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Large optical conductivity of Fermi arc states in Weyl and Dirac semimetal nanowires
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We theoretically study the band structure and optical conductivity in the Weyl and Dirac semimetal nanowires.
It is found that the Fermi arc states play a crucial role in the optical conductivity. The optical conductivity
shows an anisotropic dependence on the optical polarization axis. The qualitative anisotropy is attributed
to the underlying band structure and distinct optical selection rules. For an optical polarization axis parallel to the
nanowire, the optical resonant transitions are between Fermi arc and bulk states or bulk and bulk states. On the
other hand, when the polarization axis is perpendicular to the nanowire, there are additional transitions between
Fermi arc and Fermi arc states aside from the transitions aforementioned. They contribute to a giant resonant
peak. The amplitude of this ultrastrong resonant peak is 10 times stronger than other responses. Moreover, these
characteristic features of optical conductivities can be observed even with a finite chemical potential which is out
of the bulk gap and are robust to disorders. In a word, the large resonant peak due to Fermi arc states and strong
anisotropy of optical conductivities provide an optical means to probe the dynamics of the Fermi arc states in
Weyl and Dirac semimetal nanowires. We hope that our study could give a valuable theoretical reference for
nanoelectronics and ultrafast optoelectronic applications based on nanowires of Dirac and Weyl materials.
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I. INTRODUCTION

Weyl and Dirac semimetals have attracted a tremendous
amount attention recently as the famous examples of topolog-
ical semimetals [1,2]. They are characterized by the gapless
bulk twofold Weyl or fourfold Dirac nodes protected by topol-
ogy and/or symmetry. The corresponding low-energy bulk
excitations are the Weyl and Dirac fermions as analogs of
particles in high-energy physics. One of their distinct signa-
tures is the Fermi arc surface states which are protected by the
topology of the bulk band structure and link the projections
on the surface Brillouin zone of the different bulk nodes.
The Fermi arc surface states were experimentally observed
in various materials by means of surface probe techniques
(such as angle-resolved photoemission spectroscopy, scan-
ning tunneling microscopy, scanning tunneling spectroscopy,
and the quasiparticle interference patterns) [2–4]. The ex-
otic transport properties of the Weyl and Dirac semimetals,
due to their characteristic electronic properties in the bulk
states, have been intensively studied both theoretically and
experimentally [1,2]. On the other hand, several works inves-
tigated the contributions of the Fermi arc states in finite-size
devices to the band structure and the transport phenom-
ena both theoretically and experimentally [5–41], such as
nonlocal transports [5,6], quantum oscillations [28–33], and
three-dimensional (3D) quantum Hall effect [35–41]. The in-
fluences of phonon-induced backscattering on transport have
also been investigated for both the slab geometry [23,42]
and nanowires [24]. Particularly, it was shown that the
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contribution of Fermi arc states to the conductance is salient
and crucial at low energy in nanowires of Weyl and Dirac
semimetals [22,26,27]. It is found two distinct regimes for
the conductance depending on the chemical potential: “sur-
face regime” and “bulk-surface regime” [22,26,27]. In order
to probe the conductance conditioned by only Fermi arc
states, the chemical potential should be adapted low enough
to be in the bulk confinement gap where only the Fermi arc
states exist. Experimentally, the nanowires of Weyl and Dirac
semimetals are realizable recently [15–21,25,43].

Optical conductivity can reveal valuable information on
the charge dynamics, which is hard to obtain in DC measure-
ments. It can be used to detect the underlying band structures
and to design optoelectronic devices. The optical [44–48] and
magneto-optical conductivities [44,49] have been investigated
for the bulk states of Weyl and Dirac semimetals. The low-
frequency optical conductivity of Weyl and Dirac semimetals
was proposed to be linear theoretically [44,45] and verified
experimentally [46–48] in the bulk systems. In addition, the
optical conductivity of multi-Weyl semimetals [50] and the
magneto-optical conductivity of double-Weyl semimetals [51]
have also been studied, respectively. On the other hand, the
finite-size effects on the optical conductivity were shown to
be significant in graphene [52–55] and α-T3 model [56]. For
Dirac semimetals, it was demonstrated that Fermi arc states in
a slab can mediate a large optical response [57]. However, the
optical conductivity of Weyl and Dirac semimetal nanowires
has not been investigated to the best of our knowledge. It is
natural to wonder about what effects the Fermi arc states of
nanowires would have on the optical conductivity.

In this paper, we present a theoretical study of the low-
energy optical conductivity in Weyl and Dirac semimetal
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FIG. 1. The schematic diagram of the nanowire and the band
structure of bulk states. The nanowire is parallel to the Weyl (Dirac)
nodes splitting direction (z direction).

nanowires as illustrated by Fig. 1. Since Weyl and Dirac
semimetal nanowires are experimentally achievable and at
the same time analytically solvable, we demonstrate that the
finite-size effects and the Fermi arc states make a significant
impact on the low-energy optical conductivity in a compre-
hensive manner. The band structure, wave functions, density
of states (DOS), and the optical conductivity are calculated.
Agreeing well with the results of Refs. [26,27], the Fermi
arc states turn to a series of nearly flat discrete surface bands
which induce the divergent DOS at low energy, and bulk states
open a small gap at Weyl or Dirac points due to the finite-
size effect of quantum confinements. The optical responses
show strongly anisotropic depending on the polarization of
the incident photon. This qualitative anisotropy is due to
the strikingly different selection rules governing the quan-
tum transitions. For an optical polarization axis parallel to
the nanowire [Re(σzz )], the optical transitions occur between
Fermi arc and bulk bands or between bulk and bulk bands
with the same total angular quantum number. Moreover, for
the polarization axis perpendicular to the nanowire, the optical
response Re(σxx ) has a giant peak which is attributed to the
additional transitions between Fermi arc and Fermi arc bands
with different total angular momentum. The amplitude of this
peak due to Fermi arc–Fermi arc transitions is many times
stronger than those of the bulk-bulk transitions and Fermi
arc–bulk transitions. Strikingly, the position of this ultrastrong
response is independent of the chemical potential. This is a
great advantage in adjusting the chemical potential to detect
the optical conductivity dominated by Fermi arc bands. In
contrast, the chemical potential is restricted in a small low-
energy range in order that the longitudinal conductance of
Weyl and Dirac semimetal nanowires is determined by only
the Fermi arc states [26,27]. Additionally, we show that both
Re(σzz ) and Re(σxx ) are robust to disorders. We hope that our

TABLE I. Parameters in the effective model taken from
Refs. [58,61].

Na3Bi Cd3As2

M0 (eV) −0.08686 −0.0205
M1 (eV Å2) −10.6424 −18.77
A (eV Å) 2.4598 0.889

study would help understanding the Fermi arc contributions
in the optical conductivity and provide a valuable theoretical
reference for nanoelectronics and ultrafast optoelectronic ap-
plications based on nanowires of Weyl and Dirac materials.

The rest of this paper is organized as follows. In Sec. II,
we introduce the low-energy effective Hamiltonian and the
Kubo formula to calculate the optical conductivity. The opti-
cal conductivity is presented analytically in clean limit. The
numerical results and discussion on band structures, wave
functions, DOS, and the optical conductivity with finite im-
purity scattering rates will be presented in Sec. III. Finally,
discussion and conclusion are given in Sec. IV. Calculation
details are presented in the Appendixes.

II. HAMILTONIAN AND FORMALISM

We start from the low-energy effective Hamiltonian for
electron excitations in the Dirac semimetals A3Bi (A = Na,
K, Rb) [58] and Cd3As2 [59] derived from k · p theory around
the � point. In the basis of |SJ=1/2, Jz = 1

2 〉, |SJ=3/2, Jz = 3
2 〉,

|SJ=1/2, Jz = − 1
2 〉, |SJ=3/2, Jz = − 3

2 〉, this effective model has
the form [27,58–61]

H (p) =

⎛⎜⎜⎜⎜⎝
M(p) A

h̄ p+ 0 0
A
h̄ p− −M(p) 0 0

0 0 M(p) −A
h̄ p−

0 0 −A
h̄ p+ −M(p)

⎞⎟⎟⎟⎟⎠, (1)

where p = (px, py, pz ) is the momentum, p± = px ± ipy, and
M(p) = M0 − M1

h̄2 p2
z with the parameters M0, M1 < 0 to re-

produce band inversion, which is a vital part for the nontrivial
Fermi arc. The numerical values of parameters in Hamiltonian
(1) can be determined by fitting the energy spectrum with
that of the first-principles calculations and are summarized in
Table I [58,59,61]. Here, we omit the high-order terms O(p2

x )
and O(p2

y ) for simplicity and the identity matrix term which
do not lead to qualitatively new effects in transport properties
[27].

In the infinite system, the translation symmetry keeps for
x, y, and z directions, so k = (kx, ky, kz ) is a good quantum
number. The energy dispersion can be easily obtained:

E (k) = ±
√(

M0 − M1k2
z

)2 + A2
(
k2

x + k2
y

)
. (2)

In such a case, a pair of fourfold degenerate Dirac points

locates at kD = (0, 0, kz = ±
√

M0
M1

). Due to the block-diagonal

form of Eq. (1), the 4 × 4 matrix could be decoupled into

two 2 × 2 matrices, i.e., H (p) = (H+
2×2(p) 0

0 H−
2×2(p)), where

H+
2×2(p) = (

M0 − M1
h̄2 p2

z
A
h̄ (px + ipy )

A
h̄ (px − ipy ) −M0 + M1

h̄2 p2
z
) and the lower block H−

2×2
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could be obtained by replacing px → −px in H+
2×2. Each

diagonal block describes a minimal time-reversal symmetry-
breaking Weyl semimetal with a pair of Weyl nodes and
opposite chirality [27,60]. The leading-order term of off-
diagonal block takes the high-order form of O(k3) constrained
by the symmetry [58,59,61]. On the other hand, the off-
diagonal block can be interpreted as a momentum-dependent
mass term that vanishes at the Dirac points [62,63]. Here,
we concentrate on the neighborhood of kD and only con-
sider the expansion up to O(k2), therefore, the off-diagonal
blocks can be neglected [58–60,62,63]. The Hamiltonian (1)
describes 3D massless Dirac fermions. Generally, the gapless
Fermi arc states of Dirac semimetals are not topologically
protected. Especially, the Dirac semimetals A3Bi (A = Na,
K, Rb) and Cd3As2 were found to possess nontrivial surface
Fermi arcs numerically [28,58,59] and were also demon-
strated experimentally [32,64]. Because of a discrete up-down
parity symmetry of the low-energy effective Hamiltonian, the
corresponding Dirac semimetal can be identified as a Z2 Weyl
semimetal which guarantees the nontrivial surface Fermi arcs
[62,63].

In order to perform analytical calculation including finite-
size effects and Fermi arc states, we study a cylindrical
nanowire surrounded by a vacuum or any trivial insulator.
As illustrated by Fig. 1, its radius is R. It is appropriate to

use the cylindrical coordinates, i.e., r(x, y) =
√

x2 + y2 and
ϕ(x, y) = arcsin y√

x2+y2
. The wire is along the z axis, thus,

kz is a good quantum number, and the Fermi arc is also
along the wire. The upper block Hamiltonian in the coordinate
representation reads as

H+
2×2(r, ϕ, z)=

(
M0 − M1

h̄2 p2
z −ieiϕA

(
∂
∂r + i

r
∂
∂ϕ

)
−ie−iϕA

(
∂
∂r − i

r
∂
∂ϕ

) −M0 + M1

h̄2 p2
z

)
.

(3)

We obtain the band structure and eigenfunctions by solv-
ing the Schrödinger equation H±

2×2�
± = ε�± numerically.

Calculation details of band structure and eigenfunctions are
presented in Appendix A.

Then, the DOS could be obtained by

g(ε) =
∑

n

∫
dkz

2π
δ(ε − εn,kz ), (4)

where n ∈ Z and j = n − 1
2 is the angular momentum

quantum number because that the total angular momentum
operator Ĵ = −i∂ϕI2×2 − σz/2 commutes with Hamiltonian
H+

2×2, I2×2 is the identity matrix, and σz is the Pauli matrix.
From the Kubo formula, the optical conductivity can be

obtained [65]:

σaa(ω) = − ih̄

πR2

∑
nn′

∫
dkz

2π

∫
dk′

z

2π

[
fF
(
εn,kz

) − fF
(
εn′,k′

z

)]〈
�+

n,kz

∣∣ ja
∣∣�+

n′,k′
z

〉〈
�+

n′,k′
z

∣∣ ja
∣∣�+

n,kz

〉(
εn,kz − εn′,k′

z

)(
h̄ω + εn,kz − εn′,k′

z
+ i�

) , (5)

where fF (εn,kz ) = 1/[e(εn,kz −μ)/kBT + 1] is the Fermi-Dirac distribution with the chemical potential μ at the temperature T , �

represents the impurity scattering rate (in this paper, we assume � is constant for simplicity), and the current operators jx =
ie
h̄ [H+

2×2, x] = eA
h̄ σx, jy = ie

h̄ [H+
2×2, y] = − eA

h̄ σy, and jz = ie
h̄ [H+

2×2, z] = − 2e
h̄ M1kzσz.

In the clean limit the scattering rate � → 0, the dissipative components of the conductivity tensor Re(σzz ) and Re(σxx ) which
correspond to the absorption of light can be expressed as

Re[σzz(ω)] = (4πeM1)2

h̄R2

∑
n(ε �=ε′ )

∫
dkzk

2
z

[
fF
(
εn,kz

) − fF
(
ε′

n,kz

)]
h̄ω

δ
(
h̄ω + εn,kz − ε′

n,kz

)
×

{
As

(
n, kz, εn,kz

)
As

(
n, kz, ε

′
n,kz

) ∫ R

0
r dr

[
X s

n

(
r

r0

)
X s

n

(
r

r′
0

)
− Fkz,εn,kz

Fkz,ε
′
n,kz

X s
n−1

(
r

r0

)
X s

n−1

(
r

r′
0

)]}2

(6)

and

Re[σxx(ω)] = (2πeA)2

h̄R2

∑
n

∫
dkz

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ fF (εn,kz )− fF (ε′
n+1,kz

)]

h̄ω
δ
(
h̄ω + εn,kz − ε′

n+1,kz

)
×[

As
(
n, kz, εn,kz

)
As

(
n + 1, kz, ε

′
n+1,kz

) ∫ R
0 r drFkz,ε

′
n+1,kz

X s
n

(
r
r′

0

)
X s

n

(
r
r0

)]2

+ [ fF (εn,kz )− fF (ε′
n−1,kz

)]

h̄ω
δ
(
h̄ω + εn,kz − ε′

n−1,kz

)
×[

As
(
n, kz, εn,kz

)
As

(
n − 1, kz, ε

′
n−1,kz

) ∫ R
0 rdrFkz,εn,kz

X s
n−1

(
r
r′

0

)
X s

n−1

(
r
r0

)]2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (7)

where s = sgn(αεn,kz
), αεn,kz

= ε2
n,kz

− (M0 − M1k2
z )2,

Fkz,εn,kz
= √|αεn,kz

|/(εn,kz + M0 − M1k2
z ), r0 = A/

√|αεn,kz
|,

A± are the normalization constants, X s=+
n (x) = Jn(x),

X s=−
n (x) = In(x), and Jn(x) and In(x) are the Bessel and

modified Bessel functions of the first kind, respectively.
The above optical conductivities of the nanowire show

strongly anisotropic depending on the polarization axis of the
incident photon. The δ functions in Eqs. (6) and (7) indicate

strikingly different selection rules for Re(σzz ) and Re(σxx ).
For Re(σzz ), the transitions are allowed to occur only when
�n = 0. That is, the total angular momentum is not influ-
enced along the z axis. On the other hand, the transitions
obey selection rules �n = ±1 for Re(σxx ). Due to the rota-
tional symmetry, Re(σyy) = Re(σxx ). The above expressions
of optical conductivities are too complicated to calculate an-
alytically. Thus, we will show and elucidate the numerical

195436-3



WENYE DUAN, XIANGDONG LU, AND JUN-FENG LIU PHYSICAL REVIEW B 108, 195436 (2023)

FIG. 2. (a) Band structures of H+
2×2 as functions of kz with R̃ =

10 for |n| � 9. (b) The corresponding DOS of (a). (c) Wave-function
profiles as functions of the radial coordinate r at ε = 0.0525 (in
units of −M0), kz = 0 (in units of

√
M0/M1), ε = 0.1435, kz = 1,

ε = 0.3115, kz = 1, and ε = 0.4685, kz = 1, respectively. The corre-
sponding states are labeled in (a) by the red, green, blue, and magenta
dots, respectively.

results in the following section. In this work we focus on
the contribution of only interband transitions to the optical
conductivity. Similarly, there is a degeneracy of 2 included
for Dirac semimetals including the lower block.

III. NUMERICAL RESULTS

A. Band structures and wave-function profiles

In this section, we present the numerical results. Fig-
ure 2(a) presents the band structures of H+

2×2 as functions of
kz with R = R̃A/(−M0) and R̃ = 10. In good agreements with
Ref. [27], there exhibits a series of discrete almost flat Fermi

arc states with nearly equal energy space for |kz| <
√

M0
M1

[see the red lines in Fig. 2(a)]. For |kz| >
√

M0
M1

, the Fermi

arc states turn to dispersive and the energy spaces decrease
gradually. The energy space of the flat Fermi arc states is
�FA = 2A

(2R̃−1)A/(−M0 )
= −2M0

(2R̃−1)
approximately. In the concrete

for R̃ = 10, as shown in Fig. 2(a), �FA ≈ 0.105(−M0). These
nearly flat bands induce the divergent DOS as shown in
Fig. 2(b). Due to the quantum confinement in nanowires, the
continuum spectra of the Weyl or Dirac cones transform to a
series of discrete bands as the blue lines shown in Fig. 2(a).
Furthermore, there is a gap at |E | � 0.3(−M0) in which only
the Fermi arc states exist because the bulk states have a

smaller confinement length 2R than 2πR of the Fermi arc
states for a cylinder [26].

To concretely illustrate the wave-function profiles of bulk
and Fermi arc states, the wave-function profile of state εn,kz is
given by

|�+
n,kz

|2 = |A+|2
[∣∣∣∣Jn

(
r

r0

)∣∣∣∣2 + |F (εn,kz )|2
∣∣∣∣Jn−1

(
r

r0

)∣∣∣∣2
]

(8)

for αε > 0 and

|�+
n,kz

|2 = |A−|2
[∣∣∣∣In

(
r

r0

)∣∣∣∣2 + |F (εn,kz )|2
∣∣∣∣In−1

(
r

r0

)∣∣∣∣2
]

(9)

for αε < 0. Figure 2(c) shows the wave-function profiles as
functions of the radial coordinate r at ε = 0.0525 (in units

of −M0), kz = 0 (in units of
√

M0
M1

, a Fermi arc state in the

flat region, the red line), ε = 0.1435, kz = 1 (a Fermi arc state
in the dispersive region, the green line), ε = 0.3115, kz = 1
(a bulk state, the blue line), and ε = 0.4685, kz = 1 (a bulk
state, the magenta line), respectively. The wave function is
localized to the surface for the Fermi arc state in the nearly
flat region, while the wave function distributes mostly near
the center of the nanowire for the bulk state.

B. Optical conductivities

The band structure of the Fermi arc and bulk states together
with the optical selection rules will control the results of
optical conductivities. The numerical results show that Fermi
arc states play a key role in the optical conductivity. In this
section, we elaborate the numerical results in a comprehensive
manner.

Figures 3(b) and 3(d) show the real part of the optical
conductivities σzz and σxx as functions of frequency at the neu-
trality condition, i.e., μ = 0(−M0). Both Re(σzz ) and Re(σxx )
show series of resonant peaks. On the other hand, due to
the strikingly different optical selection rules, it is found that
the locations of resonant peaks in Re(σzz ) and Re(σxx ) are
different. In order to elaborate the difference of the resonant
patterns between Re(σzz ) and Re(σxx ), the band structures and
transitions allowed by the optical selection rules are plotted in
Figs. 3(a) and 3(c), respectively.

For Re(σzz ), the optical selection rule is �n = 0 because of
the δ function in Eq. (6). Thus, we consider the band structure
of n = 0 [see in Fig. 3(a)] and the corresponding optical
response [see in Fig. 3(b)]. We find that there are two different
types of transitions for Re(σzz ). One is between Fermi arc
bands and bulk bands (FA-B transitions) as marked by vertical
arrows with dashed lines and plain arrowheads in Figs. 3(a)
and 3(b). The corresponding optical conductivity is plotted by
the dashed orange line in Fig. 3(b). Another type of the optical
transitions is between bulk and bulk bands (B-B transitions)
as marked by vertical arrows with dotted lines and vback
arrowheads in Figs. 3(a) and 3(b). The corresponding optical
conductivity is plotted by the dotted yellow line in Fig. 3(b).
The total response Re(σzz ) including contributions of both
FA-B transitions and B-B transitions is plotted by the solid
blue line in Fig. 3(b). Because of the quantum confinement
effect in finite-size nanowires, the spectrum transforms to
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FIG. 3. (a) Band structures of H+
2×2 as functions of kz with R̃ = 10 for n = 0. (b) Re(σzz ) as a function of frequency, corresponding to (a).

(c) Band structures of H+
2×2 as functions of kz with R̃ = 10 for n = 0 (blue lines) and 1 (red lines). (d) Re(σxx ) as a function of frequency,

corresponding to (c). The allowed transitions between bands are shown schematically for Re(σzz ) and Re(σxx ) in (a) and (c), respectively. In
(a) and (c), the FA-B, B-B, and FA-FA transitions are indicated by vertical arrows of dashed lines with plain arrowheads, dotted lines with
vback arrowheads, and solid line with thin vback arrowhead, respectively. The corresponding peaks in optical conductivities are marked by
vertical arrows with the same color, line styles, and arrowhead styles in (b) and (d), respectively. The inset of Fig. 3(d) shows an enlarged view
of Re(σxx ) near the FA-FA transition. The other parameters are μ = 0(−M0), T = 10 K, and � = 0.005(−M0 ).

discrete dispersive bands with extrema and there shows a gap
between the Fermi arc band and the valence bulk bands. The
first and highest response peak of Re(σzz ) is attributed to the
FA-B transitions and locates at the frequency corresponding to
the gap as shown by the vertical arrows with red dashed lines
and plain arrowheads in Figs. 3(a) and 3(b). The amplitude
of the response peaks due to FA-B transitions decreases faster
than that of B-B transitions. These asymmetry resonant peaks
begin with vertical jumps because of the extrema of discrete
bands and then decrease with increasing ω due to the disper-
sive band structure. The tails of these resonant peaks overlap
with the new peaks at higher frequencies.

On the other hand, the optical selection rule is �n = ±1
for Re(σxx ), which is strikingly different from Re(σzz ). The
transitions can only occur between different angular momen-
tum with �n = ±1. Therefore, the n = 0 (blue lines) and 1
(red lines) bands are plotted in Fig. 3(c). Correspondingly,
patterns of optical resonant peaks in Re(σxx ) [see Fig. 3(d)]
express completely different characteristics from Re(σzz ).
These manifest a strong anisotropy of the optical conductiv-
ities. Similar with Re(σzz ), FA-B transitions, B-B transitions,
and the corresponding resonant peaks are indicated by ver-
tical arrows in Figs. 3(c) and 3(d), respectively. Figure 3(d)
shows that the amplitude of resonant peaks due to FA-B
transitions is weaker than those due to B-B transitions. Ad-
ditionally, Re(σxx ) shows a giant optical resonant peak due
to the transitions between Fermi arc and Fermi arc states
(FA-FA transitions) as marked by the black arrow in the inset
of Fig. 3(d). The inset of Fig. 3(d) is an enlarged view of

Re(σxx ) near the FA-FA transitions. Due to the divergence of
the DOS of the near-flat Fermi arc bands, a large set of FA-FA
transitions occurs. As a result, the amplitude of this resonant
peak is many times stronger than other resonant peaks induced
by FA-B and B-B transitions. This is a prominent feature of
Re(σxx ) and one of the key results of this paper. Furthermore,
this ultrastrong response is situated at the frequency ω =
0.105(−M0) which is exact the confinement gap of Fermi arc
states [see the black arrow in Fig. 3(c)]. This confinement gap
stems from the finite-size effect of nanowires. Interestingly,
this ultrastrong peak position is independent of the chemical
potential as shown in Fig. 4 and this peculiar characteristic
will be elucidated in the following.

In Fig. 4, we plot the optical conductivities Re(σzz ) and
Re(σxx ) as functions of frequency for four values of the chem-
ical potential. Figure 5 further illustrates the effect of the
chemical potential μ on the optical conductivities Re(σzz ) and
Re(σxx ) by plotting the contributions of the FA-B, B-B, and
FA-FA transitions, respectively. Several salient features of the
optical conductivities for nonzero values of chemical potential
are worth being discussed.

For Re(σzz ), as μ is tuned to 0.13(−M0), the lowest peak
due to FA-B transitions [see Figs. 5(a1) and 5(a2)] is sup-
pressed and the rest of the curve is unaffected. Parts of
interband transitions B → FA of n = 0 are forbidden by Pauli
blocking. On the other hand, parts of the intraband transitions
FA → B of n = 0 are now allowed because the nearly flat
parts of n = 0 Fermi arc band get occupied while the con-
duction parts of the bulk bands remain empty. As a result,
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FIG. 4. (a) Band structures of H+
2×2 as functions of kz with R̃ =

10 for |n| � 9. The chemical potentials μ = 0, 0.13, 0.42, 0.65 (in
units of −M0) are labeled as black solid, light blue dotted, black dot-
ted, and black dotted-dashed lines, respectively. The corresponding
allowed FA-FA transitions are shown schematically for Re(σxx ). The
real part of optical conductivities (b) σzz and (c) σxx as functions of
frequency for chemical potentials μ = 0, 0.13, 0.42, 0.65 (in units of
−M0). The other parameters are T = 10 K and � = 0.005(−M0).

the absorption edge will appear at lower frequency as shown
in Fig. 5(a2). Similarly, for Re(σxx ) and increasing μ further,
the optical conductivities at low frequencies are modified due
to the intraband transitions allowed and parts of interband
transitions forbidden as shown in Figs. 4 and 5. The results
at high frequency are unaffected.

Moreover, there presents a significant feature for Re(σxx )
that no matter μ locates in the bulk gap or not, the ultrastrong
resonant peak due to FA-FA transitions persists and its loca-
tion is not influenced. This is because the Fermi arc states are
equispaced �FA = −2M0

(2R̃−1)
≈ 0.105(−M0) and the selection

rule for Re(σxx ) is �n = ±1. The allowed FA-FA transitions
are indicated by the black arrows in Fig. 4(a). Additionally,
the height of this ultrastrong peak at ω ≈ 0.105(−M0) is
enhanced by increasing μ due to three reasons. First, Fermi
arc bands are nearly flat near |kz| = 0. With |kz| increasing,
the n � 0 Fermi arc bands curve up while the n > 0 Fermi
arc bands curve down. For μ = 0, the n = 0 Fermi arc band
curves up and the n = 1 curves down. For μ = 0.13(−M0),
both the n = 0 and −1 bands curve up. Therefore, the region
of nearly parallel Fermi arc bands with the space �FA for μ =
0.13(−M0) is larger than for μ = 0.0. Second, for μ = 0, only
the transitions between n = 0 → −1 contribute to the ultra-
strong peak. In contrast, for μ = 0.65(−M0), aside from the
major contribution of transitions n = −5 → −6, there also
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FIG. 5. The plot of (a1)–(a4) Re(σzz ) (considering total, FA-B,
and B-B transitions separately) and (b1)–(b4) Re(σxx ) (considering
total, FA-B, B-B, and FA-FA transitions separately) as functions
of frequency for several values of the chemical potential μ =
0, 0.13, 0.42, 0.65 (in units of −M0), respectively. The other param-
eters are T = 10 K and � = 0.005(−M0).

include transitions n = −4 → −5, −3 → −4, . . . and until
n = 0 → −1, which are allowed because of the dispersive
Fermi arc bands. Finally, the additional contributions of the
B-B transitions enhance the peak as shown in Figs. 5(b3)
and 5(b4). As was emphasized in Refs. [26,27], the finite-size
effect of nanowires makes it possible to probe DC which is
dominated by the Fermi arc state. However, the chemical po-
tential should be tuned low enough in the bulk gap. Here, we
find that the ultrastrong peak of optical conductivity Re(σxx )
due to FA-FA transitions is independent of chemical poten-
tials. This distinctive qualitative feature provides an optical
means to probe the dynamics of the Fermi arc states in Weyl
and Dirac nanowires. And there shows an advantage in tuning
the chemical potential.

At last, we examine the effect of disorders on the features
above by increasing the scattering rate �. Figure 6 shows
that increasing the scattering rate �, both Re(σzz ) and Re(σxx )
remain qualitatively unaffected except that the resonant peaks
are suppressed and blurred out to smoother. The peak height
and peak width of the ultrastrong peaks of Re(σxx ) in Fig. 6 as
functions of scattering rate � are shown in Fig. 7(a). The peak
width is defined at half-height. On the other hand, Fig. 7(b)
shows the ratio of the peak height of the ultrastrong peak
(H0) to that of the neighboring rsonance (H1) of Re(σxx ) in
Fig. 6 as functions of scattering rate �. By increasing the
scattering rate, both the peak height and the ratio decrease
rapidly. Even for � = 0.08(−M0), H0 is still stronger than

195436-6



LARGE OPTICAL CONDUCTIVITY OF FERMI ARC … PHYSICAL REVIEW B 108, 195436 (2023)

0

0.5

1

1.5

R
e(

zz
) 

[-
M

0e2 /A
h]

(a)=0.005
=0.01
=0.02
=0.04
=0.06
=0.08

0 0.5 1 1.5
 [-M

0
]

0

1

2

3

R
e(

xx
) 

[-
M

0e2 /A
h]

(b)

0 0.2
0

20

FIG. 6. The plot of (a) Re(σzz ) and (b) Re(σxx ) as functions of
frequency for several values of scattering rate � (in units of −M0).
The other parameters are T = 10 K and μ = 0(−M0).

H1. For Na3Bi, M0 = −0.086 86 eV [58], this corresponds
to a scattering rate of � ≈ 6.95 meV. At the same time, the
peak width increases nearly linearly as the orange dashed line
shown in Fig. 7(a) which is the linear fit for the peak width.
In a word, the characteristic ultrastrong peak due to FA-FA
transitions of Re(σxx ) and the anisotropic behaviors of the
optical conductivities are stable with disorders.

IV. DISCUSSION AND CONCLUSION

Now we give a brief estimation of the relevant optical
frequency. For specified materials, the frequency at which
the characteristic giant peak is located is dependent on the
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FIG. 7. The plot of (a) peak height (light blue circle) and peak
width (orange square) of the ultrastrong peak of Re(σxx ) in Fig. 6,
(b) the ratio of the peak height between the ultrastrong peak and the
nearest peak of Re(σxx ) in Fig. 6 as functions of scattering rate �.
The orange dashed line in (a) is the linear fit for the peak width. The
other parameters are the same with Fig. 6.

radius of the nanowire and material parameters. The param-
eters used for Na3Bi and Cd3As2 in the following estimation
are summarized in Table I. For Na3Bi, M0 = −0.086 86 eV
and A = 2.4598 eV Å [58]. The radius is R = 10A/(−M0) ≈
28.219 nm. The characteristic giant peak is estimated to
be located at ω ≈ 0.105(−M0) ≈ 9.12 meV corresponding
to 2.22 × 1012 Hz. For Cd3As2, M0 = −0.0205 eV and A =
0.889 eV Å [61]. The radius is R ≈ 43.366 nm approximately
and the characteristic giant peak is located at ω ≈ 2.15 meV
corresponding to 0.525 × 1012 Hz. The radii for both materi-
als are accessible in experiments [15,16,19,66]. The adequate
light of the optical experiment for both materials falls into the
terahertz regime.

In summary, we have performed a systematic study on the
optical conductivity of Weyl and Dirac semimetal nanowires
theoretically and demonstrated that the Fermi arc states play a
key role in the optical conductivity. Due to the finite-size ef-
fect of nanowires, the continuum spectra of the Weyl or Dirac
cones transform into a series of discrete bands. There exhibits
a series of discrete and equispaced almost flat Fermi arc states
which attribute to the divergence of the DOS. Because the
bulk states have a smaller confinement length 2R than 2πR
of the Fermi arc states for a cylinder nanowire [26], there is a
gap of the bulk bands in which only the Fermi arc states exist.
These results of band structures are in good agreements with
Refs. [26,27].

These particular band structures of nanowires, together
with the strikingly different selection rules of Re(σzz ) and
Re(σxx ), result in the strong anisotropy of optical conductivi-
ties. Therefore, Re(σzz ) and Re(σxx ) show different patterns of
resonant peaks. For Re(σzz ), the optical selection rule is �n =
0, thus only FA-B and B-B transitions are allowed. However,
the situation is quite different for Re(σxx ). For Re(σxx ), the
optical selection rule is �n = ±1. Aside from FA-B and B-B
transitions, there are additional FA-FA transitions for Re(σxx ).
Because of the nearly flat and equispaced Fermi arc states, a
large set of FA-FA transitions occurs and induces a giant res-
onant peak. The amplitude of this giant resonant peak is many
times stronger than that of other transitions. The position of
this giant resonant peak is at the frequency ω = 0.105(−M0)
which is exact the confinement gap of Fermi arc states �FA =
−2M0

(2R̃−1)
≈ 0.105(−M0) for R̃ = 10. Therefore, the peak posi-

tion is independent of the chemical potential. This ultrastrong
low-frequency resonant peak of Re(σxx ) provides an optical
means to probe the dynamics of the Fermi arc states in Weyl
and Dirac nanowires. A large contribution of the Fermi arc
states to the longitudinal conductance of Weyl semimetal
nanowires was reported by Refs. [26,27] in which the chem-
ical potentials were restricted in a small low-energy range,
i.e., in the bulk gap. Our results exhibit a great advantage
in adjusting the chemical potential. At last, we show that the
characteristic features of both Re(σzz ) and Re(σxx ) are robust
to disorders.

Additionally, we analyze the effect of the magnetic field
along the wire axis on the Fermi arc stated briefly in
Appendix B. The magnetic flux enters effectively through
the shift n → n +  [24]. This shift induces the shift of the
nearly flat bands of Fermi arc states, while the space between
the Fermi arc states is unchanged. Therefore, the position of
the characteristic ultrastrong resonant peak of Re(σxx ) which
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is determined by the space between Fermi arc states �FA is
unaffected.

We propose the optical absorption experiment as a
presently available method to detect the signature of Fermi
arc states in Weyl or Dirac nanowires. Moreover, we hope
that our findings could provide a valuable theoretical reference
for nanoelectronics and ultrafast optoelectronic applications
based on nanowires of Weyl and Dirac materials.
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APPENDIX A: BAND STRUCTURE
AND EIGENFUNCTIONS

Solving the Schrödinger equation H+
2×2�

+ = ε�+, the
eigenfunctions are found in the form

�+
n,kz

(r, ϕ, z) =
(

ρ−(r)ei(n)ϕ

ρ+(r)ei(n−1)ϕ

)
eikzz

√
Lz

, (A1)

where j = n − 1
2 is the angular momentum quantum num-

ber because the total angular momentum operator Ĵ =
−i∂ϕI2×2 − σz/2 commutes with Hamiltonian H+

2×2, I2×2 is
the identity matrix, σz is the Pauli matrix, and n ∈ Z. In the
case of αε > 0, ρ∓(r) are

ρ−(r) = A+Jn

(√|αε |
A

r

)
, (A2)

ρ+(r) = −iA+

√|αε |
ε + M0 − M1k2

z

Jn−1

(√|αε |
A

r

)
, (A3)

and in the case of αε < 0, ρ∓(r) are

ρ−(r) = A−In

(√|αε |
A

r

)
, (A4)

ρ+(r) = −iA−

√|αε |
ε + M0 − M1k2

z

In−1

(√|αε |
A

r

)
, (A5)

where αε = ε2 − (M0 − M1k2
z )2, A± are the normalization

constants, Jn(x) and In(x) are the Bessel and modified Bessel
functions of the first kind, respectively.

As illustrated by Fig. 1, we study a cylindrical nanowire
surrounded by a vacuum or any trivial insulator and
its radius is R defined by r =

√
x2 + y2 � R. Following

Refs. [26,27,67], the outside of the nanowire with r > R

is modeled by replacing M0 → M̃0 and setting M̃0 → ∞.
Matching the wave functions at the surface r = R, the bound-
ary condition is obtained in the form

[ρ−(r) + iρ+(r)]|r=R = 0. (A6)

Note that a general form of the boundary condition in cylin-
drical nanowires was shown in Refs. [24,68,69]. The shape of
the Fermi arc states is sensitive to boundary conditions [24].
While the boundary condition (A6) here is a special case of
the general form, the Fermi arc states have a good agreement
with the result of the lattice model with zero boundary condi-
tions (also known as open or hard-wall boundary conditions)
[7,8,26].

Substituting the wave functions (A2)–(A5) into the above
boundary condition (A6), we obtain

Jn

(√|αε |
A

R

)
+

√|αε |
ε + M0 − M1k2

z

Jn−1

(√|αε |
A

R

)
= 0 (A7)

for αε > 0 and

In

(√|αε |
A

R

)
+

√|αε |
ε + M0 − M1k2

z

In−1

(√|αε |
A

R

)
= 0 (A8)

for αε < 0. The details of this analytical approach were de-
scribed thoroughly in Ref. [27]. For given n and kz, the
above Eqs. (A7) and (A8) could be solved numerically
and yield the allowed energies which are the band struc-
tures of a Weyl nanowire. Similarly, for the lower block
there are H−

2×2(r, ϕ, z) = [H+
2×2(r, ϕ, z)]∗ and �−

n,kz
(r, ϕ, z) =

[�+
n,kz

(r, ϕ, z)]∗.

APPENDIX B: THE EFFECT OF A CONSTANT MAGNETIC
FIELD ALONG THE NANOWIRE AXIS

In this Appendix, we analyze the effect of a constant
magnetic field along the nanowire axis. The magnetic flux
is included by replacing p with π = p + eA, where A =
B
2 (−y, x, 0). In the cylindrical coordinates, we obtain

πx ± iπy = −ie±iϕA

[
∂

∂r
∓ 1

r

(
−i

∂

∂ϕ
+ eBr2

2h̄

)]
. (B1)

Because the Fermi arc states mostly locate at the surface, we
take the approximation r → R. The magnetic flux through the
nanowire is  = eBR2

2h̄ = πR2B
φ0

, where φ0 = h/e is the mag-
netic flux quantum. Thus, we obtain

πx ± iπy = −ie±iϕA

[
∂

∂r
∓ 1

R

(
−i

∂

∂ϕ
+ 

)]
(B2)

and the Hamiltonian (3) in the cylindrical coordinates is

H+
2×2(r, ϕ, z) =

(
M0 − M1

h̄2 p2
z −ieiϕA

[
∂
∂r − 1

R

( − i ∂
∂ϕ

+ 
)]

−ie−iϕA
[

∂
∂r + 1

R

( − i ∂
∂ϕ

+ 
)] −M0 + M1

h̄2 p2
z

)
. (B3)

Considering that the eigenfunctions are in the form

�+
n,kz

(r, ϕ, z) =
(

ρ−(r)ei(n)ϕ

ρ+(r)ei(n−1)ϕ

)
eikzz

√
Lz

, (B4)

the magnetic flux enters the band structure of Fermi arc states through the shift n → n +  effectively [24].
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