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Topological nature of the proper spin current and the spin-Hall torque
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Spin currents are key to spin torque devices, but determining the proper spin current is nontrivial. Here we
derive a general quantum-mechanical formula for the intrinsic proper spin current showing that it is topological
and can be finite in the gap. For topological insulators with an out of plane magnetization and the chemical
potential in the surface state gap, the net spin torque is determined by the competition between the topological
spin-Hall torque due to the bulk and the topological Edelstein effect due to the surface states. We also discuss
spin-3/2 hole quantum wells.
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I. INTRODUCTION

The spin-Hall effect (SHE) has come under renewed
scrutiny thanks to recent developments in spin torque devices
[1]. Following its prediction [2–6], the SHE was observed in
semiconductors [7,8] and metals [9–18], the latter facilitated
by the discovery of the inverse SHE [19–22], and has taken off
once more in the context of spin-orbit torques and magnetic
random access memory [23–31]. The spin-Hall torque due
to the spin current induces magnetization dynamics in thin
ferromagnetic layers employed in spintronic memory devices
[32–35] and is believed to be strong in many topological
materials [36–42], including, recently, van der Waals het-
erostructures coupled to WTe2 [43], Mn3Sn [42], and heavy
metals [44]. Likewise, the inverse SHE has also received con-
siderable research interest [45–50], as it has its own spintronic
applications in spin-to-charge conversion.

Generating a spin current typically requires spin-orbit
coupling, which causes spin precession and hence nonconser-
vation. Whereas the conventional definition of the spin current
is the product of the spin and velocity operators [51–60] or
redefined velocity operator [61], spin precession generates a
torque [62–73], which makes the conventional spin current
physically meaningless: its relationship to spin accumulation
is not obvious [74–77], it does not satisfy an equation of
continuity or an Onsager relation, and is nonzero even in ther-
modynamic equilibrium [67,78,79]. These complications can
be avoided by calculating the spin response directly without
resorting to the spin current [80–83], which is appropriate
when the quantity of interest is the spin accumulation. How-
ever, in systems experiencing a spin-Hall torque there is no
spin accumulation, and physical insight can only be obtained
by determining the spin current. This is particularly true for
TI/FM devices, where the chemical potential lies in the bulk
TI conduction band [84,85] and bulk transport may dominate
in a certain parameter regime [86]. In this context a calculation
of spin currents of TI bulk state is indispensable in interpreting
spin torque experiments: it can reveal whether they are zero or
finite, whether they change sign under certain circumstances,

as well as their variation in different materials and with system
parameters.

The proper spin current was introduced in Ref. [67],which
satisfies the equation of continuity. This led to the distinction
between the conventional spin current, which is convenient
but physically meaningless, and the proper spin current, which
is conserved, despite being difficult to measure. In order to
gain insight into the spin-Hall torque, one needs to eval-
uate the proper spin current, which takes into account the
torque dipole arising from spin precession [67,68,87–93]. Its
calculation is subtle, involving matrix elements of the posi-
tion operator between Bloch states, and to date no quantum
mechanical blueprint exists for calculating the proper spin
current.

In this work we seek to remedy this shortcoming by: (i) de-
veloping a fully quantum mechanical blueprint for calculating
the intrinsic proper spin current (IPSC) using the definition of
Ref. [67], yielding a formula that is ideal for band structure
calculations; (ii) determining the size and structure of the
spin current and its implications for the spin-Hall torque in
topological materials. We find that part of the torque dipole
and conventional spin current cancel out. Only a topological
contribution remains, which comes in equal parts from the
conventional spin current and the torque dipole. Our central
result is the general expression for the IPSC

J l = eE
h̄

×
∑
mk

fmk�
l
mk, (1)

where E is the external electric field, m the band index,
fmk ≡ f (εmk) the equilibrium Fermi-Dirac distribution, εmk

the band dispersion, and k the wave vector. Taking E ‖ x and
the transverse spin current to be along y with z-direction spin
polarization, we can express �l

mk as

�z,z
mk = i

∑
n �=m

sz
nn

(
Rx

mnRy
nm − Ry

mnRx
nm

)
(2)

with the Berry connection Rk
mn = 〈umk|i ∂unk

∂k 〉. This is the only
intrinsic contribution to the proper spin current, which is
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shown to flow perpendicular to the applied electric field. Since
only the band off-diagonal matrix elements of the Berry con-
nection enter �l

mk the proper spin current is gauge invariant.
It can also be finite in the insulating gap, with important
implications for TI/FM devices, as we show below.

This paper is organized as follows. Section II is devoted to
the derivation of the general formula of IPSC, and discussion
on applying the formula to two-dimensional (2D) and 3D
systems. In Sec. III, we apply the general formula to the
topological bulk Hamiltonian and get the intrinsic spin current
from bulk state. In Sec. IV, the general formula is applied to
the 2D Luttinger Hamiltonian, and we get the intrinsic spin
current by taking all couplings between heavy holes and light
holes. Section V summarizes the important results we got and
outlook for future research.

II. METHODOLOGY

The system is described by a single-particle density opera-
tor ρ̂, which obeys the quantum Liouville equation

∂ρ̂

∂t
+ i

h̄
[Ĥ , ρ̂] = 0, (3)

where Ĥ is the total Hamiltonian of the system. We will
consider an arbitrary Hamiltonian and focus on a clean sys-
tem, deferring the treatment of disorder to future research.
The conserved spin current operator Ĵ i

j = d/dt (r̂ j ŝi ) is the
time derivative of the spin dipole operator. Taking trace with
the single-particle density matrix operator ρ̂, we separate
the conserved spin current into the conventional spin cur-
rent and torque dipole contributions J i

j = 1
2 Tr ρ̂ {ŝi, v̂ j} +

1
2 Tr ρ̂ {t̂ i, r̂ j}, with the velocity operator v̂ j = dr̂ j/dt and the
torque t̂ i = dŝi/dt , both diagonal in wave vector in the crys-
tal momentum representation. The conventional spin current
Ji

j = 1
2 Trŝi{v̂ j, ρ̂} is straightforward to evaluate. In contrast

I i
j = 1

2 Trρ̂{t̂ i, r̂ j} stemming from the torque requires some
work to deal with the position operator r̂ j , whose matrix
elements in the crystal momentum representation couple wave
vectors that are infinitesimally spaced. Substituting the matrix
elements of the position operator in the Bloch represen-
tation and performing some manipulations outlined in the
Appendices, we find

I i
j = i tr

∑
k

t i
k

(
∂ρk+k−

∂Qj

)
Q→0

. (4)

Here tr represents the sum over bands, and k± = k ± Q/2.
Note that the ordinary derivative with respect to Q appears,
rather than the covariant derivative, since Q represents the
infinitesimal difference between two Bloch wave vectors. It
is easy to prove Eq. (4) is gauge invariant.

The main challenge is determining the density matrix ele-
ments separated by the infinitesimal wave vector Q. To this
end we need solve Eq. (3). Ĥ = Ĥ0 + ĤE is decomposed
into band Hamiltonian Ĥ0 and electrostatic potential ĤE , and
we work up to first order in the electric field. The method
closely follows Refs. [94,95], except we allow the density
matrix to have terms off diagonal in wave vector, and then
expanding infinitesimal wave vector Q along the lines of
Ref. [96]. By expanding in Q we obtain H0k± ≈ H0k ± Q

2 ·

DH0k
Dk , where the covariant derivative DX

Dk = ∂X
∂k − i[R, X ] ac-

counts for the wave-vector dependence of the basis functions
in the crystal momentum representation. The quantum Liou-
ville equation becomes

∂ρk+k−

∂t
+ i

h̄
[H0k, ρk+k−] + iQ

2h̄
·
{

DH0k

Dk
, ρk+k−

}
= dEk. (5)

The electric-field driving term, derived in Refs. [94,95], is
diagonal in k: dEk = (eE/h̄) · (Dρ0k/Dk). The equilibrium
density matrix ρ0k,mn = f (εkm) δmn.

Henceforth the strategy is straightforward. We first solve
Eq. (5) for Q = 0, whose solution to first order in E, denoted
by ρEk, is known from Ref. [94]. In the intrinsic regime this is

ρEk,mn = eE · Rk
mn[ f (εmk) − f (εnk)]

εmk − εnk
. (6)

This is enough to give us the conventional spin current 〈Ji
j〉 =

1
2 Trŝi{v̂ j, ρ̂E }. To obtain the torque dipole we need to find the
density matrix to first order in Q, which we denote by ρEQ, and
we find by solving Eq. (5) once more with the Q-dependent
term as the driving term

∂ρEQ

∂t
+ i

h̄
[H0k, ρEQ] = − iQ

2h̄
·
{

DH0k

Dk
, ρEk

}
. (7)

This is solved in exactly the same way to yield

ρEQ = iQ
2

· {[Rk, H0k], ρEk}mn

εmk − εnk
, (8)

which finally gives the expression for the torque dipole as
〈I i

j〉 = i Tr t i(∂ρEQ/∂Qj )Q→0. The sum 〈Ji
j〉 + 〈I i

j〉 yields 〈Ĵ i
j 〉

as given in Eq. (1).
Discussion. A number of important observations are in

order concerning the result of Eq. (1). First, for the proper
spin current to be strictly conserved the expectation value of
the torque Tr(t̂ ρ̂ ) needs to cancel so that globally there is no
net spin generation in the system [67,87]. In other words the
torque density Tr(t̂ ρ̂ ) vanishes but the torque dipole density
Tr({t̂, r̂}ρ̂) is finite. This is true for the models we consider
below.

Second, in agreement with Ref. [93], the IPSC is perpen-
dicular to the applied electric field, so the intrinsic spin current
is only a Hall current. Importantly, for a spin- 1

2 system it is
easy to show that Eq. (1) simplifies to

J z
y = eEx

h̄

∑
mk

sz
mm�z

mk fmk, (9)

where the Berry curvature �z
mk = i(Rx

mnR
y
nm − Ry

mnRx
nm).

This expression has the same form as the result of Ref. [93],
derived using purely semiclassical considerations, but differs
by a sign. Since it is a topological quantity it can be nonzero
even in the gap of an insulator, in analogy with the quantized
anomalous Hall effect, as the examples below demonstrate.
We note that Eq. (1) can also be applied to charge transport
by replacing sz

mm → −e, which recovers the Berry curvature
contribution to the anomalous Hall effect, with the correct
sign. The method we have devised for the torque dipole also
yields the orbital magnetic moment of Bloch electrons with
the correct magnitude and sign [97].
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Third, our calculation reveals that the part of torque
dipole cancels the conventional spin current exactly, which
demonstrates that the conventional spin current is physically
meaningless in spin-orbit coupled systems, and the spin cur-
rent that is determined in conventional calculations is simply
absent.

We note that Ref. [81] determined a tentative expression
for the IPSC but identified a divergent term, which was
subsequently discarded. This is consistent with the focus of
Ref. [81] being on spin accumulation rather than on an ex-
plicit calculation of the spin current. It is well known that the
spin accumulation depends crucially on boundary conditions
[67,70,77,92,98], and Ref. [81] demonstrated quantitatively
that the spin accumulation can be determined without refer-
ence to the spin current. At the same time we are able to avoid
the appearance of divergences, and we stress that our calcula-
tion is indispensable in systems in which the spin current does
not lead to a spin accumulation. Such systems, which include
TI/FM interfaces, are in fact used to infer the presence of a
spin current. Since the spin current does not couple to any
measurable quantity, its detection is primarily through indi-
rect processes, for example by measuring spin torque driven
magnetization precession [19,99–102], spin-current-induced
second-harmonic optical effects [103,104], the inverse spin-
Hall effect [21,105], and x-ray pump-probe measurements
[106]. Finally, we stress that our result applies to 2D and
3D extended systems in which the current is carried by bulk
states. We consider two examples below: TI/FM interfaces
and 2D hole gases. We stress that these are prototype systems,
however, our results are general and apply in principle to any
material exhibiting the spin-Hall effect.

III. APPLICATION TO TOPOLOGICAL INSULATORS

Topological insulator/ferromagnet heterostructures
(TI/FM) are the systems in which the largest spin torques
have been observed to date, including room-temperature
magnetization switching [107–117]. The situation in TI/FM
structures is extremely complex. TI spin torques are believed
to be driven by several mechanisms: Rashba-Edelstein
effect [116,117], spin-Hall effect [118], spin transfer torque
[119,120], spin-orbit filtering [121], skew scattering [113],
skew-scattering-induced giant antidamping spin-orbit torques
[122], and Berry curvature [123]. The extent to which each
of these effects contributes to the large spin torques recorded
is yet to be settled [124]. Whereas the surface states give
rise to a strong spin-orbit torque [41,125,126], in TI/FM
structures the chemical potential lies in the bulk [84,85],
and the role of the bulk states is poorly understood. The
contribution of the bulk states through SHE has not been
ruled out [24,85,110,127,128], and most importantly, the
spin-Hall current due to TI bulk states has not been calculated
explicitly. Furthermore, as was demonstrated in Ref. [120],
the spin-transfer torque due to the bulk states can also be
strong and compete in magnitude with the SOT due to the
surface states.

Determining the full spin torque in TI/FM interfaces is
difficult for two main reasons. First, calculations of the spin
density require accurate boundary conditions if they are to
describe a realistic sample, as was shown in Ref. [129].

FIG. 1. The spin-Hall conductance σ y
zx vs EF for the TI bulk

states in Bi2Se3 with magnetizations m ‖ x̂, ŷ, ẑ and |m| = 1 meV
(Bi2Se3 parameters from Ref. [130]).

Unfortunately in TI/FM systems these boundary conditions
are unknown: there is no spin accumulation in this setup,
and the exact path the current follows through the structure
is not known. Second, relating the spin-Hall torque to the
spin current is challenging. For these reasons we do not set
out to calculate any of the spin torques, but rather focus on
the spin-Hall current due to the bulk. We apply our theory to
the 4 × 4 TI bulk Hamiltonian in Ref. [130], H0k = εk + Hso

where εk = C0 + C1k2
z + C2k2

‖ .

Hso =

⎛
⎜⎜⎝

−M + mz m− Bkz Ak−
m+ −M − mz Ak+ −Bkz

Bkz Ak− M + mz m−
Ak+ −Bkz m+ M − mz

⎞
⎟⎟⎠.

(10)

The Hamiltonian is in basis { 1
2 ,− 1

2 , 1
2 ,− 1

2 }. M = M0 +
M1k2

z + M2k2
‖ , A = A0 + A2k2

‖ , B = B0 + B2k2
z . mz and

m± = mx ± imy are the magnetizations in x, y, z direction.
Wave vector k = (k sin θ cos φ, k sin θ sin φ, k cos θ ) with θ

the polar angle and φ azimuthal angle. We calculated the spin
current along ẑ direction carrying spins aligned along ŷ di-
rection with applied electrical field E along x̂ direction. Here
we plot the spin-Hall conductivity σ

y
zx vs EF in Fig. 1. The

bottom of the TI conduction band is at roughly 270 meV. The
Hamiltonian includes a small applied magnetic field to remove
the spin degeneracy point, though there will be a region near
the interface with an induced magnetization [131–133] we do
not expect a finite magnetization in the bulk of the TI. As
shown in Fig. 1, the filled valence band states give rise to a
spin current that is nonzero in the band gap.

The topological nature of IPSC results in one possibil-
ity of identifying the spin-Hall torque unambiguously. The
sample can be set up with the magnetization m ‖ ẑ perpen-
dicular to the interface. This will open a gap in the surface
state spectrum and the chemical potential can be placed in
this gap; in this way it will be both in the bulk gap and
the surface state gap. In this case the spin transfer torque
due to the bulk will be zero [120], and the Edelstein effect
due to the surface states will likewise vanish. The spin-Hall
torque will have only the topological contribution, which
gives rise to a fieldlike torque. There will be a small spin
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density due to the surface states, which corresponds to the
quantized anomalous Hall effect and is also topological (for
the surface states the charge current is equivalent to a spin
density [94]), but this will give rise to a dampinglike torque.
The spin-Hall torque is the only fieldlike contribution present
under these circumstances. When the EF is in the bulk con-
duction band we find the spin conductivity σ

y
zx of the bulk

states ∼103(h̄/2e)�−1m−1, one to two orders of magnitude
smaller than the spin conductivities measured in experiment of
σ x

zx = 0.15 − 1.6 × 105(h̄/2e)�−1m−1 [36,107,109,110] and
σ

y
zx = 2 × 105(h̄/2e)�−1m−1 [36]. Furthermore, we find σ x

zx
to be of a negligible magnitude compared to σ

y
zx. This implies

that the intrinsic spin-Hall effect in doped TIs should primar-
ily give rise to a fieldlike torque. Spin-orbit torque observed
experimentally is always highly anisotropic with higher-order
terms present on the top of dampinglike and fieldlike [134].
The angular dependence of the SOT can be used to differen-
tiate contributions of different underlying mechanisms [135].
For the model considered in this work the spin-Hall torque is
isotropic. We have checked explicitly that this remains true
even when the warping terms are added to the Hamiltonian.

Nevertheless, since the spin-Hall conductivities calculated
here are small, the intrinsic spin-Hall effect of TI bulk states
contribution to the TI spin torque is expected to be negligible
under most circumstances. Disorder effects will be considered
in future research, yet we expect those to be of the same order
of magnitude as the intrinsic contribution, thus the qualitative
conclusion reached above is unlikely to change.

IV. APPLICATION TO 2D HOLE GAS

We apply our theory to the 2D hole systems, in the presence
of a constant in-plane electric field E = E x̂ and a perpen-
dicular magnetization mz = 1 meV. We start from the bulk
Luttinger Hamiltonian [136] HL(k2, kz ) describing holes in the
uppermost valence band with an effective spin J = 3/2. So the
hole system with top and back gate in z direction can be sim-
plified as the isotropic Luttinger Hamiltonian plus a confining
asymmetrical triangular potential Ĥ = HL(k2, k̂z ) − eFzz with
Fz the gate electric field. The Hamiltonian is expressed in the
basis of Jz eigenstates {| + 3

2 〉, | − 3
2 〉, | + 1

2 〉, | − 1
2 〉}

HL(k2, k̂z )=

⎛
⎜⎜⎝

P + Q 0 L M
0 P + Q M∗ −L∗
L∗ M P − Q 0
M∗ −L 0 P − Q

⎞
⎟⎟⎠, (11)

P = h̄2

2m0
γ1(k2 + k2

z ), Q = − h̄2

2m0
γ2(2k2

z − k2), L = −√
3 h̄2

m0

γ3k−kz, M = −
√

3
2

h̄2

m0
(γ k2

− + δk2
+). γ1, γ2, γ3 are Luttinger

parameters which can be found in the Table 1 in Appendixes,
γ = γ2+γ3

2 , δ = γ2−γ3

2 , k± = kx ± iky, and θ = arctan ky

kx
. We

use modified infinite square well wave functions [137] for the
heavy hole (HH) and light hole (LH) states

φv = sin
[

π
d

(
z + d

2

)]
exp

[−βv

(
z
d + 1

2

)]
π

√
e−βv d sinh(βv )

2π2βv+2β3
v

, (12)

v = h, l denote the HH and LH states and d is the width of the
quantum well. The eigenvalues of HH and LH are obtained
by diagonalizing the matrix H̃ , whose elements are given

FIG. 2. (a) Spin-Hall conductivity σ z
yx of GaAs dependence on

Fermi energy with perpendicular confinement electrical field Fz =
1 × 106 Vm−1 and Fz = 2 × 106 Vm−1. (b) Spin-Hall conductivity
σ z

yx for GaAs, InAs, InSb, and Ge vs the top gate electrical field.
EF is set to be 15,40,60,20 meV for GaAs, InAs, InSb, and Ge,
respectively. All calculations in (a) and (b) with perpendicular mag-
netization mz = 1 meV and quantum well width 25 nm.

as H̃ = 〈ν|HL(k2, k̂z ) + V (z)|ν ′〉 + Hm, where |ν〉 denotes the
wave function Eq. (12) and k̂z = −i ∂

∂z . Figure 2(a) shows the
intrinsic spin-Hall conductivity increases with increasing of
the Fermi energy, where spin polarization is along ẑ. Fig-
ure 2(b) shows σ z

yx dependence on the confinement electrical
field, experiencing an upturn then slow downturn because
Rashba coefficient has the same trend [138].

The spin-Hall conductivity of 2D hole system has been in-
vestigated in the past [66,68,139], with most studies taking the
holes Rashba spin-orbital coupling in analogy with electrons
and neglecting the HH-LH coupling. This simplistic approach
is not sufficient in calculating the proper spin current. Our
general formula enables us to work with the 4 × 4 Luttinger
Hamiltonian and account for HH-LH coupling. We note that
a method similar to ours was proposed in the context of 2D
hole gases [64], but the original paper erroneously obtained a
zero spin-Hall conductivity due to a failure to account for the
coupling between heavy holes and light holes. In this context a
recent paper [61] resorted to a modified spin current in order to
remove the finite spin current in equilibrium and to illustrate
the role of the Berry curvature in linear and nonlinear spin
transport.

V. CONCLUSIONS

In this work, we demonstrate a route to realizing an ex-
perimentally controllable spin-Hall effect, and apply it on
the Luttinger Hamiltonian and the other well-known Hamil-
tonians. We confirmed the topological origin the proper spin
current and also provide a formula that can be easily evaluated
numerically for realistic band structures. The formalism can
be straightforwardly extended to the complicated case of dis-
order [140–145], and this will be a subject of future research.
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APPENDIX A: SIMPLIFIED METHOD FOR EVALUATING
THE TORQUE DIPOLE

The torque dipole contribution to the spin current is given
by

I i
j = 1

2 Tr ρ̂ {t̂ i, r̂ j} = 1
2 Tr {r̂ j, ρ̂} t̂ i. (A1)

In the crystal momentum representation t i is diagonal in wave
vector. The matrix elements of the position operator in the
Bloch representation are given by

rkk′ = i
∂

∂k
δ(k − k′) + Rkδ(k − k′), (A2)

with Rk the Berry connection.

We first discuss a simplified method relying on the Pauli
basis, which represents eigenstates of the spin/pseudospin
operators, so the spinors are independent of wave vector.
The spin/pseudospin can have an arbitrary dimensionality.
Although this method has a limited applicability we focus
on it due to its extreme simplicity, and the fact that it is
applicable to all k · p band structure models, including the
Kane model for semiconductors, the Dirac models for all
forms of graphene and topological insulators, as well as Weyl
semimetals, transition-metal dichalcogenides, and other topo-
logical materials. The extension to an arbitrary Bloch basis is
covered below.

In the Pauli basis the Berry connection is zero, and the ma-
trix elements of the position operator are just rkk′ = i ∂

∂k δ(k −
k′). Then:

I i
j = 1

2
Tr t i

kk

∑
k′

(r j,kk′ρk′k + ρkk′r j,k′k) = 1

2
Tr t i

kk

∫
dd k′

(2π )d
i

[
∂

∂k j
δ(k − k′)

]
ρk′k + iρkk′

∂

∂k′
j

δ(k′ − k), (A3)

where
∑

k′ = ∫
dd k′

(2π )d with d the dimension of the system. In the first term we make the replacement

∂

∂k j
δ(k − k′)]ρk′k → ∂

∂k j
[δ(k − k′)ρk′k] − δ(k − k′)

∂ρk′k

∂k j
, (A4)

and in the second term we integrate the δ function by parts,

I i
j = 1

2
Tr t i

kk

∫
dd k′

(2π )d
i

{
∂

∂k j
[δ(k − k′)ρk′k] − δ(k − k′)

∂ρk′k

∂k j

}
− i

∂ρkk′

∂k′
j

δ(k′ − k)

= i

2
Tr t i

kk

[
1

(2π )d

∂ρkk

∂k j
−

∫
dd k′

(2π )d
δ(k − k′)

(
∂ρk′k

∂k j
+ ∂ρkk′

∂k′
j

)]
.

(A5)

The imaginary terms must cancel, a fact that will be shown explicitly.

I i
j = i

2
Tr t i

kk

[
1

(2π )d

∂ρkk

∂k j
−

∫
dd k′

(2π )d
δ(k − k′)

(
∂ρkk′

∂k′
j

+ ∂ρk′k

∂k j

)]
. (A6)

To evaluate this term we first make a change of coordinates
k ≡ q+ = q + Q/2 and k′ ≡ q− = q − Q/2. The wave vector
derivatives take the form

∂

∂k
= 1

2

∂

∂q
+ ∂

∂Q
,

∂

∂k′ = 1

2

∂

∂q
− ∂

∂Q
. (A7)

From the above, it is immediately obvious that the two terms

( ∂ρkk′
∂k′

j
+ ∂ρk′k

∂k j
) in brackets in Eq. (A6) give the same result. The

sum of the
∂

∂q
terms cancels the first term on the right-hand

side of Eq. (A6), and the term we are looking for is

I i
j = i tr

∫
dd q

(2π )d
t i
q

∫
dd Q

(2π )d
δ(Q)

∂ρq+q−

∂Qj

= i tr
∫

dd q

(2π )2d
t i
q

(
∂ρq+q−

∂Qj

)
Q→0

. (A8)

Here tr is just the spin trace and the Jacobian J (kk′|qQ) = 1.
So far no approximations, and the formula we have just ob-
tained holds in the energy eigenstate basis as well. This is
because there is no covariant derivative with respect to Q,
we only have the ordinary derivative. Relabel the wave vector

q → k in Eq. (A8), we get

I i
j = i

2
tr

∫
dd k

(2π )2d
t i
k

(
∂ρk+k−

∂Qj
− ∂ρk−k+

∂Qj

)
Q→0

. (A9)

Since in the calculation of the torque dipole the term i
∂ρk+k−

∂Qj

leads to a real result, in the main text we have retained only
this term and removed the factor of 1/2 in order to simplify
the notation.

The main question is how to evaluate
∂ρk+k−

∂Qj
. We allow the

density matrix to have terms diagonal and off diagonal in wave
vector, and distinguish two wave-vector scales: a small one,
which accounts for inhomogeneity and finite particle size, and
a large scale, which accounts for scattering (scattering is not
considered in this work). The density matrix is separated into
a part that is nearly off diagonal in k and the true off-diagonal
part. In the Pauli basis, the commutator of the density matrix
with the band Hamiltonian is

i

h̄
[Ĥ0, ρ̂]k+k− = i

h̄
(H0k+ρk+k− − ρk+k−H0k− ),

H0k± ≈ H0k ± Q
2

· ∂H0k

∂k
. (A10)
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The kinetic equation can then be written as

∂ρk+k−

∂t
+ i

h̄
[H0k, ρk+k− ] + iQ

2h̄
·
{

∂H0k

∂k
, ρk+k−

}

= dk+k− , (A11)

where dk+k− is an arbitrary driving term. We can solve the
kinetic equation to first order in Q, then take the limit Q → 0.
Taking initially Q = 0, the initial density matrix is denoted by
ρk ≡ ρkk and is diagonal in wave vector, while the correction
to first order in Q is denoted by ρQ (this is done in order to
keep the notation simple: ρQ depends on both k and Q). Since
the driving term due to the electric field is diagonal in k we
write it as dk.

∂ρk

∂t
+ i

h̄
[H0k, ρk] = dk,

∂ρQ

∂t
+ i

h̄
[H0k, ρQ] = − iQ

2h̄
·
{

∂H0k

∂k
, ρk

}
. (A12)

The term (1/h̄) ∂H0k/∂k on the right-hand side is recognized
as the velocity operator. The solution ρQ can be substituted
into Eq. (A9) to determine the torque dipole.

APPENDIX B: EXTENSION TO
AN ARBITRARY BLOCH BASIS

In an arbitrary Bloch basis the Berry connection is nonzero.
Restoring the Berry connection to the matrix elements in
Eq. (A2), it is straightforward to show that

I i
j = 1

2
tr

∫
dd k

(2π )2d
t i
k

[
i

(
∂ρk+k−

∂Qj
− ∂ρk−k+

∂Qj

)
Q→0

+ {Rk, ρk}
]
. (B1)

The band-diagonal matrix elements of the Berry connection
are gauge dependent. The first term in the square brackets
in Eq. (B1) also produces gauge-dependent terms, and these
cancel the gauge-dependent terms arising from Rk, so that
I i

j in Eq. (B1) is gauge invariant. In fact, if one sets t i
k → 1

in Eq. (B1) one obtains the expectation value of the position
operator in this representation

〈r j〉 = 1

2
tr

∫
dd k

(2π )2d

[
i

(
∂ρk+k−

∂Qj
− ∂ρk−k+

∂Qj

)
Q→0

+ {Rk, ρk}
]
. (B2)

The differential terms represent the phase of the wave function
in more conventional evaluations, while the Berry connection
represents the contribution due to the change of the basis
states between infinitesimally separated wave vectors. Equa-
tion (B2) makes it clear that the operator

D{ρ}k+k− ≡ i

(
∂ρk+k−

∂Qj
− ∂ρk−k+

∂Qj

)
Q→0

+ {Rk, ρk}, (B3)

plays the role of a covariant derivative involving the k off-
diagonal matrix elements of ρ, with the anticommutator
appearing due to the presence of the imaginary factor i multi-
plying the expression.

Determining ρk and ρQ in an arbitrary Bloch basis is more
laborious because of the requirement of gauge invariance. In
an arbitrary basis the procedure outlined in Appendix A must
be revised. One cannot simply evaluate

∂ρk+k−
∂Qj

since this is
gauge dependent. Instead, the full derivative D introduced in
Eq. (B3) must be applied to the quantum Liouville equation in
order to determine ρk+k− directly:

∂ρk+k−

∂t
+ i

h̄
[H0k, ρk+k− ] = 0,

∂

∂t
D{ρ}k+k− + i

h̄
D{[H0, ρ]}k+k− = 0. (B4)

The procedure is lengthy and is not covered in detail here.
However, the net result is that all the terms involving the
Berry connection cancel, and the remaining contribution to
the density matrix can be found from an equation formally
equivalent to Eq. (A12)

∂ρQ

∂t
+ i

h̄
[H0k, ρQ] = − iQ

2h̄
·
{

DH0k

Dk
, ρk

}
, (B5)

in which the ordinary derivatives ∂/∂k in Eq. (A11) are re-
placed by the regular covariant derivative D/Dk defined in
the main text, which acts only on k-diagonal matrix elements
and takes into account the curvature of the eigenspace. This is
Eq. (7) in the main text.

APPENDIX C: EXPLICIT CALCULATION
OF THE PROPER INTRINSIC SPIN CURRENT

For this part we will switch to energy eigenstate basis and
use the notation in our interband coherence paper [94].

1. Conventional intrinsic spin current

The conventional intrinsic spin current will be evaluated in
two parts. We will first evaluate the topological term

Jz
y,1 = 1

2

∑
mk

〈umk|ŝz|umk〉〈umk|{v̂y, ŜE }|umk〉. (C1)

In the eigenstate basis the velocity has the form v̂ =
−i[R̂, Ĥ0], with matrix elements

−i〈umk|[R̂, Ĥ0]|unk〉 = −iRk
mn(εnk − εmk). (C2)

From the interband coherence paper, the interband part of the
density matrix is

ρEk,mn = eE · Rk
mn[ f (εmk) − f (εnk)]

εmk − εnk
, (C3)

195434-6



TOPOLOGICAL NATURE OF THE PROPER SPIN CURRENT … PHYSICAL REVIEW B 108, 195434 (2023)

Then the first topological part of the conventional intrinsic spin current can be simplified as

Ji
j,1 = 1

2

∑
mnk

si
mm {〈umk|v̂ j |unk〉〈unk|ρ̂E |umk〉 + 〈umk|ρ̂E |unk〉〈unk|v̂ j |umk〉}

= − ie

2

∑
mnk

si
mm

{
Rk

mnE · Rk
nm[ f (εnk) − f (εmk)] + E · Rk

mnRk
nm[ f (εmk) − f (εnk)]

}

= ie

2

∑
mnk

{
si

mm

(
Rk

mnE · Rk
nm − E · Rk

mnRk
nm

)
f (εmk) − si

mm

(
Rk

mnE · Rk
nm − E · Rk

mnRk
nm

)
f (εnk)

}

= ie

2

∑
mnk

{
si

mm

(
Rk

mnE · Rk
nm − E · Rk

mnRk
nm

)
f (εmk) − si

nn

(
Rk

nmE · Rk
mn − E · Rk

nmRk
mn

)
f (εmk)

}
. (C4)

Now take the electric field to be along x and the current to be along y

Jz
y,1 = ieEx

2

∑
mnk

{
sz

mm

(
Ry

mnRx
nm − Rx

mnRy
nm

)
f (εmk) + (

Ry
mnsz

nnRx
nm − Rx

mnsz
nnRy

nm

)
f (εmk)

}
. (C5)

Consider the product of two Berry connections in the first term Ry
mnRx

nm → 〈 ∂umk
∂ky

| ∂umk
∂kx

〉,

Jz
y,1 = ieEx

2

∑
mnk

sz
mm

[〈
∂umk

∂ky
|∂umk

∂kx

〉
−

〈
∂umk

∂kx
|∂umk

∂ky

〉]
f (εmk) + [

Ry
mnsz

nnRx
nm − Rx

mnsz
nnRy

nm

]
f (εmk)

= −eEx

2

∑
mk

[
sz

mm�z
mk + �z

mk

]
f (εmk). (C6)

We have defined �z,z
mk = ∑

k,n i[Rx
mnsz

nnR
y
nm − Ry

mnsz
nnRx

nm]. Then the other term of the conventional intrinsic spin current has
the form

Jz
y,2 = 1

2

∑
k

∑
m �=n

〈umk|ŝz|unk〉〈unk|{v̂y, ρ̂E |umk〉

= 1

2

∑
k

∑
m �=n

sz
mn

[
vy

nn + vy
mm

]
ρEk,nm + 1

2

∑
k

∑
m′ �=m,n

sz
mn

[
v

y
nm′ρEk,m′m + ρEk,nm′v

y
m′m

]
. (C7)

2. Torque dipole correction 1: Q-dependent part of the nonequilibrium density matrix

The torque dipole term is I i
j = 1

2 Trρ̂{t̂ i, r̂ j}. The density matrix ρEk+k− to first order in Q can be simplified as

〈m|ρEk+k−|n〉 = −ih̄

εmk − εnk

{
− iQ

2
· {vk, ρEk}mn

}
, (C8)

the velocity operator can be separated into a part the diagonal in the band index and a part off-diagonal velocity in the band
index. The derivative of ρEk+k− with respect to Q is expressed as

〈m|∂ρEk+k−

∂Q
|n〉 = −h̄

[
v

j
mm + v

j
nn

]
ρEk,mn

2(εmk − εnk)
− h̄

∑
m′ �=mn

v
j
mm′ρEk,m′n + ρEk,mm′v

j
m′n

2(εmk − εnk)
. (C9)

By feeding t i
nm = i

h̄ 〈unk|[Ĥ0, ŝi]|umk〉 = i
h̄ (εnk − εmk)si

nm into the trace,

I i
j = i

∑
mnk

i

h̄
(εmk − εnk)si

mn〈unk|∂ρEk+k−

∂Q
|umk〉

= −1

2

∑
mnk

si
mn

[
v j

mm + v j
nn

]
ρEk,nm − 1

2

∑
k

∑
m �=n

∑
m′ �=mn

si
mn

[
v

j
nm′ρEk,m′m + ρEk,nm′v

j
m′m

]
. (C10)

If the electric field is along x direction, we have

Iz
y = −1

2

∑
mnk

sz
mn

[
vy

mm + vy
nn

]
ρEk,nm − 1

2

∑
k

∑
m �=n

∑
m′ �=mn

sz
mn

[
v

y
nm′ρEk,m′m + ρEk,nm′v

y
m′m

]
. (C11)
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This will exactly cancel the intrinsic torque contribution (C7). The only spin current term that is left is the topological term (C6)
and written in general vector form

J i = eE
2

×
∑
mk

[
si

mm�mk + �i
mk

]
f (εmk). (C12)

3. Torque dipole correction 2: Q-dependent part of the equilibrium density matrix

The equilibrium density matrix will have a correction that is linear in the infinitesimal wave vector Q from the driving term

− iQ
2h̄ · {DH0k

Dk , ρ0k}

ρmn
Q = −i

Q
2

· Rk
mn[ f (εmk) + f (εnk)]. (C13)

Here ρmn
Q is off diagonal in the band index. This gives an extra driving term in the kinetic equation

∂ρk+k−

∂t
+ i

h̄
[H0k, ρk+k−] + iQ

2h̄
·
{

DH0k

Dk
, ρk+k−

}
= dEk. (C14)

dEk will have extra contribution because of linear term in the infinitesimal wave vector Q, which is

dmm′
EQ = − i

h̄
[HE , ρQ]mm′ = eEi

h̄

Dρmm′
Q

Dki
. (C15)

Evaluating the two components of the covariant derivative, this driving term gives[
∂ρQj

∂ki

]mm′

= − iQj

2

[
∂R j

mm′

∂ki
[ f (εmk) + f (εm′k)] + R j

mm′

(
∂ f (εmk)

∂ki
+ ∂ f (εm′k)

∂ki

)]
, (C16)

and

− i

h̄
[Ri, ρQj ]

mm′ = − Qj

2h̄

∑
n,m′ �=n

Ri
mnR

j
nm′ [ f (εnk) + f (εm′k)] + Qj

2h̄

∑
n,m �=n

R j
mnRi

nm′ [ f (εnk) + f (εmk)]. (C17)

The solution for another part of density matrix ρEk+k− to first order in Q is:

ρmm′
EQ = h̄dmm′

EQ

i(εmk − εm′k)
. (C18)

Using this we can find the spin current generated by the Q-dependent part of the equilibrium density matrix

I l
i = i Tr t l

k

(
∂ρEQ

∂Qi

)
Q→0

= − eEj

2h̄

∑
m �=m′

sl
mm′

[
∂R j

m′m

∂ki
( f (εmk) + f (εm′k)) + R j

m′m

(
∂ f (εmk)

∂ki
+ ∂ f (εm′k)

∂ki

)

− i
∑

n,m �=n

Ri
m′nR j

nm

(
f (εnk) + f (εmk)

) + i
∑

n,m′ �=n

R j
m′nRi

nm

(
f (εnk) + f (εm′k)

)]

= − eEj

2h̄

∑
m

∂ f (εmk)

∂ki

{
sl

od ,R j
}mm + f (εmk)

{
sl

od ,
∂R j

∂ki

}mm

+ ieEj

2h̄

∑
mm′n

f (εnk)
(
R j

mm′sl
od,m′nRi

nm − Ri
mm′sl

od,m′nR j
nm

)

+ ieEj

2h̄

∑
mm′n

f (εmk)
(
sl

od,mm′Ri
m′nR j

nm − R j
mm′Ri

m′nsl
od,nm

)
.

(C19)

Here the index od indicates that we only take band off-diagonal elements. Also R j is purely off-diagonal in these expressions as
it comes from ρQ. The first two terms in (C19) can be simplified

− eEj

2h̄

∑
m

∂ f (εmk)

∂ki

{
sl

od ,R
j
od

}mm + f (εmk)

{
sl

od ,
∂R j

od

∂ki

}mm

= eEj

2h̄

∑
m

− ∂

∂ki

(
f (εmk)

{
sl

od ,R
j
od

}mm) + f (εmk)

{
∂sl

od

∂ki
,R j

od

}mm

. (C20)
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Here the first term is a total derivative and will vanish when taking the trace. The second two terms in (C19) can be expressed as

− ieEj

2h̄

∑
m

{[
Ri, sl

od

]
,R j

od

}mm
, (C21)

together with (C20) this means that this spin current correction can be written using a covariant derivative as

I l
i = eEj

2h̄

∑
m

f (εmk)

{
Dsl

od

Dki
,R j

od

}mm

. (C22)

The spin current expression can be further simplified by considering the partial derivative of the spin operator in the eigenstate

basis ∂smm′
od

∂ki
= ∂

∂ki
〈umk|ŝi|um′k〉 = i[Ri, s]mm′

od . Looking at the spin current again we have

I l
i = eEj

2h̄

∑
m

f (εmk)

{
∂sod

∂ki
− i

[
Ri, sl

od

]
,R j

od

}mm

= eEj

2h̄

∑
m

f (εmk)
{
i
[
Ri, sl

]
od − i

[
Ri, sl

od

]
,R j

od

}mm
. (C23)

The trace only takes the diagonal elements of the anticommutator here and the Berry connection term R j
od is off diagonal. This

means any band diagonal parts of the left-hand side of the anticommutator will not contribute to the trace. We can rewrite the
expression for I l

i as

I l
i = eEj

2h̄

∑
m

f (εmk)
{
i[Ri, sl ]od − i

[
Ri, sl

od

]
od ,R

j
od

}mm

= ieEj

2h̄

∑
m

f (εmk)
{[
Ri

od , sl
d

]
od ,R

j
od

}mm

= eEj

2h̄

∑
m,m′

f (εmk)
(
Ri

mm′sl
m′m′R j

m′m − sl
mmRi

mm′R j
m′m + R j

mm′Ri
m′msl

mm − R j
mm′sl

m′m′Ri
m′m

)

= eEj

2h̄

∑
m,m′

f (εmk)
(
sl

mm

(
R j

mm′Ri
m′m − Ri

mm′R j
m′m

) − (
R j

mm′sl
m′m′Ri

m′m − Ri
mm′sl

m′m′R j
m′m

))

= eEj

2h̄

∑
m

f (εmk)sl
mmε jik�

k
mk − f (εmk)ε jik�

k,l
mk

(C24)

We drop any potential diagonal terms in the commutator [Ri, sl
od ] at the third step due to R j

od being off diagonal, meaning any
diagonal terms will not contribute. When combining (C6) and (C24) we get the total spin current

J l
i = −eEj

h̄

∑
mk

f (εmk)ε jik�
k,l
mk. (C25)

Or it can be written as

J l = eE
h̄

×
∑
mk

f (εmk)�l
mk. (C26)

APPENDIX D: LUTTINGER PARAMETERS

TABLE I. Luttinger parameters used in this work [146].

GaAs InAs InSb Ge

γ1 6.85 20.40 37.10 13.38
γ2 2.10 8.30 16.50 5.24
γ3 2.90 9.10 17.70 4.69
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