P = −4, not included
in the table, correspond to the frozen states.
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