
PHYSICAL REVIEW B 108, 195433 (2023)

Phase dependence of thermal transport in graphene Josephson junctions
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We study theoretically the phase-dependent thermal transport in graphene-based Josephson junctions and
highlight the role of Klein-like tunneling in the thermal energy transmission. We compute the thermal conduc-
tance for both short and long junctions by solving the Dirac-Bogoliubov–de Gennes equation. Numerical results
show that the thermal conductance contains distinctive signatures of the existence of Andreev bound states,
enabling us to identify different superconducting pairing symmetries in graphene, including s-, dx2−y2 -, dxy-, px-,
and py-wave symmetries. Importantly, our results may pave the way for applications of graphene in the field of
Josephson heat interferometers.

DOI: 10.1103/PhysRevB.108.195433

I. INTRODUCTION

The phase-dependent heat currents in Josephson junctions
were predicted more than half a century ago [1–3]. In such
junctions, heat is carried by quasiparticles with energies above
the superconducting gap. They can be transmitted across the
junction in normal tunneling events as well as in Andreev-like
processes where an electron-like quasiparticle is converted
into a hole-like quasiparticle and vice versa together with the
creation or annihilation of a Cooper pair in the condensate. It
is these latter processes that give rise to the phase dependence
of the thermal transport across a Josephson junction [4–7].
Over the past decade, a great deal of progress has been
made in the Josephson heat interferometer, a temperature-
biased superconducting quantum interference device, which
allows full control of the coherent energy transfer through
the Josephson junction [8–14]. These experimental break-
throughs led to the conception and implementation of various
caloritronic devices, such as heat transistors [15,16], thermal
diodes and switches [17–21], thermal memory [22], and re-
frigerators [23–25].

On the other hand, numerous theoretical works revealed
that the detection of phase-dependent heat current is an ef-
fective method for studying the intrinsic physics of materials.
For example, Josephson junctions’ thermal signature can be
utilized to investigate various phenomena such as the spin
polarization of ferromagnets, topological superconductivity,
localized Majorana end states, helical edge states of topo-
logical insulators, Andreev bound states (ABSs), and even
unconventional pairing symmetry [26–32]. Recently, Savan-
der et al. reported on the thermoelectric detection of ABSs
in unconventional superconductors, since the Andreev ther-
moelectric effect is highly sensitive to surface states that
emerge in unconventional superconductors [33]. However, to
date, there have been no reports on the thermal transport of a
graphene-based Josephson junction (GJJ).
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Previous studies have demonstrated that graphene can ex-
hibit various types of pairing symmetries through proximity
effect, including s-wave, d-wave, and p-wave pairing [34,35].
The combination of these superconducting pairing sym-
metries with the relativistic low-energy Dirac fermions in
graphene leads to a wide range of interesting physics and
novel proximity effects [36,37]. Recent advancements in
nanofabrication techniques, such as suspension of graphene
or BN encapsulation, have further allowed for the realiza-
tion of graphene Josephson junctions (GJJs) in the ballistic
regime [36]. To apply GJJs to various caloritronic devices,
e.g., graphene-based Josephson heat interferometers, it is an
important issue to clarify the phase-dependent thermal trans-
port properties of these junctions. Furthermore, the thermal
conductance can provide clear evidence of the existence of
ABSs, making it useful for distinguishing various pairing
symmetries induced in graphene through thermal transport
experiments.

In this paper, we mainly focus on the thermal
transport in graphene-based superconductor–normal-metal–
superconductor (SNS) junctions with different pairing
symmetries and highlight the role of the relativistic Dirac
fermions in the phase-dependent thermal conductance.
Numerical results have revealed the phase dependence of
the thermal conductance on various pairing symmetries,
such as s-, d-, and p-wave symmetries. Importantly, we
believe that understanding the phase-coherent heat transport
in such junctions will be useful for the development of future
superconducting quantum devices and nanotechnology. It
might even reveal the potential applications of GJJs for smart
energy control at mesoscopic scales and the management of
heat dissipation at cryogenic temperatures.

II. FORMALISM AND THEORY

We consider a two-dimensional graphene-based SNS junc-
tion in the x-y plane, as depicted in Fig. 1, where the two
interfaces are parallel to the y axis and located at x = 0 and
x = L, respectively. The N region of length L is a normal
segment of graphene with a large electrostatic potential V0
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FIG. 1. (a) Schematic figure of graphene-based SNS junction
constructed in the x-y plane. Two superconducting electrodes SL and
SR, separated by a distance L, are deposited in the left (l , x < 0) and
right (r, x > L) regions, respectively. Thermal transport is driven by
a temperature bias δT between the two superconducting electrodes.
The sketch of the pairing configurations (s wave, p wave, and d wave)
are denoted in the SL and SR regions.

induced by a tunable gate voltage. Here, we would like to
emphasize that the junction along the y axis has a zigzag
shape. According to the discussions in Refs. [38,39], the elec-
tron wave functions in such a junction with zigzag edges are
assumed to be independent of valleys. The superconducting
correlations between electron-hole excitations are described
by Dirac-Bogoliubov–de Gennes (DBdG) equation [40],[

H± − EF �(k, r)
�∗(k, r) EF − H±

]
ψ = Eψ, (1)

where E is the excitation energy measured from the Fermi
level EF , ψ = (ue, ve)T , and (vh, uh)T denote the wave func-
tions of the electron- and hole-like excitations, respectively,
and �(k, r) represents the proximity-induced superconduct-
ing pairing potential in graphene, which is k dependent on
the Fermi surface except for the isotropic s-wave pairing
symmetry. In Eq. (1), the single-particle Hamiltonian is given
by H± = −ih̄vF (σx∂x ± σy∂y) + V0�(x)�(−x + L) with the
first term being the Dirac Hamiltonian, where vF � 106 m/s
is the Fermi velocity in graphene [41], σx and σy are Pauli
matrices in the pseudospin space of the sublattices, and the
indices ± respectively stand for the K and K ′ valleys of
graphene. V0 is an external gate voltage applied in the N
region to create a tunneling barrier. Furthermore, � is the
Heaviside step function. Without losing generality, we ne-
glect the smooth change of the pair potential in the vicinity
of the SN interface, such that we may approximate their
spatial dependence by a step function behavior �(k, r) =
�l (k)eiφl �(−x) + �r (k)eiφr �(x − L). In our notation, the
subscript i = l (r) denotes the left (right) superconducting
region. The temperature-dependent gap magnitude in the ith
superconducting lead reads �i = �0 tanh(1.74

√
Tc/Ti − 1)

with �0 = 1.76kBTc being the superconducting gap at zero
temperature and Tc denoting the critical temperature [42].
Throughout this paper, the energies are normalized by �0

and the temperature Ti is normalized by Tc. The mean-field
approximation in superconducting regions is that EF � �0,
or equivalently, the Fermi wavelength in the superconducting
region should be much smaller than the coherence length [43].

In light of this, we consider a heavily doped case with EF =
100�0. Meanwhile, the Fermi momentum kF in both SL and
SR regions are assumed to be equal for simplicity.

The eigenfunctions of the DBdG equation describing
electron-like quasiparticles (ELQs) and hole-like quasiparti-
cles (HLQs) in the two superconductors are respectively given
by

ψe±
i (x) = (

ue
i , ue

i eiθ± , ve
i e−iφ±

i , ve
i eiθ±−iφ±

i
)T

eike
i cos θ±x,

ψh±
i (x) = (

vh
i , v

h
i eiθ± , uh

i e−iφ±
i , uh

i eiθ±−iφ±
i
)T

eikh
i cos θ±x, (2)

where the coherence factors are written as ue(h)
i =

[(E + 
±
i )/2E ]1/2 and v

e(h)
i = [(E − 
±

i )/2E ]1/2 with

±

i = [E2 − |�±
i (θ )|2]1/2 and the superscript e (h) denoting

the ELQ (HLQ). In Eq. (2), we have defined θ+ = θ and
θ− = π − θ with θ = arctan(ky/kx ) being the incident angle
for an ELQ in the SL region. To be more specific, the angle
θ describes the quasiparticle trajectory, the direction of the
incident momentum relative to the interface normal. We have
employed the weak-coupling limit, where the momentum
k is fixed on the Fermi surface, allowing us to effectively
describe the k-dependent pair potential as a function of angle
θ . In other words, we can express �±

i (θ ) = �ieiφ±
i f (θ±),

where f (θ±) varies for different pairing symmetries. We have
also defined eiφ±

i = eiφi�±
i (θ )/|�±

i (θ )| with φi=l (r) being
the macroscopic phase of superconductor SL (SR). Note that
there exists a phase difference φ = φl − φr between the left
and right superconductors. Furthermore, the related wave
vectors are described as ke(h)

i = [EF + (−)
±
i ]/h̄vF . Since

the system has translational invariance in directions parallel
to the interface, the transverse momenta ky = ke(h)

i sin θ± are
conserved in the scattering process.

The eigenfunctions for the N region are given by

ψe±
n (x) = (1,±e±iγe , 0, 0)T e±ike

nx,

ψh±
n (x) = (0, 0, 1,∓e±iγh )T e±ikh

n x, (3)

with γe = arcsin[h̄vF ky/(E + EF − V0)], γh = arcsin
[h̄vF ky/(E − EF + V0)], the x component of the wave
vectors ke

n = (h̄vF )−1(E + EF − V0) cos γe and kh
n =

(h̄vF )−1(E − EF + V0) cos γh.
Let us now consider the situation where an ELQ ψe+

l
is incident from the left-hand side (x < 0). It gives rise to
a backscattered ELQ ψe−

l or to an Andreev-reflected HLQ
ψh+

l . Importantly, the incident quasiparticle can be also trans-
mitted to the right-hand side (x > L) as an ELQ ψe+

r or as
an HLQ ψh−

r . Therefore, the wave functions in the SL and
SR regions can be expressed as L = ψe+

l + reψ
e−
l + rhψ

h+
l

and R = teψe+
r + thψh−

r , respectively. In addition, the wave
function in the N region N can be constructed using Eq. (3).
We remark that the electron-like and hole-like states in the
SL and SR regions are different due to the temperature bias
across the junction. The transmitted amplitudes te and th can
be determined by matching the boundary conditions at x = 0
and x = L:

L|x=0− = N|x=0+ , N|x=L− = R|x=L+ . (4)

The thermal energy is carried by the quasiparticles with
energy E > �(θ ) and the transmission probability can be
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FIG. 2. (a) Thermal conductance as a function of T/Tc for var-
ious phase difference φ in the transparent limit. Inset shows the
phase-dependent thermal conductance κ (φ) for different values of
T/Tc. Thermal conductance is normalized by the heat flux quantum
GQ = 4π 2k2

BT/(3h).

expressed as τ̃ (E , θ ) = |te|2 + |th|2. Similarly, for an inci-
dent HLQ, we can also obtain the transmission probability
τ̃ ′(E , θ ) = |t ′

e|2 + |t ′
h|2. By assuming a temperature bias δT

across the SNS junction, the thermal conductance averaging
over all possible incident angles θ is given by [27,31,44]

κ (φ) = 4

h

∫ π/2

−π/2
dθ cos θ

∫ ∞

�(θ )
dEE [̃τ (E , θ ) + τ̃ ′(E , θ )]

df

dT
.

(5)
Therein, f = (eE/kBT + 1)−1 denotes the equilibrium Fermi
distribution. We emphasize that this formula is valid for
both isotropic and anisotropic pairing symmetries. The ther-
mal conductance is normalized by GQ = 4π2k2

BT/(3h) with
π2k2

BT/(3h) being the thermal conductance quantum [45].
The degeneracy factor four accounts for the spin and valley
degeneracies of graphene.

III. RESULTS AND DISCUSSION

A. Graphene-based SNS junction with s-wave pairing

For s-wave pairing, we have �(θ ) ≡ �, meaning that the
energy gap is isotropic and independent of the momentum.
We first focus on the thermal transport in a short junction
limit, where the junction length L is much smaller than the
superconducting coherence length ξ0 = h̄vF /�0. In this case,
it is possible to model the N region by a δ-shaped barrier
located at the interface between the two superconductors,
characterized by a dimensionless parameter Z = V0L/h̄vF ,
which represents the barrier strength [46–48]. In this ap-
proach, we take the limit d → 0 and V0 → ∞, such that
γe → 0, γh → 0, −ke

nL = (−E − EF + V0)L/h̄vF → Z , and
kh

nL = (E − EF + V0)L/h̄F → Z .
Consider first the situation of a transparent junction, corre-

sponding to Z = 0. Figure 2(a) shows the normalized thermal
conductance κ/GQ versus the temperature T for various phase
differences φ = φl − φr . It has been observed that when the
temperature is below the transition temperature Tc, κ/GQ

exhibits an exponential increase with respect to T/Tc. This

Relativistic case

Nonrelativistic case

Z/π

(a)

(b)

FIG. 3. (a) The phase-dependent thermal conductance κ (φ) for
various barrier strengths Z at T/Tc = 0.5. (b) Comparison of κ (Z )
between the relativistic and nonrelativistic cases at φ = 0, π/2
and π .

behavior is indicative of the spherical symmetry associated
with s-wave pairing. For T > Tc, the SL (SR) part fades into a
normal state, causing the heat transport to exhibit a linear de-
pendence on temperature regardless of the change in φ, which
coincides with the Wiedemann-Franz law for normal metals
in low temperatures [45,49]. In other words, the thermal con-
ductance at T > Tc is proportional to temperature, i.e., κ ∝ T .
The phase dependence of the thermal conductance for differ-
ent values of T is shown in the inset of Fig. 2. One can see that
κ (φ) is 2π periodic and has a minimum at φ = π , and varying
temperature cannot change the qualitative features of κ (φ)
except for the magnitude of the oscillation with respect to φ.
Raising the temperature from 0.2Tc to 0.6Tc could enhance the
oscillating amplitude of κ (φ) due to the increase of thermal
energy transmission carried by quasiparticles above the super-
conducting gap. However, as the temperature approaches Tc,
the oscillating amplitude tends to zero. This is because higher
temperatures decrease the magnitude of the gap �, thereby
diminishing the effects of quantum phase coherence. There-
fore, from an experimental perspective, the optimal conditions
for detecting the phase dependence occur at intermediate tem-
peratures, such as T = 0.5Tc and 0.6Tc. Next, we investigate
the effect of the tunneling barrier on κ (φ), as depicted in
Fig. 3(a), where we consider a series of barrier strengths
ranging from Z = 0 to Z = π . The thermal conductance is
found to decreases as expected when the junction transparency
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is reduced. Notably, κ (φ) consistently displays a minimum at
φ = π regardless of the barrier height. This phenomenon is in
contrast with the nonrelativistic case, which has been studied
in Refs. [27,31,32]. In the nonrelativistic case, a minimum
at φ = π is observed only at high transparency, whereas in
the tunneling limit, the thermal conductance becomes maxi-
mal at φ = π . Such a distinction becomes even clearer when
plotting the thermal conductance as a function of Z for three
values of phase differences: φ = 0, φ = π/2, and φ = π , as
shown in Fig. 3(b). For comparison, the corresponding κ (φ)
for the nonrelativistic case is also calculated and indicated
by the line-symbol curves, which reproduces the qualitative
findings of Refs. [31,32]. It is observed in Fig. 3(b) that, for
the relativistic case, κ (Z ) at φ = 0 is always larger than that at
φ = π . More importantly, κ (Z ) appears as a periodic function
with a period of π , indicating the thermal energy’s Klein-like
tunneling. Such a periodic behavior is a direct manifestation
of the relativistic low-energy Dirac fermions [46–48], which
cannot be observed in conventional SNS junctions. One can
see that the thermal conductance in the nonrelativistic case
always shows an exponential dependence on the tunneling
barrier Z . Note also that the three line-symbol curves intersect
at Z ≈ π/4, implying that κ (φ) at φ = π will undergo a
transition from minimal to maximal thermal conductance as
Z increases.

Those distinct features of κ (φ) can be understood by ana-
lyzing the transmission function τ (E , φ) as well as the ABSs
localized in the N region, as shown in Fig. 4. Since the
thermal conductance receives contributions from quasiparti-
cles approaching the junction at all angles of incidence, the
transmission function τ (E , φ) is defined as an integral over θ ,
i.e., τ (E , φ) = ∫ π/2

−π/2 dθ cos θ [̃τ (E , θ ) + τ̃ ′(E , θ )]. We would
like to emphasize that the phase-dependent thermal transport
arises due to thermally excited quasiparticles above the su-
perconducting gap, as pointed out in Refs. [26–32]. In other
words, it depends explicitly only on the quasiparticle spec-
trum above the gap. The subgap ABSs do not contribute to
stationary thermal transport, as these particles can only enter
the superconducting banks by condensing into a Cooper pair,
which carries no heat. More specifically, electrical transport
is possible via ABSs for energies within the excitation gap
�(θ ), i.e., E < �(θ ). Conversely, thermal transport is com-
pletely hindered, as evanescent waves with excitation energy
E < �(θ ) cannot be transmitted through the SNS junction.
Then, as seen in the Eq. (5), the thermal conductance is inte-
grated from E = �(θ ) to E → ∞. The sensitivity of κ (φ) to
ABSs within the pairing gap is a result of the direct connec-
tion between thermal conductance and the superconductor’s
density-of-states. The detailed solution for ABSs can be found
in the Appendix.

For the nonrelativistic case, the θ -dependent ABS can be
expressed as Eb(θ, φ)=±�[cos2(φ/2)+(1−σ̃n) sin2(φ/2)]1/2

with σ̃n being the transmission probability of the junction in
the normal state [50]. By introducing the δ-function barrier
model, we have σ̃n = cos2 θ/(cos2 θ + Z2). Note that the in-
terface transparency can be characterized by the value of σ̃n.
In the transparent limit, i.e., σ̃n ≈ 1, the ABS at φ = π goes
to zero energy. This low-energy ABS removes the density
of states from above the superconducting gap �, causing a

Nonrelativistic case
(a)

(b)

FIG. 4. Transmission function τ (E , φ) of a SNS Josephson junc-
tion with s-wave pairing in (a) the nonrelativistic case and (b) the
relativistic case. White lines inside the superconducting gap indicate
the energy of ABSs for various incident angles (θ , from 0 to π/6).
The temperature is set to T/Tc = 0.5 and the barrier strength is set
to Z = π/2. The thermal conductance receives contributions from
quasiparticles approaching the junction at all angles of incidence,
such that τ (E , φ) is an integral of θ .

reduction in thermal energy transmission at φ = π , which is
not shown here. As can be seen from Fig. 4(a) for Z = π/2,
corresponding to a junction with low transparency where σ̃n

is strongly suppressed, the ABS energy at φ = π moves up to
the gap edge, giving rise to a resonant transmission for quasi-
particles with energies slightly above �. This in turn enhances
the thermal conductance at φ = π , leading to a phase shift of
κ (φ) as Z increases.

However, this is not the case for graphene with relativistic
DBdG quasiparticles. The θ -dependent ABS for GJJs with s-
wave pairing can be obtained as [51]

Eb(θ, φ) = ±�

√
1 − σn sin2(φ/2),

σn = cos2 θ

1 − cos2 Z sin2 θ
. (6)

Therein, σn is the angularly resolved transmission coeffi-
cient of this graphene junction in the normal state. Owing
to the Klein tunneling, quasiparticles in the normal state
with normal incidence always exhibit unit transmission [i.e.,
σn(θ = 0) ≡ 1] regardless of the height of the barrier potential.
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(a)

Relativisitic case(b)

FIG. 5. (a) The phase-dependent thermal conductance κ (φ) for
various junction lengths L/ξ0 at V0 = 0. (b) Thermal conductance
as a function of L/ξ0, and the related parameters are denoted in the
figure. The temperature is fixed at T/Tc = 0.5.

Consequently, the ABS energies for small incident angles
(e.g., θ < π/6) stay close to the zero energy at φ = π , as seen
in Fig. 4(b). These low-energy ABSs diminish the magnitude
of the corresponding thermal conductance as discussed previ-
ously. Since the heat current is predominantly contributed by
quasiparticles at small incident angles, a junction like this can
always display a minimal thermal conductance at φ = π , even
when the barrier potential is very large. We would like to point
out that this behavior is not exclusively unique to topological
ABSs and Majorana fermions mentioned in Refs. [27,31,32].
Rather, it originates from the Klein-like tunneling of relativis-
tic DBdG quasiparticles.

So far, the above discussions are restricted to the short-
junction limit. Now, we extend our analysis to the case of a
long junction made of graphene. It is important to consider the
junction length in relation to the superconducting coherence
length, which can be quantified as ξ0 = �0/h̄vF . In Fig. 5(a),
we present the phase-dependent thermal conductance for dif-
ferent junction lengths normalized by ξ0, denoted as L/ξ0. It
is evident that the phase dependence is significantly affected
by varying L/ξ0. The minimum of κ (φ) is no longer situated
at φ = π , but instead gradually shifts to φ = 0 as L increases,
and we can define this phenomenon as a φ junction. Such a
phase shift in κ (φ) is reminiscent of the skewness observed

in the supercurrent curve I (φ) [52–55]. Both phenomena are
linked to the high transmission of quasiparticles due to the
Klein-like tunneling effect. However, the underlying physi-
cal mechanisms driving these two phenomena are different.
The former is attributed to the momentum difference between
electrons and holes, i.e., ke

n − kh
n = 2E/h̄vF , which is a direct

consequence of the Dirac-like energy dispersion for graphene.
The latter, on the other hand, arises from the exceptionally
high transparency of the interface between graphene and a
superconductor.

Figure 5(b) illustrates the dependence of thermal conduc-
tance on L for different values of V0 at φ = 0. For V0 = 0,
the thermal conductance exhibits an oscillatory pattern as a
function of L, where the amplitude of these oscillations is
dampened over a distance comparable to the superconducting
coherence length ξ0. Our findings reproduce the qualitative
observations described in Ref. [27]. The situation changes
dramatically when we consider the case of EF = V0 = 100�0,
where the Fermi level of the N region is located at Dirac
points, corresponding to undoped graphene. Since the density
of states vanishes at the Dirac point, the transmission through
a strip of undoped graphene occurs entirely via evanescent
(exponentially decaying) modes. For a short and wide strip
(W/L � 1), there is a large number of evanescent modes with
transmission probabilities of order unity. The transmission
probabilities of these evanescent modes are the same as those
of diffusive modes in a disordered piece of metal with the
same conductance. As pointed out in Ref. [38], this peculiar
transport characteristic can be understood as “pseudodiffusive
dynamics.” As illustrated in Fig. 5(b), the thermal conduc-
tance exhibits an exponential decay as L increases, indicating
pseudodiffusive dynamics, where the transport is not purely
diffusive but rather a combination of diffusive and ballis-
tic behavior. Understanding and controlling these dynamics
is crucial for the development of graphene-based electronic
devices.

If V0 is further increased up to 500�0, the N region can
be deemed as a square potential barrier. Many distinguishing
features can be extracted from inspecting Fig. 5(b) for V0 =
500�0. As seen, the thermal conductance κ versus L exhibits
a series of resonance peaks. The condition for these reso-
nant tunneling processes can be approximately expressed as
kL ∼ (EF − V0)L/h̄vF = nπ . Such a resonance phenomenon
is strongly dependent on the height of the potential barrier,
which can provide a distinct experimental signature of the
thermal energy’s Klein-like tunneling. One immediate ad-
vantage of this graphene-based hybrid system is the highly
efficient heat dissipation even when the interface is not perfect
so as to produce a large barrier, thus overcoming the limitation
imposed by the large barrier induced in a conventional SNS
junction due to the imperfect interface.

We again emphasize that those findings discussed above
can serve as characteristic features of DBdG quasiparticles
rather than being unique to topological ABS and Majorana
fermions discussed in Ref. [27].

B. Graphene-based SNS junction with d-wave pairing

It has been widely accepted that such high-Tc supercon-
ductors as YBa2Cu3O7−δ (YBCO) have a d-wave pairing
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symmetry. In doped graphene, d-wave symmetry has recently
been suggested to emerge from electron-electron interac-
tions, which is intimately linked to the hexagonal crystal
lattice [56]. Recently, the fabrication of graphene/YBCO
contacts and their superconducting proximity effect have
been reported [57–60]. The so-called Klein-like tunneling
of Andreev electron-hole pairs that carry superconducting
correlations from YBCO into graphene has also been ex-
perimentally observed [59]. Moreover, the role of d-wave
pairing symmetry in the Josephson current based on graphene
has been also studied, demonstrating that the current is
significantly affected by the anisotropic pairing [61,62].
Understanding and controlling the emergence of d-wave sym-
metry in graphene has the potential to unlock new possibilities
for the design of novel electronic devices. In what follows, we
are going to discuss the phase-dependent thermal transport in
GJJs with d-wave pairing.

To account for the effect of the d-wave pairing, we choose
the dx2−y2 gap which in the weak-coupling approximation
reads �±

i (θ ) = � cos(2θ ∓ 2αi ) with i = l, r. Here, αi is the
angle formed by the crystallographic a axis of the CuO2 plane
and the interface normal (i.e., x axis) as illustrated in Fig. 1. It
can be also understood as the relative orientation of the gap in
k space with respect to the interface normal. If one rotates a
d-wave superconductor on one side of the junction by an angle
of π/2, e.g., αl → αl + π/2, the junction’s characteristic is
interchanged due to the sign change of the superconducting
order parameter on the Fermi surface. Physically, it is interest-
ing to consider the case of α = αl = −αr [63,64]. By doing
so, the orientations of the order parameters on the left and
right sides are mirror-symmetric with respect to the interface
normal, such that it is possible to form zero-energy bound
states (ZESs) at the junction interface by rotating α [63–66].

Turning now to the role of d-wave pairing in thermal
transport, we first consider a short junction in the transparent
limit. In Fig. 6(a), we show the thermal conductance versus
the temperature T for various crystal misorientation angles
within the range α ∈ [0, π/4]. The phase difference between
SL and SR regions is fixed at φ = π . For comparison, the
corresponding κ (T ) for s-wave pairing is also plotted and
indicated by the black-solid curve. For T < Tc, the thermal
conductance for α = 0 shows an exponential increase versus
T similar to that of the s-wave case. However, when α is
rotated to π/8, both the magnitude and the slope of κ (T )
exhibit a remarkable enhancement. With further increasing α,
the Wiedemann-Franz law can be observed even at tempera-
tures below Tc, providing an important experimental signature
of gap nodes in d-wave superconductors. More specifically,
as α rotates from 0 to π/4, the nodal direction of d-wave
pairing gradually shifts towards the interface normal, allowing
more quasiparticles to tunnel into the gap nodes. This leads
to a significant enhancement of the thermal conductance and
reduces the impact of � on quasiparticle tunneling below the
critical temperature. Additionally, it is worth noting from the
inset of Fig. 6(a) that κ exhibits a periodic dependence on α

with a period of π/2, highlighting the importance of the angle
α in modulating the thermal conductance.

The phase dependence of the thermal conductance for
different α is illustrated in Fig. 6(b). The most striking as-
pect here is the phase shift of κ (φ) induced by rotating α.

(b)

(a)

FIG. 6. (a) Thermal conductance as a function of T/Tc for var-
ious misorientation angles of d-wave pairing (α = 0 − π/4) in the
transparent limit, where the phase difference is chosen as φ = π .
Inset shows the α-dependent thermal conductance for different φ.
(b) Phase-dependent thermal conductance κ (φ) for a series values of
α at T/Tc = 0.5.

Specifically, at φ = π , the thermal conductance undergoes
a transition from a minimum value to a peak value as α

increases from 0 to π/4. This explicitly demonstrates that the
nodal direction of the superconducting order parameter plays
a vital role in determining the phase dependence of thermal
transport. Next, we proceed to calculate the effect of barrier
potential on κ (φ). The temperature is set at T = 0.5Tc. For
α = 0, κ (φ) always exhibits a minimum at φ = π , regardless
of the increase in Z , as shown in Fig. 7(a). This behavior is
similar to that shown in Fig. 3(a) for the s-wave case. For
αl = −αr = π/4, as shown in Fig. 7(b), there is always a ther-
mal conductance peak at φ = π . This can be also observed
clearly in the periodic oscillatory behavior of κ (Z ) shown
in Figs. 7(c) and 7(d). Therefore, we conclude that for GJJs
with d-wave pairing, the tunneling barrier cannot qualitatively
change the phase dependence of thermal conductances.

To gain a deep insight into the contrast behavior of κ (φ) for
α = 0 and α = π/4, it is instructive to consider analytically
the expression of ABSs for the GJJ with d-wave pairing. For
α = 0, the ABS is given by [62]

Eb(θ, φ) = ± |� cos (2θ )|
√

1 − σn sin2 (φ/2). (7)

This expression is formally equivalent to the ABS for GJJs
with s-wave pairing, except that the gap now displays an-
gular dependence, i.e., �(θ ) = ±� cos(2θ ). Therefore, one
would expect qualitatively the same results for the thermal
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(a) (b)

(c) (d)

FIG. 7. Phase-dependent thermal conductance κ (φ) for a series values of Z at (a) α = 0 and (b) α = π/4. Comparison of κ (Z ) between
the cases of (c) α = 0 and (d) α = π/4. The temperature is fixed at T/Tc = 0.5.

conductance when comparing the d-wave case with the s-
wave case. The φ dependence of Eb for different θ , as well
as the transmission function τ (φ, E ), is plotted in Fig. 8(a),
where the barrier strength is fixed at Z = π/2. Due to the ex-
istence of energy-gap nodes in d-wave superconductors, there
are unpaired single-particles tunneling into the gap, which is
evident from the transmission function for energies within
the energy gap (E < �). In other words, the quasiparticles
have the ability to leak in and out of the Andreev bound
states (ABSs). This leakage mechanism allows for the heat
current to be carried by quasiparticles with energies below the
superconducting gap. Note also that the transmission function
for E < � is nearly independent of φ. However, the amplitude
of these transmissions is much lower than that in the case of
E > �, meaning that the impact on κ (φ) from these transmis-
sions is not significant.

For αl = −αr = π/4, the ABS is given by [61]

Eb(θ, φ) = ±|� sin (2θ )|√σn sin (φ/2). (8)

From this expression, it can be observed that there are always
a pair of ZESs at φ = 0, 2π regardless of the value of Z . These
robust ZESs originate from the sign change of the pairing
potential on the Fermi surface, namely, �i(θ+) = −�i(θ−),
which is a characteristic feature for superconductors with dxy-
wave pairing [65,66]. As seen in Fig. 8(b), the zero energies
of ABSs at φ = 0, 2π prevent the resonant tunneling, as
discussed in the previous cases at φ = π . This can be directly

responsible for the robust minimal thermal conductance at
φ = 0, 2π . Moreover, the peaks of ABSs appear exactly at
φ = π , resulting in resonance physics at φ = π , which ex-
plains the thermal conductance peak at this phase. On the
other hand, considering that the nodal direction in the α =
π/4 configuration is aligned with the interface normal, there
will more unpaired quasiparticles tunneling into the gap nodes
when compared with the case of α = 0. As a consequence, the
thermal conductance for α = π/4 is significantly enhanced
[see Fig. 6(b)].

In regards to the intermediate values of α, i.e., 0 < |α| <

π/4, we have |�i(θ+)| �= |�i(θ−)|. In this case, the actual
sign change of the pairing potential or the condition for the
formation of ZESs depends on the angle θ . More specifically,
the two pair potentials have opposite signs only within the
range of ±π/4 − |α| < θ < ±π/4 + |α|. In this range, ro-
bust ZESs can be formed at φ = 0, 2π , while they are absent
for the other incident modes. Nonetheless, when α is rotated
to approximately π/8, the ZESs become dominant among the
incident modes, thereby causing a phase shift in κ (φ). This is
why the phase dependence of thermal conductances is highly
sensitive to α.

We now turn to the case of a long SNS junction with
d-wave pairing and compare the behavior of κ (φ) for α = 0
and α = π/4. The phase-dependent thermal conductance for
a series of junction length L/ξ0 is plotted in Fig. 9. Similar
to the s-wave case, κ (φ) undergoes a phase shift with the
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(b)

(a)

FIG. 8. Transmission function τ (E , φ) of a SNS junction with
s-wave pairing at (a) α = 0 and (b) α = π/4, corresponding to
Figs. 7(a) and 7(b), respectively. White lines inside the supercon-
ducting gap indicate the energy of ABSs for various incident angles
(θ , from 0 to π/6). The other parameters are the same as those in
Fig. 4.

increase of L on the scale of ξ0. Of particular importance
is the observation that the ground states of κ (φ) for α = 0
and α = π/4 are always opposite regardless of the ratio of
L/ξ0. The experimental observation of this unique feature
may serve as a conclusive proof for the d-wave pairing and
also the best judgment about the formation of zero-energy
ABS.

Overall, we have found that the phase-coherent thermal
transport in GJJs with d-wave pairing differs significantly
from that in the s-wave case. The distinction is particularly
evident in the crystal-orientation-induced phase shift, which
can be observed not only in the thin-barrier limit but also in
long junctions.

C. Graphene-based SNS junction with p-wave pairing

In recent years, extensive research works have predicted
that different types of p-wave pairing symmetries can arise
in graphene, either intrinsically or by the proximity effect.
Uchoa et al. revealed that a novel singlet p + ip phase
could appear in the mean-field phase diagram of graphene,
featuring a gapless state with superconductivity being an
underlying ordering phenomenon [67]. Subgap states in two-
dimensional spectroscopy and the characteristic ABSs for the
px- and py-wave pairing symmetries have been studied in

FIG. 9. Phase-dependent thermal conductance κ (φ) for various
junction lengths L/ξ0 at (a) α = 0 and (b) α = π/4. The other
parameters are the same as those in Fig. 5(a).

graphene [68]. Recently, the p-wave superconductivity was
probed in single-layer graphene placed on the electron-doped
cuprate superconductor Pr2−xCexCuO4 by using scanning tun-
neling spectroscopy [69]. Motivated by these experimental
breakthroughs, numerous theoretical anomalous charge trans-
port behaviors in graphene-based p-wave superconducting
junctions have been reported in recent years [35,46]. In this
section, we are going to determine the role of the graphene-
based p-wave pairing in the heat transport. Here, we examine
three different scenarios involving the junctions between two
superconductors with different pairing symmetries, namely:
(i) px-px junction, (ii) py-py junction, and (iii) s-px junction.
We assume that the quantization axis of spin (the direction of
the d vector) is along the c axis and parallel to the z direction,
such that the spin-triplet pair potentials can be written as
�(θ ) = � cos θ for px-wave pairing and �(θ ) = � sin θ for
py-wave pairing [70,71].

We now study the phase dependence of thermal conduc-
tance on the p-wave pairing, as shown in Fig. 10. For the px-px

junction, one can see from Fig. 10(a) that the magnitude of the
oscillation with respect to φ remains nearly unchanged upon
increasing Z . The situation changes, however, in the case of
py-wave pairing, as shown in Fig. 10(b). It is observed that
the oscillatory characteristics of κ (φ) gradually fade out as Z
increases from 0 to π/2. Particularly, the thermal conductance
appears to be almost independent of φ when Z = π/2. The
physical mechanism behind this is also understood by the
ABS spectrum shown in Fig. 11, where the barrier strength
is fixed at Z = π/2.
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(a)

(b)

   px- px

   py- py

FIG. 10. Phase-dependent thermal conductance κ (φ) for a series
values of Z in the case of (a) px-px junction and (b) py-py junction.
The temperature is fixed at T/Tc = 0.5.

The ABS for the px-wave pairing symmetry featuring ZES
can be written generally as [61,71]

Eb(θ, φ) = ±|� cos θ |√σn cos (φ/2). (9)

We note that there are always a pair of ZESs located at
φ = π regardless of the change in θ and Z , as shown in
Fig. 11(a), which also arises from the sign change of the pair
potential on the Fermi surface. These robust ZESs at φ = π

effectively prevent resonant tunneling, leading to the thermal
conductance consistently exhibiting a minimum at φ = π for
any incidence and barrier strength. In contrast to the case of
dxy pairing, the nodal direction for px pairing parallels to the
interface, making it difficult for quasiparticles to tunnel into
the gap nodes. This explains why the amplitude of subgap
transmissions is nearly negligible, as indicated in Fig. 11(a).
But this is not the case for the py-py junction.

The ABS for GJJs with py-wave pairing can be expressed
as [61,71]

Eb(θ, φ) = ±|� sin θ |
√

1 − σn sin2 (φ/2), (10)

Since the nodal direction for py-wave pairing is along the
interface normal, a large amount of unpaired single particles
could directly tunnel into the gap nodes that are phase-
independent. In addition, for small angles of incidence, the
corresponding energy levels of ABSs are far from the gap
edge � as seen in Fig. 11(b), which in turn gives rise to
a large enhancement for subgap transmissions. On the other
hand, one can see that the robust ZESs are absent unlike the
px-wave case. It follows that the effect of ABSs on the phase

      px- px  juntion

      py- py    junction 

(a)

(b)

FIG. 11. Transmission function τ (E , φ) for (a) px-px junction
and (b) py-py junction, corresponding to Figs. 10(a) and 10(b), re-
spectively. White lines inside the superconducting gap indicate the
energy of ABSs for various incident angles (θ , from 0 to π/6). The
other parameters are the same as those in Fig. 4.

dependence of thermal conductance is diminished with the
increase of Z , thereby causing the suppression of oscillatory
behavior in κ (φ).

Next, we consider a junction between a singlet s-wave
and a triplet px-wave superconductors, namely, the graphene-
based s-px junction. The junction geometry remains the same
as shown in Fig. 1, with SL representing a conventional s-
wave superconductor and SR representing a triplet px-wave
superconductor. We choose the spin quantization axis z along
the polarization vector n of the triplet superconductor. As
shown in Fig. 12(a), the periodicity of κ (φ) changes from
being 2π periodic to being π periodic, with minima occur-
ring at φ = π/2. This π periodic behavior, as well as the
amplitude of oscillation, remains robust against the interface
barrier. However, it is expected that the magnitude of κ (φ)
will decrease when the junction transparency is reduced.

Physically, this change of periodicity can be traced back to
the nontrivial spin structures of Cooper pairs. Considering the
spin projection σ on the z axis is a good quantum number,
the pairing process occurs between electrons with opposite
spins in both triplet and singlet superconductors. However, the
pairing potential has the same sign for σ and σ̄ in the triplet
superconductor, while it has opposite signs in the singlet su-
perconductor. In this case, the Cooper pairs on the left are
in an Sz = 0 state and have a corresponding spin structure of
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junction

(a)

(b)

s

FIG. 12. (a) Phase-dependent thermal conductance κ (φ) for a
series values of Z for the s-px junction. (b) The corresponding
transmission function τ (E , φ) for Z = π/2. White lines inside the
superconducting gap indicate the energy of ABSs at θ = 0, where
the solid and dashed lines correspond to E+ and E−, respectively.
The temperature is fixed at T/Tc = 0.5.

↑↓ − ↓↑. On the other hand, the Cooper pairs on the right are
also in an Sz = 0 state but with a corresponding spin structure
of ↑↓ + ↓↑. Hence, spin conservation requires the coherent
transfer of Cooper pairs, which leads to a reduced periodicity
of the thermal conductance.

The change in periodicity is also reflected in the energy
levels of the ABSs shown in Fig. 12(b). In this junction ge-
ometry, the phase difference across the Josephson junction is
φ for quasiparticles with σ =↑, and φ + π for σ =↓. Hence,
the energy levels of the ABSs can be determined for each σ :

E±
bσ (θ, φ) = σ sgn(sinφ)�

√
1 ±

√
1 − σn sin2(φ/2)

2
, (11)

giving rise to a π -periodic spectrum. Furthermore, we have
found that in the case of normal incidence (i.e., θ = 0), the
two branches of ABSs, denoted as E+

bσ and E−
bσ , always in-

tersect at φ = π/2. However, a gap will open between them
as θ increases, which is not shown in the figure. Actually,
the phase dependence of the thermal conductance is primarily
determined by E+

bσ as it remains close to the edge of the energy
gap. It is evident that the lowest energy of E+

bσ always occurs
at φ = π/2. As explained earlier, this effectively prevents
resonant transmission above �, leading to a minimum thermal
conductance at φ = π/2.

Such a graphene-based s-px junction provides a platform
to explore the interplay between different superconducting

orders and offers a unique avenue for studying novel phenom-
ena in condensed-matter physics.

IV. CONCLUSIONS

In this paper, we studied theoretically the phase-coherent
heat transport in graphene-based SNS junctions for various
types of the pairing symmetry in SL (SR). The main results
are as follows: (i) For s-wave pairing, κ (φ) always exhibits
a minimal at φ = π regardless of the height of the barrier,
which is in contrast with the nonrelativistic case. (ii) For
d-wave pairing, by rotating the crystal orientation of d-wave
superconductors, κ (φ) could undergo a phase shift arising
from the formation of the robust zero-energy ABSs at φ = 0,
2π . This distinctive behavior cannot be qualitatively changed
by the tunneling barrier or the junction length. (iii) With the
increase of the tunneling barrier, the value of κ (φ) for the case
of py-pairing tends to become nearly independent of φ due to
the large number of subgap transmissions of unpaired single
particles. (iv) For the s-px junction, the periodicity of κ (φ)
changes from 2π to π , while the minima occurs at φ = π/2.

Those predicted effects are useful for detecting the phase-
coherent thermal current in an actual experiment in the
future. Our results are also beneficial for the application
of graphene in superconducting quantum devices, particu-
larly in the graphene-based Josephson heat interferometer.
On the other hand, the phase-dependent thermal conduc-
tance contains clear signatures of the existence of ABSs,
enabling experimental investigation of the pairing symmetry
in graphene and opening up the possibility of exploring exotic
superconductivity in two-dimensional materials through heat
transport.

APPENDIX: SOLUTION FOR ANDREEV BOUND STATES

When considering the energy range E < �(θ ) below the
excitation gap, the bound states are discrete in the normal
region. Such discrete Andreev levels can be written quite
generally as

Eb(θ, φ) = ±�(θ )
√

1 − σnsin2(φ/2). (A1)

Indeed, this simplified formula obtained under the condition
of L � ξ0 and EF � �0. Specifically, L � ξ0 means that the
length L of the normal region is small relative to the super-
conducting coherence length, while EF � �0 is required by
the mean-field approximation in SCs, or equivalently, that the
superconducting coherence length ξ = h̄vF /�0 is large com-
pared with the Fermi wavelength λF in the superconducting
region.

Now we perform necessary calculation details regarding
the boundary conditions and the solution for ABSs. By match-
ing the wave functions, the boundary conditions at x = 0 and
x = L are respectively given by

̃L|x=0− = ̃N|x=0+ , ̃N|x=L− = ̃R|x=L+ . (A2)

where

̃L = re ψe−
l + rh ψh+

l , ̃R = te ψe+
r + th ψh−

r ,

̃N = a ψe+
n + b ψe−

n + c ψh+
n + d ψh−

n . (A3)
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Here, re (rh) and te (th) are respectively the probability am-
plitudes of left- and right-moving DBdG quasiparticles in
SL and SR regions. In the N region, a(b) and c(d ) represent
the probability amplitudes of right-moving (left-moving) elec-
trons or holes. Eliminating these coefficients, one will get the
homogeneous linear equations of f1, f2, f3, . . . , f8, which can
be organized neatly into a matrix equation defined as Ay = 0,
where the 8 × 8 matrix A is a function of E , φ, and θ , and y
is a column vector containing eight unknown coefficients, i.e.,

y = [re, rh, a, b, c, d, te, th]T . By solving this matrix equation,
the ABSs can be obtained in the form of a relation between
E and φ at a given θ , i.e., the dispersion Eb(θ, φ) due to the
coherent subgap processes. The 8 × 8 matrix A takes the form

A =
(

A1 A2

A3 A4

)
. (A4)

Based on Eqs. (A2) and (A3), the analytical expressions for
the matrices Aj can be written as follows:

A1 =

⎛⎜⎜⎜⎜⎜⎜⎝
ue

l

ue
l eiθ−

e

ve
l e−iφ−

l

ve
l eiθ−

e −iφ−
l

vh
l

vh
l eiθ+

h

uh
l e−iφ+

l

uh
l eiθ+

h −iφ+
l

−1

−eiγe

0

0

−1

e−iγe

0

0

⎞⎟⎟⎟⎟⎟⎟⎠, (A5)

A2 =

⎛⎜⎜⎜⎜⎜⎝
0

0

−1

eiγh

0

0

−1

−e−iγh

0

0

0

0

0

0

0

0

⎞⎟⎟⎟⎟⎟⎠, (A6)

A3 =

⎛⎜⎜⎜⎜⎜⎝
0

0

0

0

0

0

0

0

eike
nL

eiγe+ike
nL

0

0

e−ike
nL

−e−iγe−ike
nL

0

0

⎞⎟⎟⎟⎟⎟⎠, (A7)

A4 =

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

eikh
n L

−eiγh+ikh
n L

0

0

e−ikh
n L

e−iγh−ikh
n L

ue
reike

r Lcosθ+
e

ue
reiθ+

e +ike
r Lcosθ+

e

ve
r e−iφ+

r +ike
r Lcosθ+

e

ve
r eiθ+

e −iφ+
r +ike

r Lcosθ+
e

vh
r eikh

r Lcosθ−
h

vh
r eiθ−

e +ikh
r Lcosθ−

h

uh
r e−iφ−

r +ikh
r Lcosθ−

h

uh
r eiθ−

h −iφ−
r +ikh

r Lcosθ−
h

⎞⎟⎟⎟⎟⎟⎟⎠. (A8)

Note that the definition of each element in the above matrix can be found in Sec. II. Next, we intend to elaborate on some
approximate treatments used in solving the ABS.

First, the mean-field restriction that the Fermi energy EF in the superconducting regions must be much larger than the
superconducting gap, i.e., EF � �0. In our work, the Fermi energy in both SL and SR regions is assumed to be EF = 100�0,
which is a typical Fermi energy in doped graphene. It is necessary to point out that the linear dispersion approximation in
graphene would be invalid when the Fermi energy is too large. Although EF = 100�0 is not an infinite value, this Fermi energy
is large enough to satisfy the mean-field requirement, such that we can neglect the difference of the wave vectors of ELQ and
HLQ in superconducting regions. In other words, we can approximate ke

i = kh
i ≡ kS and θe = θh ≡ θS .

Second, the analytical expression of the ABSs used here is only reliable in the short-junction regime, i.e., L � ξ . In terms of
energy scales, this condition requires �0 � h̄vF /L. In this case, the elements of ke(h)

n (±E ) and γe(h)(±E ) change significantly
if E is changed by at least h̄vF /L. Then we may thus substitute ke(h)

n (0) and γe(h)(0) into the matrix A.
By using the two approximations mentioned above, we obtain the expression for the ABSs in terms of the normal-state

transmission probability σn. This expression has the usual form for a short SNS junction, as shown in Eq. (A1). It is important
to note that without these approximations, the analytical solution of ABSs would be excessively complex and not suitable for
analysis.

However, the ABSs can still be evaluated numerically without any approximation. To find a nontrivial solution for the
eigenvalue, it is necessary for the determinant of the matrix A to be zero, i.e., (det A) = 0. We have verified that the numerical
results closely match the analytical solution obtained using the approximations. The simplified formulas of the ABSs are
provided for the convenience of analysis in the main text, but they do not qualitatively affect our main results.
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