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The thermoelectric performance at a given output power of a voltage-probe heat engine, exposed to an external
magnetic field, is investigated in linear irreversible thermodynamics. For the model, asymmetric parameter,
general figures of merit, and efficiency at a given output power are analytically derived. Results show a tradeoff
between efficiency and output power, and we recognize optimum-efficiency values at a given output power are
enhanced compared to a Büttiker-probe heat engine due to the presence of a characteristic parameter, namely,
dm. Moreover, similar to a Büttiker-probe heat engine, the universal bounds on the efficiency are obtained, and
the efficiency at a given output power can exceed the Curzon-Ahlborn limit. These findings have practical
implications for the optimization of realistic heat engines and refrigerators. By controlling the values of the
asymmetric parameter, the figures of merit, and dm, it may be possible to design more efficient and powerful
thermoelectric devices.
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I. INTRODUCTION

The thermoelectric performance of quantum heat engines
is an attractive field of interest for researchers from the exper-
imental and theoretical communities. This is due to advances
in material science and the constant demand for more ad-
vanced and powerful energy harvesting [1–9]. Nevertheless,
the efficiency of heat engines is restricted from above by the
efficiency of Carnot heat engines. Therefore, fabricating heat
engines with high performance is highly demanded.

It is well known that ideal heat engines working under
reversible processes lack practical function due to their zero
output power. Accordingly, finite-time thermodynamics was
invented to optimize the thermoelectric performance of heat
devices [10–15]. Moreover, macroscopic or quantum heat
engines should not operate in the maximum output power
region due to the relatively small efficiency, and thermal ma-
chines with higher efficiency can be achieved in a regime with
smaller output power. Whitney [16] showed that maximum ef-
ficiency for quantum heat engines can be obtained somewhere
close to the maximum output power. Holubec and Ryabov
[17–19] reported on the optimal performance of irreversible
and low-dissipation heat engines. Based on their work, quan-
tum heat engines performing near maximum output power can
offer significantly higher efficiency than the maximum output
power efficiency. Long et al. [20] investigated the efficiency
of minimally nonlinear irreversible quantum heat engines at
a given output power. This gave additional insight into effi-
ciency since the output power of actual heat engines is below
the maximum output power.

The optimization of real thermoelectric devices at a
given power is of significant current interest due to the
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above-mentioned points. In this context exposing heat en-
gines to an external magnetic field introduces complexity by
breaking time-reversal symmetry in the system. Based on the
work of Benenti et al. [21], in any heat engine with broken
time-reversal symmetry, both maximum efficiency and maxi-
mum output power efficiency are described by an asymmetry
parameter and a general figure of merit. This could lead to
an efficiency enhancement of the heat engine in the linear
response regime. While the exact details of this process are
still being studied and optimized [22,23], the idea of using
external magnetic fields to enhance the efficiency of quantum
heat engines is an active area of research with promising
results [24–27].

In this context, adding more terminals to the heat engines
also opens up the path to achieving higher efficiency and un-
veiling novel phenomena [28,29]. Multiterminal heat engines
offer several advantages over traditional two-terminal heat
engines [30–37]. For example, they can potentially achieve
higher efficiency by allowing for more complex and efficient
heat exchange between the engine and the external environ-
ment [38–40]. They can also exhibit novel thermodynamic
phenomena that are not present in two-terminal heat engines.
For instance, it might be possible for these complex systems
to decouple charge and energy flows, leading to higher ther-
moelectric properties [41–44].

For a multiterminal device with an external magnetic field,
due to the broken time-reversal symmetry, a new bound
on the Onsager coefficients has been achieved within the
framework of linear irreversible thermodynamics, offering a
unique insight into the optimal performance of a heat engine
[32–35]. Zhang et al. [45] addressed how an external mag-
netic field could enhance the thermoelectric properties of a
three-terminal quantum heat engine with a Büttiker probe at
a given output power. They demonstrated that broken time-
reversal symmetry gives rise to a broad region of parameters
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FIG. 1. Schematic drawing of a voltage-probe heat engine in the
presence of an external magnetic field (B).

for optimizing the performance of nanoscale heat engines.
Furthermore, they obtained a different universal bound on
the efficiency at a given output power of the quantum heat
engine with broken time-reversal symmetry. In another work,
Lu et al. [46] examined the thermoelectric properties of a
three-terminal thermoelectric engines with two independent
output electric currents and one input heat current. Based on
their work, the heat engine with two output electric currents
can significantly increase efficiency and output power.

Despite the studies mentioned above, the performance op-
timization of a voltage-probe quantum heat engine [12,47,48],
with broken time-reversal symmetry, has not been investi-
gated yet. This study aims to fill this gap by comparing the
efficiencies of voltage-probe and Büttiker-probe heat engines
operating at a given output power within the linear response
regime and broken time-reversal symmetry. In this regard, it
is worth noting that the most closely related previous work
is that of Zhang et al. [45] who investigated a three-terminal
setup in the presence of an external magnetic field within the
context of Büttiker probe. The primary difference between
a voltage probe and a Büttikger probe lies in how they are
adjusted to exchange particle and heat current with the scat-
tering region. The voltage probe (see Fig. 1) allows energy
(heat) to be exchanged while no net charge flow. The Büttiker
probe, on the other hand, is designed to be in equilibrium,
blocking the transfer of particle and heat currents with the
scattering region, serving as a phase-randomizing agent. A
significant benefit of utilizing such probes lies in their abil-
ity to effectively mimic inelastic scattering phenomena in
a phenomenological way [49]. The Landauer scattering ap-
proach suffers from the fact that it focuses on purely coherent
quantum transport. In reality, systems often show only partial
coherence due to the inelastic scattering processes, includ-
ing interactions between electrons and other particles such
as phonons, photons, and other electrons. By adding probe
reservoirs into the model, one can simulate these inelastic
scattering events. A major advantage of this methodology is
its straightforwardness and its ability to mimic the behavior of
inelastic scattering without having to address the microscopic
details.

We introduce different parameters: the normalized effi-
ciency [ηm/ηm(Pmax)], the asymmetric parameter (xm), the

general figure of merit (ym), and an additional unique pa-
rameter (dm). These parameters are categorized into three
scenarios, m = L, m = P, and m = LP, corresponding to
reservoir(s) L, P, and both L and P, from which heat current
is extracted and absorbed by the scattering region in each
cycle, respectively. Our results illustrate that the voltage-probe
heat engine, because of the key parameter dm, can adjust the
upper bound on the general figure of merit ym, in contrast
with a Büttiker-probe setup. This means that the efficiency
value at a given output power is controlled by dm, and the
optimum-efficiency value increases for dm < 1.

The rest of the paper is organized as follows. In Sec. II,
we elaborate on the efficiency properties at a given output
power of voltage-probe quantum heat engines with an ex-
ternal magnetic field and show mathematically under which
condition the voltage-probe heat engine is converted into the
Büttiker-probe one. We present our main results in Sec. III.
Conclusions are summarized in Sec. IV. In Appendixes A–E,
all detailed of calculations are presented.

II. MODEL AND METHOD

A. General setup

The voltage-probe setup illustrated in Fig. 1 contains a
scattering region in contact with electronic reservoirs with
temperatures and chemical potentials, described as Tα =
T + �Tα and μα = μ + �μα , where α = L, P, R denotes
respective reservoirs. Inelastic scattering phenomena [12]
are simulated using a voltage probe whose temperature and
chemical-potential parameters are adjusted to block particle
current (JN

P = 0) while allowing heat current (JQ
P �= 0). We

assume the right reservoir (R) as a reference so that μR = μ

and TR = T . The setup is also considered to work in the lin-
ear response regime with |�μα|/kBT � 1 and |�Tα|/T � 1,
where kB is the Boltzmann constant. Energy (JU

α ) and particle
(JN

α ) currents flowing from the αth reservoir into the scattering
region satisfy the current conservation law by the constraint∑

α JU (N )
α = 0, where α = L, R, P. Heat current JQ

α is related
to the JU

α and JN
α by JQ

α = JU
α − eVαJN

α , where Vα = μα/e is
the reservoir voltage. Charge current is directly proportional
to the particle current by Je

α = eJN
α , where e is the electron

charge. Note that the positive current values are associated
with flows from the respective reservoirs to the scattering
region. Using the Landauer-Büttiker formalism, it is possible
to derive the coherent flow of heat JQ

α and particles JN
α via a

noninteracting conductor (see Appendix A for more details).
The relation Ṡ = ∑

α JQ
α /Tα gives the sum of the entropy

production rate, and within the linear response regime, it can
be described as Ṡ = JX = ∑4

α=1 JαXα , where J and X are
four-dimensional vectors defined as follows:

J = (
JN

L , JQ
L , JN

P , JQ
P

)
,

X = (
XV

L , X T
L , XV

P , X T
P

)
, (1)

where XV
α = �Vα/T and X T

α = �Tα/T 2 (α = L, P) are the
generalized forces. Assuming that the thermodynamic forces
are small in the linear response regime, the relationship be-
tween generalized forces Xα (driving irreversible processes)
and fluxes Jα (the system’s response to the external forces) is
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linear so that

J = LX, (2)

where L is a 4 × 4 Onsager matrix. Equation (2) can be recast
in a matrix form as follows:⎡

⎢⎢⎢⎢⎢⎣

JN
L

JQ
L

JN
p

JQ
P

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

XV
L

X T
L

XV
P

X T
P

⎤
⎥⎥⎥⎥⎦, (3)

where Lii and Li j are diagonal and off-diagonal elements,
respectively, which are given in Appendix B [see Eq. (B1)].
Since the probe reservoir neither releases particles nor absorbs
(JN

P = 0), the problem can reduce to threeparticle and heat
fluxes that are related to the respective generalized forces by
the Onsager matrix L′ as follows:⎡

⎢⎢⎢⎣
JN

L

JQ
L

JQ
P

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣
L′

11 L′
12 L′

13

L′
21 L′

22 L′
23

L′
31 L′

32 L′
33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

XV
L

X T
L

X T
P

⎤
⎥⎥⎦, (4)

where L′
i j are expressed in Appendix B [see Eq. (B3)].

We notice that the Onsager matrix of the Büttiker-probe
engine [45] can be retrieved from Eq. (4) by imposing JQ

P = 0,
which leads to the 2 × 2 Onsager matrix as follows:⎡

⎣JN
L

JQ
L

⎤
⎦ =

[
L′′

11 L′′
12

L′′
21 L′′

22

][
XV

L

X T
L

]
, (5)

where L′′
i j are given in Appendix B [see Eq. (B4)].

Now we expose the setup by an external magnetic field (B).
With the presence of a magnetic field (B), the laws of physics
remain constant if time t is replaced by −t , provided that the
field B is replaced by −B. In this case, the Onsager-Casimir
relations for the off-diagonal terms of the Onsager matrix are
expressed as

Li j (B) = L ji(−B) (6)

when B vanishes, the Onsager reciprocal relation Li j = L ji is
retrieved.

B. Bounds on Onsager matrix

For a two-terminal heat engine, the second law of thermo-
dynamics constrains the Onsager matrix coefficients, and it is
derived from the positivity of the entropy production rate [21],
namely, Ṡ � 0. Nevertheless, for a three-terminal setup with
B �= 0, current conservation is mathematically expressed by
unitary of the scattering matrix, imposing additional bounds
on the Onsager matrix elements, more robust than those ob-
tained from the positivity of entropy production rate [32,34].
Therefore, it requires to fulfill the following inequalities for a
voltage-probe heat engine:

L11 � 0,

L22 � 0,

L11L22 + L12L21 − [
L2

12 − L2
21

]
� 0, (7)

where

L11 = L′
11(B),

L12 = L′
12(B) + L′

13(B)ξ,

L21 = L′
21(B) + L′

31(B)ξ,

L22 = L′
22(B) + L′

33(B)ξ 2 + [L′
23(B) + L′

32(B)]ξ, (8)

and ξ = X T
P /X T

L . In what follows, we will drop B in the
Onsager coefficients for simplicity. By setting the limit JQ

P =
0, the inequalities for a Büttiker-probe heat engine can be
achieved [34,35,45], so

L′′
11 � 0,

L′′
22 � 0,

L′′
11L′′

22 + L′′
12L′′

21 − [
L′′

12
2 − L′′

21
2] � 0, (9)

C. Transport coefficients

Onsager coefficients are linked to the transport coefficients,
namely, the Seebeck coefficient (Si j), electrical conductance
(Gi j ), thermal conductance (Ki j), and Peltier coefficient
(�i j). Multiterminal thermoelectric devices introduce nonlo-
cal transport coefficients with index i �= j, describing how
applied bias between two terminals influences transport prop-
erties in the remaining terminals [42].

For a multiterminal heat engine, Si j is given by the rela-
tionship between potential and temperature biases between
terminals, assuming no net particle current is flowing through
the system [42]

Si j = − �Vi

�Tj ( JN
α =0 ∀α;

�Tα=0 ∀α �= j)
, (10)

and for a voltage-probe heat engine, it can be described as
follows:

SLL(B) = L′
12

TL′
11

, SLP(B) = L′
13

TL′
11

, (11)

SLL(−B) = L′
21

TL′
11

, SLP(−B) = L′
31

TL′
11

, (12)

where SLL and SLP represent local and nonlocal coefficients,
respectively. Using Eq. (5), we can derive the Seebeck coeffi-
cient for the Büttiker-probe heat engine as follows:

SLL(B) = L′′
12

TL′′
11

, SLL(−B) = L′′
21

TL′′
11

. (13)

The electrical conductance for the multiterminal setup gener-
alizes to [42]

Gi j = JN
i

�Vj (�Vα=0 ∀α �= j;
�Tα=0 ∀α )

, (14)

and for a voltage-probe heat engine, it is given as

GLL = L′
11

T
, (15)

where GLL denotes the local electrical coefficient. For the
Büttiker-probe engine, it can be described as

GLL = L′′
11

T
. (16)
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The thermal conductance is expressed as [42]

Ki j = JQ
i

�Tj ( JN
α =0 ∀α;

�Tα=0 ∀α �= j)
, (17)

and for a voltage-probe engine, it can be written in terms
of the Onsager coefficients with local Kii and nonlocal Ki j

coefficients as

KLL = L′
22L′

11 − L′
21L′

12

T 2L′
11

, KPP = L′
33L′

11 − L′
31L′

13

T 2L′
11

,

KLP = L′
11L′

23 − L′
21L′

13

T 2L′
11

, KPL = L′
11L′

32 − L′
12L′

31

T 2L′
11

, (18)

and for the Büttiker-probe heat engine, it gives

KLL = L′′
22L′′

11 − L′′
21L′′

12

T 2L′′
11

. (19)

In any thermoelectric device, the Peltier coefficient is re-
lated to the Seebeck coefficient as �i j (B) = T Sji(−B) when
B �= 0.

D. Thermodynamic efficiency of the steady-state
heat engines

The efficiency of any steady-state heat engine is bounded
from above by the Carnot-engine efficiency ηc, explained
for a three-terminal heat engine in Appendix C. Given that
a voltage-probe quantum heat engine is operating between
three reservoirs at different temperatures TL, TP, and TR, the
efficiency is defined as [42]

η = P∑
α+ JQ

α

� ηc

= JQ
L + JQ

P + JQ
R∑

α+ JQ
α

= −T JN
L XV

L∑
α+ JQ

α

, (20)

where P > 0 is the output power of the heat engine, equaling
the sum of all heat exchanged between the scattering region
and reservoirs, and the symbol

∑
α+ in the denominator is

only restricted to positive heat currents (JQ
α > 0, where α =

L, P). For the voltage-probe quantum heat engine sketched
in Fig. 1, for simplicity, we set TL > TP > TR and consider
only those situations where JQ

R is supplied by the scattering
region (JQ

R < 0). It is worth mentioning that within the regime
that JQ

R > 0, the system effectively works like a refrigerator,
absorbing heat from the coldest reservoir(s). Taking these
assumptions, when both JQ

L and JQ
P are absorbed from the

respected reservoirs, the efficiency reads as

ηLP = P
JQ

L + JQ
P

, (21)

and when either JQ
L or JQ

P is extracted from the respected
reservoir, efficiency reads as

ηL,(P) = P
JQ

L,(P)

, (22)

the subscript L in the denominator is replaced by P if the probe
reservoir is the only one that releases heat into the scattering

region and two other reservoirs absorb heat from it. Since the
signs of the heat currents flowing throughout the scattering re-
gion and reservoirs are not a priori; in other words, it depends
upon the details of the system, the efficiency expression relies
on the heat current(s), injected into the scattering region from
the respective reservoir(s). Note that, in the formalism devel-
oped in the following we refer to the efficiency of the voltage
probe as ηm, with subindex m = L, P, LP. This discrimi-
nates it from the efficiency of Büttiker probe we refer to it
with η.

E. Efficiency at maximum output power

Here we formulate ηm(Pmax) in the context of the ir-
reversible heat engine, for the three-terminal voltage-probe
setup. From Eq. (4), it can be found that the output power
of a voltage-probe heat engine is a function of three general-
ized forces, namely, XV

L , X T
L , and X T

P , and it can be written
as

P = −T
(
JN

L XV
L

)
> 0, (23)

where JN
L = L′

11XV
L + (L′

12 + L′
13ξ )X T

L . To derive the maxi-
mum output power of the heat engine, the derivative of P with
respect to XV

L is calculated while X T
L and X T

P are kept constant,
so

XV
L

∗ = −L12

2L11
X T

L . (24)

Inserting XV
L

∗ into Eq. (23), the maximum output power can
be defined as

Pmax = T 4

4
GS2X T

L
2
, (25)

where G = GLL and S = (SLL + SLPξ ). Exploiting Eqs. (24)
and (25), efficiency at maximum output power for differ-
ent cases detailed in Eqs. (21) and (22) can be derived as
follows:

ηm(Pmax) = ηc,m(Pmax)

2

xmym

ym + 2dm
, m = L, P, LP. (26)

In Appendix D, we present the details of derivation for
Eq. (26). In Eq. (26), ηc,m(Pmax) is the value of the Carnot-
engine efficiency which is derived by setting XV

L = XV
L

∗ in
Eqs. (C1) and (C2), and xm is the asymmetry parameter that is
expressed as

xm = rm

ym
, (27)

where

rm = (
2δZA

m + ZB
m + δ2ZC

m

)
T, (28)

and ym is the generalized figure of merit, which is described
as follows:

ym = (
δ
(
ZA′

m + ZA′′
m

) + ZB′
m + δ2ZC′

m

)
T, (29)

where δ = 1/ξ . The terms Zθ
mT with the superscripts θ =

A, A′, A′′, B, B′,C, and C′ are given in Eq. (D4). The

195435-4



OPTIMAL PERFORMANCE OF VOLTAGE-PROBE QUANTUM … PHYSICAL REVIEW B 108, 195435 (2023)

parameter dm in Eq. (26) is given as follows:

dL = δ
KPL + KLP

KLL
+ KPP

KLL
+ δ2 if JQ

L > 0,

dP = δ
KPL + KLP

KPP
+ δ2 KLL

KPP
+ 1 if JQ

P > 0,

dLP = δKPL + KPP

KLP
+ δ2 KLL

KLP
+ δ if JQ

L , JQ
P > 0. (30)

The parameter dm is related to the model’s thermal conduc-
tance and the temperature bias ratio. Utilizing a toy model,
as illustrated in Appendix E, we show the possible range of
values for dm. Furthermore, dm represents the main difference
between the voltage probe and the Büttiker probe since our
setup includes more complexity and potential for fine tuning
to improve efficiency.

For the time-symmetric case xm = 1, Eq. (29) reduces to

ZmT = (
2δZA1

m + ZB1
m + δ2ZC1

m

)
T, (31)

where A1 = SLLSLPGLL, B1 = S2
LPGLL, and C1 = S2

LLGLL. We
noticed that Eq. (31) is the more compact version of the
general figure of merit, which is derived by Mazza et al. [42]
for a three-terminal genuine heat engine within time-reversal
symmetry case.

As discussed below, the formalism developed for the
voltage-probe setup can achieve the Büttiker-probe model by
imposing the limit of JQ

P = 0. When JQ
P = 0, Eq. (28) reduces

to

rL = δ2ZC
L T, (32)

where

ZC
L T = SLL(B)2GLL(B)T

KLL
, (33)

and correspondingly Eq. (29) reduces to

yL = δ2ZC′
L T, (34)

where

ZC′
L T = y = GLLSLL(B)SLL(−B)T

KLL
(35)

is the general figure of merit of the Büttiker-probe heat engine
with broken time-reversal symmetry [34,35,45].

By means of Eqs. (32) and (34), Eq. (27) can be rewritten
for the Büttiker-probe engine as follows:

x = SLL(B)

SLL(−B)
. (36)

Finally, in the case that JQ
P = 0, Eq. (30) reduces to

dL = δ2. (37)

Inserting Eqs. (34), (36), and (37) into Eq. (26), the efficiency
at maximum output power can be expressed for the Büttiker-
probe heat engine as follows:

η(Pmax) = ηc

2

xy

y + 2
, (38)

where ηc = �T L
T is the Carnot efficiency of a Büttiker-probe

engine. For x = 1, the conventional figure of merit for the

Büttiker probe setup can be expressed as

ZT = GLLS2
LLT

KLL
(39)

and the maximum output power efficiency for the time-
symmetric case is given by η(Pmax) = ηc

2
ZT

ZT +2 .

F. Efficiency at a given output power

To examine the thermoelectric properties of a three-
terminal heat engine at a given output power, the relative gains
in power �P can be expressed as follows:

�P = P − Pmax

Pmax
. (40)

The power gain �P provides us with precise results on the
thermoelectric performance of heat engines at a given output
power. After simplicity

P
Pmax

= 1 + �P = JN
L XV

L

JN
L

∗XV
L

∗ = ε(2 − ε), (41)

where ε = XV
L /XV

L
∗. The normalized efficiency can be ex-

pressed as follows:

ηm

ηm(Pmax)
= ε(2 − ε)

ym + 2dm

2(ym + dm) − ymε
. (42)

Using Eqs. (34) and (37), one can derive the normalized
efficiency for a Büttiker-probe engine [45] as follows:

η

η(Pmax)
= ε(2 − ε)

y + 2

2(y + 1) − yε
. (43)

Using Eq. (41), efficiency dependence on the output power is
defined as

ε± = 1 ± √−�P . (44)

The plus sign, here, is related to the favorable case where the
normalized efficiency goes beyond the P/Pmax as the external
force is increased, and the minus sign describes the opposite
case. Furthermore, the ratio ηm/ηm(Pmax) can be expressed as

ηm

ηm(Pmax)
= (1 + �P )

ym + 2dm

2(ym + dm) − ym(1 ± √−�P )
,

(45)

and for the Büttiker-probe engine [45], Eq. (45) can be rewrit-
ten as

η

η(Pmax)
= (1 + �P )

y + 2

2(y + 1) − y(1 ± √−�P )
. (46)

Moreover, the efficiency ηm at a given output power as a
function of the power gain �P can be derived as

ηm = ηc,m

2

xmym(1 + �P )

2(ym + dm) − (1 ± √−�P )ym
, (47)

and for the Büttiker-probe engine [45], Eq. (47) can be
expressed as

η = ηc

2

xy(1 + �P )

2(y + 1) − (1 ± √−�P )y
. (48)
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III. RESULTS AND DISCUSSION

In this section, we provide numerical results of the the-
ory developed in the previous section. In the linear response
regime and within the context of broken time-reversal sym-
metry, we demonstrate how voltage-probe heat engines can
produce higher thermoelectric performance than Büttiker-
probe heat engines [34,35,45]. Following that, we uncover
similarities and differences in efficiency optimization between
the two setups for a given output power.

From Eq. (48), it can be seen that the efficiency of a
Büttiker-probe heat engine relies on the parameters x and y.
However, the efficiency of a voltage-probe heat engine, in
addition to xm and ym, depends on the characteristic parameter
dm [see Eq. (47)]. Similar to the work by Brandner et al. [34],
let us first introduce the following inequality for a voltage-
probe heat engine with broken time-reversal symmetry using
Eqs. (7), (27), and (29) as follows:

Hm � ym � 0 for xm < 0,

Hm � ym � 0 for xm > 0, (49)

where

Hm = dmxm

(xm − 1)2
. (50)

Substituting Eqs. (34) and (37) into the inequality of Eq. (49),
the inequality of Büttiker-probe heat engine within broken
time-reversal symmetry achieves as follows:

H � y � 0 for x < 0,

H � y � 0 for x > 0, (51)

where y and x are given in Eqs. (35) and (36), respectively,
and the function H is given as

H = x

(x − 1)2
. (52)

Figure 2 illustrates Hm versus xm for different dm values.
In Appendix E, we display the contour plots of dm for a
triple quantum dot attached to three electronic reservoirs. The
results reveal that dL and dP are positive, while dLP is nega-
tive. Therefore, the positive values of dm are associated with
m = L, P, while the negative ones correspond to m = LP. In
contrast with a Büttiker-probe heat engine, where the function
H relies only on x, for a voltage-probe setup, Hm also depends
upon dm, which based on dm sign and value, bounds on ym can
change. The asymmetric parameter xm measures the degree of
asymmetry due to the presence of an external magnetic field.
From Fig. 2, it can be seen that for positive dm, ym is located
in [−0.25, 0] and [0,∞] for xm < 0 and xm > 0, respectively.
However, for negative dm, ym shows a reversed behavior, so
that it is located in [0,0.25] and [−∞, 0] for xm < 0 and xm >

0, respectively. We noticed that when xm = 1, ZL(P) → +∞
and ZLP → −∞ [see Eq. (31)], corresponding to the work of
Mazza et al. [42]. When dm = 1, the function Hm coincides
with H , as shown by dashed black lines, and in the case that
x = 1, ZT → +∞ [see Eq. (39)].

Equation (41) shows that the ratio P/Pmax is a parabolic
curve that depends only on the external load ε. The normal-
ized efficiency of a Büttiker-probe heat engine η/η(Pmax),

FIG. 2. The function Hm versus xm for different dm values are
color coded. Dashed black lines display H [Eq. (52)].

expressed in Eq. (43), relies on ε and y. However, the nor-
malized efficiency of a voltage-probe engine ηm/ηm(Pmax),
aside from ε and ym, depends on the additional parameter
dm [see Eq. (42)]. To determine the efficiency dependence on
dm, in Fig. 3, we plot the normalized efficiency of the heat
engines as a function of ε when xm > 0. We also plot P/Pmax,
shown by dashed black lines. Figure 3(a) displays η/η(Pmax)
versus ε for y > 0, and Figs. 3(b)–3(f) show the behaviors of
ηm/ηm(Pmax) for different dm values, as a function of ε with
ym which is constrained by xm > 0. Note that as depicted in
Figs. 2(a) and 2(b), when xm > 0, yL(P) is located in [0,∞] for
different dL(P), while yLP is located in [−∞, 0] for different
dLP. Therefore, in the region of xm > 0, we set the same signs
for dm and ym. For the Büttiker-probe heat engine, y is located
in [0,∞] [see dashed black line in Fig. 2(a)].

As illustrated in Fig. 3, for lower external loads ε < 1,
Büttiker- and voltage-probe engines show similar character-
istics so that the efficiency increases as the output power
enhances while it demonstrates a decreasing feature as y and
ym increase. In contrast, for higher external loads ε > 1, the
efficiency exhibits different behavior; the optimum efficiency
value is achieved for ε > 1, and it is gone up with increasing
the absolute value of figures of merit.

Let us now elaborate on how a voltage-probe heat
engine with broken time-reversal symmetry can enhance
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FIG. 3. Ratio ηm/ηm(Pmax) as a function of ε for different values of ym and dm in the region of xm > 0. Dashed black lines show P/Pmax.
(a) Demonstrates the normalized efficiency of a Büttiker-probe heat engine as a function of ε for different values of y. (b), (c), (d), (e), (f)
Show the normalized efficiency of a voltage-probe heat engine for dm = 0.1, 0.5, 1.0, 3.0, 5.0, respectively, and different values of ym are
color coded.

thermoelectric properties at a given output power with respect
to a Büttiker-probe setup. From Figs. 3(b) and 3(c), it can
be seen that when dm < 1.0, for identical values of y and
ym, the optimum values of efficiency within ε > 1 are larger
than those of the Büttiker-probe heat engine [see Fig. 3(a)],
implying that for the voltage-probe heat engine, larger effi-
ciency can be achievable at lower ym compared to y for a
Büttiker-probe heat engine. This is due to the presence of the
parameter dm in a voltage-probe setup, contributing to the heat
dissipation rate [12] Q̇ = T Ṡ . For the voltage-probe setup
when dm < 1.0, Q̇ decreases more compared to that of the
Büttiker-probe heat engine, giving rise to the larger optimum
values of efficiency for the voltage-probe heat engine in the
region of ε > 1. However, the opposite occurs when dm > 1.0,
so the optimum values of efficiency diminish compared with
that of the Büttiker-probe engine, as shown in Figs. 3(e) and
3(f). Furthermore, in the case that dm = 1.0, the normalized
efficiency of the voltage-probe setup exactly shows the same
behavior as that of a Büttiker-probe heat engine [compare
Figs. 3(a) and 3(d)]. Therefore, it is interesting that for a
voltage-probe heat engine, the parameter dm is significantly
contributing to changing the normalized-efficiency values at a
given output power.

Equation (44) indicates that ε as a function of power gain
(�P) has two branches. To examine the efficiency depen-
dence on �P , in Fig. 4, we plot the normalized efficiency as a
function of �P for the favorable case ε+. Figure 4(a) exhibits
the normalized efficiency of the Büttiker-probe heat engine as
a function of �P [see Eq. (46)]. We display the normalized

efficiency of the voltage-probe engines as a function of �P
for different dm as shown in Figs. 4(b)–4(f).

From the color-coded lines in Fig. 4, one can observe
that increasing ym (y) for a fixed �P results in enhanced
efficiency of a voltage-probe (Büttiker-probe) heat engine.
Figure 4(a) indicates that for a Büttiker-probe heat engine,
most normalized-efficiency curves monotonically rise as the
output power increases (from −1 to 0). However, for the
voltage-probe engines, when dm < 1.0, the normalized ef-
ficiency curves mostly nonmonotonically change as power
gains change, as shown in Figs. 4(b) and 4(c). Thus, in the
case that dm < 1.0, the voltage-probe heat engine achieves
a larger efficiency value at lower values of ym compared to
a Büttiker probe. When dm > 1.0, the normalized efficiency
curves monotonically increase as �P changes, as depicted
in Figs. 4(e) and 4(f). Therefore, the voltage-probe engine
cannot enhance the optimum value of efficiency, even if ym

increases. For some values of ym in Fig. 4, it can be noticed
that a larger efficiency can be achieved when the output power
P is less than the maximum output power Pmax. This implies
that there is a fundamental tradeoff between the efficiency
and output power in thermoelectric performance optimization
of both Büttiker- and voltage-probe engines. However, the
unique feature of our study is not merely the identification
of this tradeoff, but the recognition of how the parameter dm

can be utilized to manipulate it in voltage-probe heat engines,
compared to Buttiker-probe setup, particularly in the context
of broken time-reversal symmetry. In other words, this trade-
off is tunable by adjusting dm, allowing us to optimize the

195435-7



ZAHRA SARTIPI AND JAVAD VAHEDI PHYSICAL REVIEW B 108, 195435 (2023)

FIG. 4. The normalized efficiency as a function of power gains �P for the favorable case ε+. The rest parameters are set the same as the
Fig. 3.

thermoelectric performance in a way previously considered
unattainable. In contrast with a Büttiker-probe heat engine,
whose efficiency depends on y and �P , the normalized effi-
ciency of the voltage-probe engine indicates that, in practice,
the operational conditions of the voltage-probe engines are
optimized based on dm, �P , and ym.

Furthermore, the asymmetry parameter xm is also vital
to optimize the performance of a heat engine with broken
time-reversal symmetry at a given output power. In the case
that ym = Hm, for different cases expressed in Eqs. (21) and
(22), we can derive the bounds on efficiency ηm by means of
Eq. (47) as follows:

ηbound
m = ηc,m

2

x2
m(1 + �P )

2
(
x2

m − xm + 1
) − (1 ± √−�P )xm

. (53)

We noticed that when JQ
P = 0, Eq. (53) becomes equal to

the general bound on efficiency obtained by Zhang et al. [45]
for the Büttiker-probe heat engine; thus, the general bounds
on efficiency are identical for these two setups. The difference
is that for the voltage-probe heat engine, there are three pos-
sibilities for the bound efficiency of the heat engine based on
Eqs. (21) and (22). To optimize the general bound on the heat-
engine efficiency, we solve the relation ∂ηbound

m /∂xm = 0. We
found xm = 0 and xm = ±1 are three possible extreme points.
To analyze the dependence of the bound efficiency (ηbound

m ) on
the xm as well as �P , in Fig. 5, we display ηbound

m as a function
of xm for different �P and for both favorable and unfavorable
case ε±, as illustrated in Figs. 5(a) and 5(b), respectively. It
can be seen that the new universal bounds on efficiency are
obtained for different �P , and that the maximum-efficiency

value is achieved somewhere around the symmetric point
xm = 1. From Fig. 5(a) it can be observed that the bound
efficiency reaches ηc only for xm = 1 and decreases rapidly
as the asymmetry parameter deviates from 1. For xm �= 1 the
Carnot efficiency can never be obtained due to the limita-
tions imposed on the Onsager coefficients [see Eq. (7)]. In
the limit xm → ±∞ functions asymptotically approach the
value ηc,m

4 (1 + �P ), indicating that the bound on efficiency
depends only on the power gain in these regions. Moreover, it
is highlighted that the associated bound efficiency increases
as �P changes from −1 to 0, implying that it is in prin-
ciple possible to enhance the thermoelectric performance of
quantum heat engines at a given output power by breaking
time-reversal symmetry. When �P = 0, maximum output
power efficiency can be achieved [see dashed black curves
in Figs. 5(a) and 5(b)], which corresponds with the results
of Brandner et al. [32,34]. Clearly, the well-known Curzun-
Ahlborn limit (ηc,m/2) is recovered not only for the symmetric
point xm = 1, shown by red spot in Fig. 5(a), but also for
other cases. This implies that the CA limit is readily accessible
in the context of broken time-reversal symmetry and in the
linear response regime. Additionally, the CA limit can be
surpassed when time-reversal symmetry is broken, as shown
in Fig. 5(a). However, it is not overcome in the unfavorable
case, as indicated in Fig. 5(b). For comparison, we include
the bound on maximum output power efficiency with broken
time-reversal symmetry obtained by Benenti et al. [21] (black
solid line). This is achieved only from the constraint of the
second law of thermodynamics, leading to the possibility of
dissipationless transport. In this case the quantum heat engine
can operate at Carnot efficiency with finite output power [12].

195435-8



OPTIMAL PERFORMANCE OF VOLTAGE-PROBE QUANTUM … PHYSICAL REVIEW B 108, 195435 (2023)

FIG. 5. Efficiency bound ηbound
m /ηc,m versus the asymmetry pa-

rameter xm and the power gain �P for (a): favorable case ε+ and (b):
unfavorable case ε−. The intersecting points of the red-circle lines
represent the Curzun-Ahlborn limit (CA) efficiency in the linear re-
sponse regime ηCA,m = ηc,m/2. For comparison, the bounds obtained
by Benenti et al. [21] only from thermodynamic entropy production
Ṡ > 0 (black solid line) and Brandner et al. [34] on three-terminal
setup with considering the role of current conservation (black dashed
lines) are included.

IV. CONCLUSION

Within broken time-reversal symmetry and in the linear
response regime, the optimal performance at a given out-
put power of a voltage-probe heat engine is examined. The
normalized efficiency at a given output power ηm/ηm(Pmax),
the asymmetric parameter xm, the general figure of merit
ym, and the parameter dm are first introduced in our work.
ηm/ηm(Pmax), ym, and dm are classified into three cases with
subscripts m = L, P, and LP, based on the heat current(s) ex-
tracted from the reservoir L, reservoir P, and both reservoirs L
and P, respectively. This work aims to find out how a voltage-
probe heat engine, where the probe reservoir is adjusted to
block charge flows and only allow heat flows can enhance
the efficiency at a given output power of the quantum heat
engine compared to a Büttiker-probe setup, where the probe
reservoir blocks both heat and charge flows. We also analyti-
cally prove that by applying the condition of zero heat flows
throughout the probe reservoir and the scattering region all
thermoelectric properties of a Büttiker-probe heat engine can
be achieved. Our results reveal that, unlike a Büttiker-probe
heat engine, a voltage-probe device due to the parameter dm,

can change the upper and lower bounds on ym. In contrast with
a Büttiker-probe heat engine, where the general figure of merit
y and power gain �P influence the normalized efficiency at
a given output power, the voltage-probe heat engine, via the
parameter dm, offers an additional capability: it modifies both
the upper and lower bounds of ym. This behavior is not evident
in a Büttiker-probe heat engine. Specifically, the efficiency at a
given output power is controlled by the parameter dm, and op-
timum efficiency increases when dm < 1. It is also found that,
like a Büttiker-probe heat engine, the universal bounds on the
efficiency of quantum heat engines with broken time-reversal
symmetry are obtained, and the efficiency at a given output
power can overcome the Curzon-Ahlborn limit. Tuning of pa-
rameters xm, dm, and ym in real experimental setups is indeed
feasible. Through the careful choice of materials, external
conditions, and system configurations (as demonstrated in our
toy model), these parameters can be effectively controlled,
paving the way for optimizing the tradeoff between output
power and efficiency in thermoelectric systems. One can also
extend our theory to a genuine three-terminal heat engine that
Mazza et al. utilized in their work [42]. This setup is more
complex than a voltage-probe heat engine and, as a result,
it would be beneficial to enhance the normalized efficiency
at a given output power compared to the voltage-probe or
Büttiker-probe heat engines.

APPENDIX A: SCATTERING APPROACH WITHIN
THE LINEAR RESPONSE REGIME

The coherent flow of heat and particles via a conductor
without electron-electron interactions can be defined through
the Landauer-Büttiker formalism. Taking the assumption that
all phase-breaking and dissipative processes are restricted to
the reservoirs, the heat and particle currents can be written in
terms of the scattering characteristics of the scattering region
[50]. For a multiterminal setup, the particle and heat currents
flowing into the scattering region from the kth reservoir can be
described using the Landauer-Büttiker formalism as follows:

JN
α = 1

h

∫
dE

∑
α �=β

Tαβ (E )( fα (E ) − fβ (E )),

JQ
α = 1

h

∫
dE (E − μα )

∑
α �=β

Tαβ (E )( fα (E ) − fβ (E )), (A1)

where h is the Planck’s constant, Tαβ is the transmission
probability from reservoir α to β, and fα (E ) is the Fermi
function of the respective reservoirs described as fα (E ) =
{ exp[(E − μα )/kBT ] + 1}−1

.

APPENDIX B: ONSAGER COEFFICIENTS

Using Eq. (A1), the Onsager coefficients of Eq. (3) can be
obtained from the linear expansion of the currents JN

α and JQ
α

(J = LX ) as follows:

L11 = T

h

∫ ∞

−∞
f ′(−E )(TLP + TLR) dE ,

L12 = T

h

∫ ∞

−∞
f ′(−E )(E − μ)(TLP + TLR) dE ,

195435-9



ZAHRA SARTIPI AND JAVAD VAHEDI PHYSICAL REVIEW B 108, 195435 (2023)

L13 = T

h

∫ ∞

−∞
− f ′(−E )TLP dE ,

L14 = T

h

∫ ∞

−∞
f ′(−E )(−(E − μ))TLP dE ,

L21 = L12,

L22 = T

h

∫ ∞

−∞
f ′(−E )(E − μ)2(TLP + TLR) dE ,

L23 = L14,

L24 = T

h

∫ ∞

−∞
f ′(−E )(−(E − μ)2)TLP dE ,

L31 = T

h

∫ ∞

−∞
− f ′(−E )TPL dE ,

L32 = T

h

∫ ∞

−∞
f ′(−E )(−(E − μ))TPL dE ,

L33 = T

h

∫ ∞

−∞
f ′(−E )

(
TPL + TPR

)
dE ,

L34 = T

h

∫ ∞

−∞
f ′(−E )(E − μ)(TPL + TPR) dE ,

L41 = L32,

L42 = T

h

∫ ∞

−∞
f ′(−E )(−(E − μ)2)TPL dE ,

L43 = L34,

L44 = T

h

∫ ∞

−∞
f ′(−E )(E − μ)2(TPL + TPR) dE , (B1)

where f ′(E ) is the derivative of the Fermi-Dirac distribu-
tion with respect to the energy. As mentioned before, in a
voltage-probe heat engine, the probe reservoir blocks parti-
cle flows (JN

P = 0); thus, XV
P in Eq. (3) can be derived as

follows:

XV
P = −(

L31XV
L + L32X T

L + L34X T
P

)
L33

. (B2)

Setting Eq. (B2) into Eq. (3), and after some algebras,
the Onsager coefficients of Eq. (4) can be expressed as
follows:

L′
11 = L33L11 − L13L31

L33
, L′

12 = L33L12 − L13L32

L33
,

L′
13 = L14L33 − L13L34

L33
, L′

21 = L21L33 − L23L31

L33
,

L′
22 = L33L22 − L23L32

L33
, L′

23 = L24L33 − L23L34

L33
,

L′
31 = L41L33 − L43L31

L33
, L′

32 = L42L33 − L43L32

L33
,

L′
33 = L44L33 − L43L34

L33
, (B3)

where Lab are given in Eq. (B1). Analogously, placing JQ
P = 0

into Eq. (4), the Onsager coefficients of Eq. (5) are expressed
as follows:

L′′
11 = L′

11L′
33 − L′

13L′
31

L′
33

, L′′
12 = L′

12L′
33 − L′

13L′
32

L′
33

,

L′′
21 = L′

21L′
33 − L′

23L′
31

L′
33

, L′′
22 = L′

22L′
33 − L′

23L′
32

L′
33

, (B4)

where L′
ab are given in Eq. (B3).

APPENDIX C: CARNOT EFFICIENCY

In any steady-state heat-to-work conversion device, the
thermoelectric efficiency is bounded from above by the Carnot
engine efficiency ηc, which can be calculated by placing
the condition of zero-entropy production rate (Ṡ = 0). For a
three-terminal device, it can be derived by analogy with the
Carnot efficiency of a two-terminal setup and described in
terms of three cases defined in Eqs. (21) and (22). If the heat
current is only absorbed from either reservoir P (JQ

P > 0) or L
(JQ

L > 0), the Carnot efficiency is derived as

ηc,L(P) = 1

T

[
�TPJQ

P + �TLJQ
L

JQ
L,(P)

]
, (C1)

index L in the denominator is substituted by P if the heat
current flows from electrode L into the scattering region.
Analogously, if heat current is extracted from both reservoirs
P and L (JQ

L > 0 and JQ
P > 0), it gives

ηc,LP = 1

T

[
�TPJQ

P + �TLJQ
L

JQ
L + JQ

P

]
. (C2)

The Carnot efficiency of the Büttiker-probe heat engine [45]
is obtained by imposing the condition of JQ

P = 0. Therefore,
for a Büttiker-probe device it is expressed as ηc = �TL

T .

APPENDIX D: EFFICIENCY AT MAXIMUM OUTPUT
POWER WITH BROKEN TIME-REVERSAL SYMMETRY

Here, we mathematically derive Eq. (26). Setting Eqs. (24)
and (25) into the efficiency expressions detailed in Eqs. (21)
and (22), it is possible to obtain efficiency at maximum output
power for a voltage-probe engine as follows:

ηL(Pmax) = 1

2T

[
ZB

L T δ−1 + 2ZA
L T

]
�T P + ZC

L T �T L

δ−1
[
ZA′′

L T + 2
(KLP

KLL

)] + ZC′
L T + 2

, (D1)

ηP(Pmax) = 1

2T

[
ZC

P T δ + 2ZA
P T

]
�T L + ZB

P T �T P

δ
[
ZA′

P T + 2
( KPL

KPP

)] + ZB′
P T + 2

, (D2)
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FIG. 6. (a) Shows a voltage-probe system consisting of a triple quantum dot with a single energy level, subjected to the external magnetic
field (B) and connected to three electronic reservoirs, labeled L, P, and R, in different temperatures (TL > TP > TR ) and chemical potentials
μL , μP, and μR. (b)–(d) Exhibit the contour plots of dL , dP, and dLP, respectively, as a function of φ and δ for the system illustrated in (a).
The atomic site energies of the quantum dots connected to the reservoirs L, P, and R are EL − μ = 1.0 kBT , EP − μ = 1.0 kBT , and ER −
μ = 1.0 kBT , respectively, where μ = μR = 0, T = TR, and kBT = 1. Coupling parameter: γL = γP = γR = γ = 0.5 kBT . Hopping energy
parameter between two atomic sites: t = t ′eiφ/3, where φ = 2π�/�0 (�0 is quantum flux) and t ′ = 1.0kBT .

ηLP(Pmax) = 1

2T

[
ZB

LPT δ−1 + 2ZA
LPT

]
�T P + ZC

LPT �T L

δ−1
[
ZB′

LPT + ZA′′
LPT + 2

(KPP
KLP

+ 1
)] + 2

(KPL+KLL
KLP

) + ZA′
LPT + ZC′

LPT
, (D3)

where Zθ
mT are the generalized figures of merit for a voltage-probe heat engine, given as follows:

Zθ
L T = θT

KLL
, Zθ

PT = θT

KPP
, Zθ

LPT = θT

KLP
, (D4)

where θ = A, A′, A′′, B, B′,C,C′ is defined as follows:

A = SLL(B)SLP(B)GLL(B), A′ = SLL(B)SLP(−B)GLL(B), A′′ = SLP(B)SLL(−B)GLL(B),

B = SLP(B)2GLL(B), B′ = SLP(B)SLP(−B)GLL(B),

C = SLL(B)2GLL(B), C′ = SLL(B)SLL(−B)GLL(B). (D5)

Equation (D3) can also be written in terms of the corresponding Carnot efficiency as follows:

ηL(Pmax) = ηc,L(Pmax)

2

ZC
L T δ2 + 2δZA

L T + ZB
L T

δT
(
ZA′

L + ZA′′
L

) + ZB′
L T + δ2TZC′

L + 2
(

δKPL+KLP
KLL

) + 2
(KPP

KLL

) + 2δ2

= ηc,L(Pmax)

2

rL

yL + 2dL
, (D6)

ηP(Pmax) = ηc,P(Pmax)

2

ZC
P T δ2 + 2δZA

P T + ZB
P T

δT
(
ZA′

P + ZA′′
P

) + ZB′
P T + δ2TZC′

P + 2δ
(KPL+KLP

KPP

) + 2δ2
( KLL

KPP

) + 2

= ηc,P(Pmax)

2

rP

yP + 2dP
, (D7)

195435-11



ZAHRA SARTIPI AND JAVAD VAHEDI PHYSICAL REVIEW B 108, 195435 (2023)

ηLP(Pmax) = ηc,LP(Pmax)

2

ZC
LPT δ2 + 2δZA

LpT + ZB
LPT

δT
(
ZA′

LP + ZA′′
LP

) + ZB′
LPT + δ2TZC′

Lp + 2
(

δKPL+KPP
KLP

) + 2δ2
( KLL

KLP

) + 2δ

= ηc,LP(Pmax)

2

rLP

yLP + 2dLP
. (D8)

After some algebras, maximum output power efficiency
for a voltage-probe heat engine can be obtained as
follows:

ηm(Pmax) = ηc,m(Pmax)

2

xmym

ym + 2dm
, m = L, P, LP (D9)

where xm = rm
ym

.

APPENDIX E: TOY MODEL

In this Appendix, the primary purpose of introducing the
toy model in the presence of an external magnetic field is to
investigate numerically the sign and the range of the parameter
dm [see Eq. (30)] under various conditions, and we have not
explicitly examined the Aharonov-Bohm effect within this
framework. For simplicity, we employed the wide-band limit
(WBL) approximation, where the couplings of reservoirs to
the scatterings region remain independent of energy.

Figure 6(a) depicts a voltage-probe engine consisting of a
triple quantum dot with a single energy level, subjected to an
external magnetic field B which are connected to three elec-
tronic reservoirs, labeled L, P, and R, in different temperatures
(TL > TP > TR) and chemical potentials μL, μP, and μR.

For simplicity, the coupling strengths to reservoirs L, P,
and R are taken equal to γ , and Eα (α = L, P, R) denotes the
atomic site energy of respective quantum dots. To describe
the electronic structure as well as the transport properties
of the setup under consideration, we utilize the nonequilib-
rium Green function technique [50]. Once the transmission
function is obtained, through the Onsager matrix [expressed
in Eq. (4)], one can find all driven currents in the setup.
Figures 6(b)–6(d) demonstrate the plots of dL, dP, and dLP as a
function of φ and δ. It can be seen that dL and dP are positive
as a function of δ and φ, while dLP is negative. It is evident
that by tuning the ratio δ = X T

L /X P
L and φ, we can tune the

value of the parameter dm in our setup.
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(2020).

[38] R. Sánchez and M. Büttiker, Phys. Rev. B 83, 085428 (2011).
[39] D. Sánchez and L. Serra, Phys. Rev. B 84, 201307(R)

(2011).
[40] B. Sothmann and M. Büttiker, Europhys. Lett. 99, 27001

(2012).
[41] B. Sothmann, R. Sánchez, A. N. Jordan, and M. Büttiker, Phys.

Rev. B 85, 205301 (2012).
[42] F. Mazza, R. Bosisio, G. Benenti, V. Giovannetti, R. Fazio, and

F. Taddei, New J. Phys. 16, 085001 (2014).
[43] Z. Sartipi and J. Vahedi, J. Chem. Phys. 148, 174302

(2018).

[44] Z. Sartipi, A. Hayati, and J. Vahedi, J. Chem. Phys. 149, 114103
(2018).

[45] R. Zhang, Q.-W. Li, F. R. Tang, X. Q. Yang, and L. Bai, Phys.
Rev. E 96, 022133 (2017).

[46] J. Lu, Y. Liu, R. Wang, C. Wang, and J.-H. Jiang, Phys. Rev. B
100, 115438 (2019).

[47] R. Sánchez, C. Gorini, and G. Fleury, Phys. Rev. B 104, 115430
(2021).

[48] M. Saha, B. P. Venkatesh, and B. K. Agarwalla, Phys. Rev. B
105, 224204 (2022).

[49] M. Buttiker, IBM J. Res. Dev. 32, 63 (1988).
[50] S. Datta, Quantum Transport: Atom to Transistor (Cambridge

University Press, Cambridge, 2005).

195435-13

https://doi.org/10.1088/1367-2630/ab6874
https://doi.org/10.1103/PhysRevB.83.085428
https://doi.org/10.1103/PhysRevB.84.201307
https://doi.org/10.1209/0295-5075/99/27001
https://doi.org/10.1103/PhysRevB.85.205301
https://doi.org/10.1088/1367-2630/16/8/085001
https://doi.org/10.1063/1.5018345
https://doi.org/10.1063/1.5044660
https://doi.org/10.1103/PhysRevE.96.022133
https://doi.org/10.1103/PhysRevB.100.115438
https://doi.org/10.1103/PhysRevB.104.115430
https://doi.org/10.1103/PhysRevB.105.224204
https://doi.org/10.1147/rd.321.0063

