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Theory of polarized photoluminescence of indirect band gap excitons in type-I quantum dots
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In this paper, we theoretically investigate the optical orientation and alignment of excitons in quantum dots
with weak electron-hole exchange interaction and long exciton radiative lifetimes. This particular regime is
realized in semiconductor heterosystems where excitons are indirect in the r or k space. The main role in the fine
structure of excitonic levels in these systems is played by the hyperfine interaction of the electron in the confined
exciton and fluctuations of the Overhauser field. Along with it, the effects of nonradiative recombination and
exchange interaction are considered. We start with the model of vanishing exchange interaction and nonradiative
exciton recombination and then take them into consideration in addition to the strong Overhauser field. In the
nano-objects under study, the polarization properties of the resonant photoluminescence are shown to vary with
the external magnetic field in a completely different way as compared with the behavior of conventional quantum
dot structures.
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I. INTRODUCTION

Quantum dots were discovered for the first time in a glass
matrix by Ekimov and Onushchenko in 1981 [1], in colloids
by Rossetti, Nakahara, and Brus in 1983 [2], and in an ordered
semiconductor matrix by Goldstein et al. in 1985 [3]. Since
then, quantum dots have become one of the central topics in
nanotechnology; see, e.g., the reviews in Refs. [4–6] and the
books in Refs. [7,8].

Excitons play a dominant role in the optical properties of
undoped and weakly doped low-dimensional structures. The
fine structure of excitonic levels is crucial for understand-
ing and manipulating these properties. The fine structure of
the exciton ground state in semiconductor quantum dots is
determined by the splitting of four sublevels formed by the
twofold degenerate electron and hole states [9,10]. The nature
of the splitting and the oscillator strengths of optical transi-
tions depend on the type of nanostructure. It is convenient to
denote the four possible types of quantum dots as d-r–d-k,
ind-r–d-k, d-r–ind-k and ind-r–ind-k, where “d” and “ind”
stand for direct and indirect and r and k denote the real and
reciprocal spaces. Quantum dots of the d-r–d-k type were the
first to be fabricated. Examples include nanocrystal CuCl [1]
and CdS [2], as well as InGaAs/GaAs quantum dots fabri-
cated by Stranski-Krastanov growth [4]. The polarized exciton
luminescence of this type of quantum dots is well studied
[11–15].

The ind-r–d-k quantum dots are composed of two direct
band gap semiconductors with the bottom of the conduc-
tion band and top of the valence band being located in
different materials. As a result, the electron and hole wave
functions are concentrated in different regions of the r
space, but in the same region of the k space. Examples
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of such nanostructures are GaSb/GaAs quantum dots [16]
and CdTe/CdSe and CdSe/ZnTe “core-shell” quantum dots
[17,18], as well as transition metal dichalcogenide heter-
obilayers [19–22] and perovskite nanocrystals [23]. The
InAlAs/AlGaAs and Ga(As,P)/GaP heterosystems represent
ind-r–ind-k-type quantum dots [24,25]; this role can also be
played by localized excitons in the GaAs/AlAs superlattice
with thin GaAs layers. In such a multilayer structure, an
electron in the exciton is localized within the AlAs layer in
the X valley of the Brillouin zone, while the hole is localized
in the GaAs layer at the center of the Brillouin zone; this is
the so-called �-X exciton [26–29].

The (In,Al)As/AlAs heteropair represents quantum dots of
the fourth type, namely d-r–ind-k [30–32]. Due to the high
AlAs potential barrier an electron and a hole are confined
within the nanovolume of the (In,Al)As solid solution and
also form a �-X exciton. Less studied examples of d-r–ind-k
quantum dots are provided by GaAs/GaP, InSb/AlAs, and
GaSb/AlGaSb heteropairs [33–35] and also effectively by
width fluctuations of atomically thin (In,Al)(Sb,As)/AlAs and
(Ga,Al)(Sb,As)/AlAs quantum wells [36,37].

Under resonant optical excitation of quantum dots, the
exciton spin dynamics is determined by the relation be-
tween the following parameters: the exchange interaction
energy δ, the radiative and nonradiative decay rates h̄/τr

and h̄/τnr, the interaction energy εN of the electron with a
fluctuation of the nuclear field BN , and the energy εB of the
Zeeman interaction with an external magnetic field B. In ordi-
nary d-r–d-k quantum dots, the exchange interaction exceeds
the other parameters, and the role of nuclei is insignificant
for neutral excitons. By contrast, for charged quantum dots,
the hyperfine interaction is the source of the spin relaxation
both in the ground [38–40] and trion states [41,42]. In the
GaAs/AlAs superlattice, a localized exciton encompasses a
large number of nuclear spins N , and hence the hyperfine
interaction εN ∝ N−1/2 is negligible.
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In this paper, we theoretically study the optical orientation
and alignment of excitons in quantum dots that are indirect
in the r or k space. In this case, the reduced overlap of the
electron and hole wave functions in the corresponding space
suppresses the radiative recombination and the (long-range)
exchange interaction making valid the following condition:

εN � δ,
h̄

τr
,

h̄

τnr
. (1)

To be specific, we focus on (In,Al)As/AlAs quantum dots,
which are the most studied; the generalization for the other
systems is straightforward. Our aim is to examine the role
of the three small parameters on the right-hand side of the
inequalities (1) in polarized exciton photoluminescence (PL)
in an external magnetic field B.

This paper is structured as follows. In Sec. II, the states
of the exciton quadruplet are introduced, their symmetry is
analyzed for the point group D2d , and the relationship be-
tween the polarizations of the secondary and initial radiation
is found in the case of strong splitting between sublevels of
the quadruplet. In Sec. III, the simplest model is developed
that neglects both the exciton nonradiative recombination and
the exchange interaction. In this model, we calculate magnetic
field dependences of the degrees of circular and linear polar-
ization of luminescence under polarized photoexcitation. The
obtained results serve as a basis for the analysis of the roles of
the nonradiative recombination in Sec. IV and the exchange
interaction in Sec. V. Section VI discusses and summarizes
the obtained results.

II. EXCITON QUADRUPLET

To calculate the PL polarization dependences on the pa-
rameters of the system, it is necessary to adopt a certain point
symmetry of the quantum dot. For definiteness, we choose the
symmetry of the point group D2d . In this case, the electronic
Bloch states in the conduction band,

ψ
(e)
1
2

= αS, ψ
(e)
− 1

2

= βS, (2)

and hole states in the valence band,

ψ
(h)
1
2

= −β
X − iY√

2
, ψ

(h)
− 1

2

= α
X + iY√

2
, (3)

transform under the operations of the group D2d according
to the equivalent spinor representations �6. Here, X ,Y are
the orbital Bloch functions at the center of the Brillouin
zone which transform in D2d as the coordinates x ‖ [100]
and y ‖ [010]. The electron orbital wave function S mainly
belongs to one of the X -valley states, which are Kramers
degenerate. The optical properties are determined by its weak
and spin-independent mixing with the s-like (�1) orbital of the
conduction band at the center of the Brillouin zone [43]. For
the ground level of the exciton quadruplet in the quantum dot,
we choose the basis of four states 	n (n = 1–4) in the form of
the following products:

	1 = ψ
(e)
1
2

ψ
(h)
− 1

2

, 	2 = ψ
(e)
1
2

ψ
(h)
1
2

,

	3 = ψ
(e)
− 1

2

ψ
(h)
− 1

2

, 	4 = ψ
(e)
− 1

2

ψ
(h)
1
2

. (4)

The two-particle optical excitation of an electron ψ (e)
s and a

hole ψ
(h)
s′ is described by the matrix element for the transition

from the valence band state Kψ
(h)
s′ to the conduction band state

ψ (e)
s , where K is the time-reversal operator:

Kα = β, Kβ = −α, K(X ± iY ) = X ∓ iY . (5)

According to Eqs. (2) and (3), due to the spin conservation, the
optical excitation of the states 	1, 	4 is forbidden (they are
dark), while the states 	2 and 	3 are bright and characterized
by the optical matrix elements [7]

M (abs)
2 (e(0) ) = M0

(
e(0)

x + ie(0)
y

)
,

M (abs)
3 (e(0) ) = M0

(
e(0)

x − ie(0)
y

)
, (6)

where e(0) is the unit polarization vector of the exciting light.
The coefficient M0 describes the zero-phonon excitation of
an electron-hole X -� pair; it can be considered real valued.
For the nonresonant excitation, the description remains valid
provided the spin relaxation during the energy relaxation is
negligible. The matrix elements for emission of a photon of
the polarization e are related to M (abs) by the relation

M (em)
n (e) ∝ M (abs)∗

n (e) (n = 2, 3).

States 1 and 4 are optically dipole inactive [7].
It is useful, instead of basis states 2 and 3, to consider their

linear combinations

	x = 1√
2

(	2 + 	3), 	y = i√
2

(	2 − 	3), (7)

which are optically active in the polarizations e(0), e ‖ x and
e(0), e ‖ y, respectively.

Below we consider the geometry of an experiment where
the exciting light and secondary radiation propagate along the
structure growth axis z and the light polarization vectors are
lateral,

e(0) = (
e(0)

x , e(0)
y , 0

)
, e = (ex, ey, 0). (8)

Then the components of the polarization density matrices of
the incident and emitted light, d (0)

α,β and dα,β , respectively, are
nonzero for α, β = x, y only.

Under the combined action of nuclear field fluctuations, the
electron-hole exchange interaction, and an external magnetic
field, the exciton level splits into four sublevels ε j ( j = 1–4).
Let us decompose the exciton eigenstates 	 ( j) into the basis
states 	1, 	x, 	y, 	4:

	 ( j) =
∑

m=1,x,y,4

C( j)
m 	m. (9)

The coefficients C( j)
m form a unitary matrix and satisfy the

identities∑
m

C( j)
m C( j′ )∗

m = δ j j′ ,
∑

j

C( j)
m C( j)∗

m′ = δmm′ . (10)

We begin the description of polarized PL by considering
the limit where the energy splittings between levels exceed by
far their natural widths,

|Ej − Ej′ | � h̄

τ j
,

h̄

τ j′
( j′ 	= j), (11)
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with τ j being the exciton lifetime in the state j. Then the
interference of quantum states is negligible, and one can use
the level populations f j instead of the exciton spin-density
matrix. In this case, the polarization matrix of the emitted light
has the form

dαβ =
∑

j

d ( j)
αβ ∝ M2

0

∑
j

C( j)∗
α C( j)

β f j, (12)

while the values of f j are found from

f j ∝ τ j

∣∣C( j)∗
x e(0)

x + C( j)∗
y e(0)

y

∣∣2

= τ j
[∣∣C( j)

x

∣∣2∣∣e(0)
x

∣∣2 + ∣∣C( j)
y

∣∣2∣∣e(0)
y

∣∣2

+ 2 Re
(
C( j)∗

x C( j)
y e(0)

x e(0)∗
y

)]
. (13)

The polarization-independent prefactors are omitted in
Eqs. (12) and (13). The inverse lifetimes of the excitonic
sublevels contain two terms:

1

τ j
= 1

τr

(∣∣C( j)
x

∣∣2 + ∣∣C( j)
y

∣∣2
)

+ 1

τnr
. (14)

They are determined by the radiative lifetime τr of the states
(7) and the nonradiative lifetime τnr, which is independent of
the index j.

The normalized Stokes parameters of the incident light are
related with the polarization tensor d (0)

αβ by

P(0)
l = d (0)

xx − d (0)
yy

d (0)
xx + d (0)

yy

, P(0)
l ′ = 2 Re

{
d (0)

xy

}
d (0)

xx + d (0)
yy

,

P(0)
c = −2 Im

{
d (0)

xy

}
d (0)

xx + d (0)
yy

, (15)

where the components d (0)
αβ are proportional to the products

e(0)
α e(0)∗

β [44]. By analogy with Eq. (15), it is convenient to
introduce the combinations

p( j)
l =

∣∣C( j)
x

∣∣2 − ∣∣C( j)
y

∣∣2∣∣C( j)
x

∣∣2 + ∣∣C( j)
y

∣∣2 , p( j)
l ′ = 2 Re

{
C( j)

x C( j)∗
y

}
∣∣C( j)

x

∣∣2 + ∣∣C( j)
y

∣∣2 ,

p( j)
c = − 2 Im

{
C( j)

x C( j)∗
y

}
∣∣C( j)

x

∣∣2 + ∣∣C( j)
y

∣∣2 . (16)

Expressing C( j)∗
α C( j)

β and e(0)
α e(0)∗

β in Eq. (13) through p( j) and

P(0)
k , we obtain

f j ∝ τ j

⎛
⎝1 +

∑
k=l,l ′,c

p( j)
k P(0)

k

⎞
⎠(∣∣C( j)

x

∣∣2 + ∣∣C( j)
y

∣∣2)
. (17)

Note that here we omit the factor d (0)
xx + d (0)

yy , which is po-
larization independent and proportional to the initial light
intensity.

Generally, the relation between the Stokes parameters of
the secondary radiation Pk and the parameters P(0)

k′ can be
written as

Pk =
∑

k′=l,l ′,c


kk′P(0)
k′ . (18)

Neglecting nonradiative recombination processes (τnr/τr →
∞), the PL intensity is independent of the polarization of the

exciting light, and the matrix 
̂ is given by


kk′ = 1

2

4∑
j=1

(∣∣C( j)
x

∣∣2 + ∣∣C( j)
y

∣∣2)
p( j)

k p( j)
k′ . (19)

For excitons with large exchange splitting between 	1,4

and 	x,y pairs of states [see Eqs. (4) and (7)], the mixing
between these pairs can be neglected, and it suffices for the
calculation of the PL polarization to consider only the ra-
diative doublet (7) [7,11]. In this limit, (i) the summation
in Eq. (19) should be performed only over the two radiative
states j = 1, 2, (ii) the sum |C( j)

x |2 + |C( j)
y |2 becomes equal to

unity, and (iii) p(1)
k p(1)

k′ = p(2)
k p(2)

k′ .

III. NEGLECTING THE EXCHANGE INTERACTION
AND NONRADIATIVE RECOMBINATION

In this section, we consider only the Zeeman interaction
of an electron and a hole with an external magnetic field and
the hyperfine interaction of an electron with the host lattice
nuclei. Then the exciton Hamiltonian takes the form

H = h̄

2

[(
�e

L + �N
) · σe + �h

L · σh
]
. (20)

Here, σe and σh are the electron and hole vectors of Pauli
matrices;

�e
L = μB

h̄
ĝeB, �h

L = μB

h̄
ĝhB

are the electron and hole spin precession frequencies in the
magnetic field B with ĝe and ĝh being the tensors of the g
factors; μB is the Bohr magneton; and �N is the electron
spin precession frequency in the Overhauser field. The hole
hyperfine interaction is suppressed because the hole Bloch
functions X and Y vanish at the nuclear sites. So we neglect
it, assuming that the corresponding hole spin precession fre-
quency is smaller than the inverse exciton radiative lifetime.
In practice, this assumption may be violated, which calls
for a separate study. We also neglect phonon-assisted spin
relaxation. The D2d symmetry allows for the anisotropy of the
hole g factor, which in the chosen basis has a simple form:
gh,zz ≡ g‖

h, gh,xx = gh,yy ≡ g⊥
h , and the other components are

zero. Because of the weak spin-orbit coupling in X valleys,
we neglect the anisotropy of the electron g factor and set
ge,αβ = geδαβ with α, β = x, y, z, δαβ being the Kronecker
delta and ge ≈ 2.

The nuclear spin dynamics typically takes place at the time
scale of 0.1 ms [45]. This may be comparable to the lifetime
of dark excitons in (In,Al)As/AlAs quantum dots [46], which
may lead to peculiar features in the optical properties. How-
ever, we neglect the nuclear spin dynamics and assume �N

to be “frozen” [38]. The electron intravalley hyperfine inter-
action can be anisotropic [47], but we neglect the anisotropy
for simplicity as well as the intervalley hyperfine interaction
[48]. As a result, the distribution function of the electron spin
precession frequencies takes the form [45]

F (�N ) =
(√

2

π
T ∗

2

)3

e−2(�N T ∗
2 )2

, (21)
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where the parameter T ∗
2 characterizes the dispersion

〈
�2

N

〉 =
∫

F (�N )�2
N d�N = 3

4

1

T ∗2
2

, (22)

with d�N = d�N,xd�N,yd�N,z. Additionally, the parameter
T ∗

2 is a measure of the electron spin dephasing time.
According to the conditions (1), the electron spin pre-

cession with the frequency �N is faster than the exciton
recombination rate [49,50]. For this reason, the direction of
�e = �e

L + �N fixes the quantization axis for the electron
spin, and the electron eigenstates are

ϕ
(e)
1
2

= e−iϕ/2 cos
θ

2
ψ

(e)
1
2

+ eiϕ/2 sin
θ

2
ψ

(e)
− 1

2

,

ϕ
(e)
− 1

2

= −e−iϕ/2 sin
θ

2
ψ

(e)
1
2

+ eiϕ/2 cos
θ

2
ψ

(e)
− 1

2

, (23)

where θ and ϕ are the polar and azimuthal angles of �e. It
is convenient to use the exciton spin-density matrix ρ̂ in the
basis � jm = ϕ

(e)
j ψ (h)

m ( j, m = ±1/2), instead of the basis (4).

For zero exchange interaction, the matrix ρ̂ is block diagonal
in the electron spin subspace:

ρ j′m′, jm = δ j′ jρ
( j)
m′,m. (24)

The hole 2 × 2 spin-density matrix can be conveniently pre-
sented in the form

ρ̂ ( j) =
[

N ( j)

2 + J ( j)
z J ( j)

x − iJ ( j)
y

J ( j)
x + iJ ( j)

y
N ( j)

2 − J ( j)
z

]
, (25)

where N ( j) is the number of excitons with the electron spin
j = ±1/2 and J ( j) is the quantum statistical average of the
hole spin for the corresponding value of j and can take arbi-
trary values between −1/2 and 1/2.

We consider resonant exciton excitation with the rate G
and take into account a single decay channel in the system,
namely, the radiative exciton recombination with the time τr

defined in Eq. (14). In contrast to the previous section, the
product �h

Lτr can be arbitrary. The kinetic equations for N (1/2)

and J (1/2) take the form

dN ( 1
2 )

dt
= G

1 − P(0)
c cos θ

2
− 1

τr

(
N ( 1

2 )

2
+ J

( 1
2 )

z cos θ

)
, (26a)

dJ
( 1

2 )
z

dt
= �h

L,xJ
( 1

2 )
y − �h

L,yJ
( 1

2 )
x + G

4

(−P(0)
c + cos θ

) − 1

τr

⎛
⎝J

( 1
2 )

z

2
+ N ( 1

2 )

4
cos θ

⎞
⎠, (26b)

dJ
( 1

2 )
x

dt
= �h

L,yJ
( 1

2 )
z − �h

L,zJ
( 1

2 )
y + G

4
sin θ

(
P(0)

l cos ϕ − P(0)
l ′ sin ϕ

) − J
( 1

2 )
x

2τr
, (26c)

dJ
( 1

2 )
y

dt
= �h

L,zJ
( 1

2 )
x − �h

L,xJ
( 1

2 )
z − G

4
sin θ

(
P(0)

l sin ϕ + P(0)
l ′ cos ϕ

) − J
( 1

2 )
y

2τr
, (26d)

with P(0)
k (k = l, l ′, c) being the Stokes parameters of the incident light, Eq. (15). The generation terms proportional to G are

derived taking into account that the wave function excited by the coherent light has the form 	 (0) = e(0)
x 	x + e(0)

y 	y. Under the
continuous excitation, the time derivatives in Eq. (26) vanish, and the steady state is established, which allows one to solve the
equations and find the time-independent variables N (1/2) and J (1/2)

α .
The intensities of circularly and linearly polarized PL in the z direction read

I
( 1

2 )
+ = N ( 1

2 ) − 2J
( 1

2 )
z

2τr
(1 − cos θ ), I

( 1
2 )

− = N ( 1
2 ) + 2J

( 1
2 )

z

2τr
(1 + cos θ ), (27a)

I
( 1

2 )
x = 1

τr

[
N ( 1

2 )

2
+ J

( 1
2 )

z cos θ + sin θ
(

J
( 1

2 )
x cos ϕ − J

( 1
2 )

y sin ϕ
)]

, (27b)

I
( 1

2 )
y = 1

τr

[
N ( 1

2 )

2
+ J

( 1
2 )

z cos θ − sin θ
(

J
( 1

2 )
x cos ϕ − J

( 1
2 )

y sin ϕ
)]

,

I
( 1

2 )
x′ = 1

τr

[
N ( 1

2 )

2
+ J

( 1
2 )

z cos θ − sin θ
(

J
( 1

2 )
x sin ϕ + J

( 1
2 )

y cos ϕ
)]

,

I
( 1

2 )
y′ = 1

τr

[
N ( 1

2 )

2
+ J

( 1
2 )

z cos θ + sin θ
(

J
( 1

2 )
x sin ϕ + J

( 1
2 )

y cos ϕ
)]

. (27c)

Equations for N (−1/2), J (−1/2) and the corresponding intensities have the same form as Eqs. (26) and (27), but with the
replacement of cos θ and sin θ with − cos θ and − sin θ .
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A. Longitudinal magnetic field (Faraday geometry)

In the longitudinal magnetic field, the substitution of the
solution of Eq. (26) into Eq. (27) yields


̂ =

⎛
⎜⎜⎜⎝

sin2 θ

1+(2�h
L,zτr )2

2�h
L,zτr sin2 θ

1+(2�h
L,zτr )2 0

− 2�h
L,zτr sin2 θ

1+(2�h
L,zτr )2

sin2 θ

1+(2�h
L,zτr )2 0

0 0 1

⎞
⎟⎟⎟⎠. (28)

The multiplier 2 before �h
L,zτr reflects the fact that for the

fast hole spin precession the bright excitons are equally mixed
with the dark ones. This expression should be averaged over
the random Overhauser fields as follows:

〈
̂〉 =
∫


̂F (�N )d�N . (29)

The integration can be readily performed using the equa-
tion [51,52]

〈sin2 θ〉 = 1

2
(
�e

LT ∗
2

)2

[
1 − 1√

2�e
LT ∗

2

D
(√

2�e
LT ∗

2

)]

≈ 2

3

1

1 + (
�e

LT ∗
2

)2 , (30)

where D(x) = exp(−x2)
∫ x

0 exp(y2)dy is the Dawson integral.
The approximation reproduces the exact function up to 4%.

In the realistic case of �e
LT ∗

2 � �h
Lτr or geT ∗

2 � g‖
hτr (we

remind the reader that 1/�N ∼ T ∗
2 � τr), we obtain from

Eqs. (28)–(30)

〈
̂〉 =

⎛
⎜⎜⎜⎝

2/3
1+(2�h

L,zτr )2

(4/3)�h
L,zτr

1+(2�h
L,zτr )2 0

− (4/3)�h
L,zτr

1+(2�h
L,zτr )2

2/3
1+(2�h

L,zτr )2 0

0 0 1

⎞
⎟⎟⎟⎠. (31)

The two different nontrivial components of this matrix are
shown in Fig. 1(a). This nonstandard formalism was intro-
duced in Ref. [32], and it is illustrated in the inset in Fig. 1(a).
In the illustration we show the case of electron spin parallel
to �e

L, so it makes an angle θ with the z axis. The electron
spin is fixed, and the exciton spin dynamics is governed by the
precession of the hole spin J (1/2) (in the subspace of the given
electron spin direction) with the frequency �h

L. In addition,
one has to consider separately the dynamics of J (−1/2) for the
electron spin antiparallel to �e

L.

B. Transverse magnetic field (Voigt geometry)

In the transverse magnetic field, the nonzero components
of the hole spin precession frequency �h

L are �h
L,x = �h

L cos α

and �h
L,y = �h

L sin α, where α is the angle between �h
L and the

x axis. Then we obtain from Eqs. (26) and (27)


̂ =
⎛
⎝ sin2 θ cos2(ϕ + α) − 1

2 sin2 θ sin(2ϕ + 2α) 0
− 1

2 sin2 θ sin(2ϕ + 2α) sin2 θ sin2(ϕ + α) 0
0 0 cos2 θ

⎞
⎠

+ sin4 θ

sin2 θ + (
2�h

Lτr
)2

⎛
⎝ sin2(ϕ + α) 1

2 sin(2ϕ + 2α) 0
1
2 sin(2ϕ + 2α) cos2(ϕ + α) 0

0 0 1

⎞
⎠. (32)

Averaging the matrix 
̂ in the same way as in Sec. III A, we obtain

〈
̂〉 = 1(
�e

LT ∗
2

)2 + 1

⎛
⎜⎜⎝

1
3 + cos2(2α)

(
�e

LT ∗
2

)2 − 1
2 sin(4α)

(
�e

LT ∗
2

)2
0

− 1
2 sin(4α)

(
�e

LT ∗
2

)2 1
3 + sin2(2α)

(
�e

LT ∗
2

)2
0

0 0 1
3

⎞
⎟⎟⎠ + 1/3

1 + 5
(
�h

Lτr
)2

⎛
⎝1 0 0

0 1 0
0 0 2

⎞
⎠.

Notably, this expression reveals an anisotropy of the quantum
dot having the D2d symmetry. This anisotropy originates from
the fixed orbitals X ,Y in the basis (3) which defines the
selection rules for linearly polarized light and the heavy-hole
Zeeman Hamiltonian (20) [53]. As a result, the polarization
of the emitted light depends not only on the angle between
polarization of the exciting light and magnetic field, but also
on their orientation with respect to the crystallographic axes.

In the limit of strong magnetic field, �e
LT ∗

2 � 1, we obtain

〈
̂〉 =

⎛
⎜⎝

cos2(2α) − 1
2 sin(4α) 0

− 1
2 sin(4α) sin2(2α) 0

0 0 0

⎞
⎟⎠. (33)

First, we note that this expression can be obtained
from Eq. (32) using θ = π/2 and φ = α. Second, it can be

obtained from Eq. (19) from the previous section using the
eigenfunctions

	 (1) = (
	2 + eiα	1 + eiα	4 + e2iα	3

)
/2, (34a)

	 (2) = (
	2 − eiα	1 + eiα	4 − e2iα	3

)
/2, (34b)

	 (3) = (
	2 + eiα	1 − eiα	4 − e2iα	3

)
/2, (34c)

	 (4) = (
	2 − eiα	1 − eiα	4 + e2iα	3

)
/2, (34d)

which give the coefficients |C( j)
x |2 + |C( j)

y |2 = 1/2 for all
j and polarizations p(1)

l = p(4)
l = −p(2)

l = −p(3)
l = cos (2α),

p(2)
l ′ = p(3)

l ′ = −p(1)
l ′ = −p(4)

l ′ = sin (2α), and p( j)
c = 0 for

all j.
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(a)

(b)

FIG. 1. (a) Coefficients 
ll = 
l ′l ′ (black solid curve) and

l ′ l = −
ll ′ (red dashed curve), calculated after Eq. (31) as the
functions of the longitudinal magnetic field for g‖

hτr = 10geT ∗
2 . The

inset illustrates the fixed electron spin (S) directed along �e
L , which

makes an angle θ with the z axis, and the precession of the cor-
responding hole spin J (1/2) with the frequency �h

L . (b) Diagonal
components of the matrix 
̂(0) calculated after Eq. (35) as functions
of the transverse magnetic field for g⊥

h τr = 3geT ∗
2 . The exciton opti-

cal alignment along and across the magnetic field, 

(0)
ll , is shown by

the black solid curve; the alignment in the axes rotated by π/4, 

(0)
l ′ l ′ ,

is shown by the red dashed curve, and the optical orientation, 
(0)
cc is

shown by the blue dotted curve.

In the following, we focus on the specific case of α = 0.
Denoting the matrix 
̂ at α = 0 as 
̂(0), we have

〈
̂(0)〉 =

⎛
⎜⎜⎝

(�e
LT ∗

2 )2+1/3
(�e

LT ∗
2 )2+1 0 0

0 1/3
(�e

LT ∗
2 )2+1 0

0 0 1/3
(�e

LT ∗
2 )2+1

⎞
⎟⎟⎠

+ 1/3

1 + 5
(
�h

Lτr
)2

⎛
⎝1 0 0

0 1 0
0 0 2

⎞
⎠. (35)

In this case, there is no polarization conversion. The three
diagonal components of the matrix 
̂(0) are shown in Fig. 1(b)
as functions of the magnetic field. Notably for α being a
multiple of π/4, the matrix 〈
̂〉 has the same form in the
rotated coordinate frame x′, y′, z with the x′ axis parallel to
the direction of the magnetic field.

(a)

(b)

(c)

FIG. 2. The PL intensity (a) and polarization (b) as a function
of the transverse magnetic field B ‖ x. The solid, dashed, and dotted
curves are the degrees of polarization Pl , Pl ′ , and Pc under excitation
by light of the corresponding polarization P(0)

l = 1, P(0)
l ′ = 1, and

P(0)
c = 1. (c) Magnetic field dependence of the PL intensity at B ‖ z.

IV. ROLE OF NONRADIATIVE RECOMBINATION

Let us take into account the nonradiative recombination
time τnr satisfying the condition (1). Then one should replace
d/dt with d/dt + 1/τnr in the kinetics equations (26). At the
same time, in the expressions for the PL intensities (27), the
common factor τ−1

r remains unchanged. As a consequence,
the PL intensity becomes dependent on the magnetic field, and
this is the most important manifestation of the nonradiative
recombination channel.

Figure 2 shows the PL intensity and polarization as func-
tions of the transverse (a, b) and longitudinal (c) magnetic
field calculated for τnr = τr/2 and the same other parameters

195432-6



THEORY OF POLARIZED PHOTOLUMINESCENCE OF … PHYSICAL REVIEW B 108, 195432 (2023)

as in Fig. 1. In the absence of magnetic field, the total PL
intensity

I = I (1/2)
+ + I (1/2)

− + I (−1/2)
+ + I (−1/2)

−

is given by

I = G

[
1 − 2

τr

τnr
+ 2

τ 2
r

τ 2
nr

ln

(
τr + τnr

τr

)]
. (36)

In a longitudinal magnetic field Bz, due to the time-reversal
symmetry, the intensity I is an even function of Bz. There-
fore this function is an invariant of the symmetry group
D2d (representation �1) and does not depend on the excita-
tion polarization since the differences Ix − Iy, Ix′ − Iy′ , and
I+ − I−, Ik being I (1/2)

k + I (−1/2)
k , belong to the representa-

tions �3, �4, �2 	= �1, respectively. As a result, the curve in
Fig. 2(c) does not depend on the excitation polarization. It
shows an increase in the PL intensity up to

I = Gτnr

τr + τnr
(37)

with the increasing longitudinal magnetic field.
In a transverse field, the dependence I (Bx ) is also even in

Bx. It is convenient to present the square B2
x as the invariant

(B2
x + B2

y )/2 and the difference (B2
x − B2

y )/2 that transforms
according to the representation �3. It follows then that the
intensity I is insensitive to the Stokes parameters P(0)

l ′ and
P(0)

c but can depend on Pl . The calculation, however, shows
that under the condition |g⊥

h /ge| � 1 the dependence of I on
P(0)

l vanishes, and the dependence of I (Bx ) is the same for
all excitation polarizations [Fig. 2(a)]. In a strong transverse
magnetic field, the intensity decreases to

I = Gτnr

2τr + τnr
. (38)

The magnetic field dependences of polarizations vary
continuously with the decreasing time τnr. The remarkable
peak-to-valley ratio of the Pl (Bz ) curve in Fig. 1(b) decreases
with the increasing role of the nonradiative recombination,
and for τnr = 0.5τr the peak disappears.

V. ROLE OF EXCHANGE INTERACTION

The short-range exchange interaction between an electron
and a hole is described by the Hamiltonian [10]

Vexch = h̄δ0σe,zσh,z/2, (39)

where δ0 is the splitting between dark and bright excitonic
states, which acts as a perturbation [7]. The long-range
exchange interaction is strongly suppressed for momentum-
indirect excitons [54]. Figure 3 shows the modification of the
PL intensity dependence on the transverse magnetic field by
the exchange interaction. It is calculated numerically using
the spin-density matrix formalism with the same parameters
as for Fig. 2(a) and T ∗

2 /τr = 0.005. The total intensity weakly
depends on the polarization of the excitation, and so we show
the results for the unpolarized excitation to be specific. One
can see that increase of the exchange interaction leads to
the disappearance of this dependence due to the weakened
mixing between bright and dark excitons. This takes place at

FIG. 3. Dependence of the PL intensity on the magnetic field
applied in the Voigt geometry for the different exchange interaction
strengths δ0T ∗

2 = 0 (black solid curve), 3 (red dashed curve), and 10
(blue dotted curve).

δ0 ∼ 1/T ∗
2 , and in the limit of δ0T ∗

2 � 1 the intensity saturates
at the value given by Eq. (37) similarly to the strong longitu-
dinal magnetic field.

However, a much weaker exchange interaction δ0 ∼ 1/τr

can strongly modify the polarization of the PL. This effect can
be described by Eqs. (26) and (27) with the only replacement
�h

L,z → �h
L,z + δ0 cos θ , which can be seen from Eq. (39). The

result of the calculation is shown in Fig. 4 for the same param-
eters as in Fig. 1 (without nonradiative recombination) and
different strengths of the exchange interaction. One can see
that the increase of the exchange interaction reverses the nar-
row component of 


(0)
ll (Bx ): A dip in the polarization becomes

deeper. This effect can be described analytically similarly to
Sec. III, but the result turns out to be too cumbersome.

VI. DISCUSSION AND CONCLUSION

Figures 1–4 illustrate the characteristics of resonant po-
larized PL spectroscopy of d-r–ind-k quantum dots. Due to

FIG. 4. Dependence of the PL linear polarization degree 

(0)
ll on

the magnetic field applied in the Voigt geometry for the different
exchange interaction strengths δ0τr = 0 (black solid curve), 1.5 (red
dashed curve), and 10 (blue dotted curve). Note the difference in
the scale of the exchange interaction compared with Fig. 3. The
alignment monotonously decreases with increase of δ0.
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small exchange splitting in these dots, the fluctuations of the
Overhauser field have a significant effect on the electron spin.
As a consequence, at zero magnetic field in the absence of
exchange interaction and spin-lattice relaxation, the degree
of PL linear polarization excited by linearly polarized light
decreases to 2/3; see Eqs. (31) and (33) for 〈
̂〉. Inclusion
of a weak short-range exchange interaction (39) results in an
additional reduction of the exciton alignment, which has a
double-scale character. At the scale δ0 ∼ 1/τr � 1/T ∗

N , the
electron spin states (23) are unaffected by the exchange in-
teraction, but the electron occupying these states partially
depolarizes the hole spin. As δ0 increases to 10τ−1

r , the linear
polarization at zero magnetic field decreases from 2/3 to 0.1.

If δ0 prevails over the nuclear fluctuations
√

〈�2
N 〉 ∝ 1/T ∗

2 ,
the exchange interaction suppresses the influence of the lateral
component �N of the nuclear field, thereby increasing the ef-
fect of the longitudinal component �N,z on the electron. Note
that, in d-r–d-k quantum wells, the radiative damping τ−1

r
exceeds �N by far, the nuclear field has no time to produce
a depolarizing influence, and the degree of linear polarization
Pl or Pl ′ may reach 100%.

Application of the longitudinal magnetic field results in a
hole spin precession which, in its turn, leads to the conver-
sion of linear polarizations Pl ↔ Pl ′ and an overall decrease
of optical alignment [dashed and solid curves in Fig. 1(a)],
similarly to the polarization behavior in conventional d-r–d-k
quantum dots.

An external transverse magnetic field leads to the mixing of
hole spin-up and spin-down states controlled by the transverse
g factor g⊥

h . This results in a partial suppression of the optical
orientation. When the magnetic field reaches the value of
typical Overhauser field fluctuations, the electron spin states
also get affected. With further increase of the field, the optical
orientation vanishes, as shown in Fig. 1(b). The field-induced
mixing of the spin states also suppresses the optical alignment
component 


(0)
l ′l ′ .

The alignment component 

(0)
ll shows quite different be-

havior [black solid curve in Fig. 1(b)]. At �e
LT ∗

2 < 1, the
electron spin states (23) are unaffected by the magnetic field
while the hole spin states are depolarized at �h

Lτr � 1, and the
polarization Pl decreases with the increasing field. However,
the strong magnetic field, �e

LT ∗
2 � 1, suppresses the nuclear

field and tends to form both the electron and hole eigenstates
with the spins parallel or antiparallel to B. As a result, in
the geometry B ‖ x among four exciton split sublevels (34),
two are active in the x polarization, the remaining two are y
polarized, and one has Pl = P(0)

l .
The nonradiative exciton recombination manifests itself by

expected dependence of the PL intensity on the transverse
magnetic field [Fig. 2(a)]. The larger the magnetic field, the
stronger the mixing between bright and dark states, and the
smaller the intensity. The longitudinal magnetic field acts in
the opposite way: It cancels out the effect of the nuclear field
and decouples the bright and dark excitons causing growth
of the PL intensity, as shown in Fig. 2(c). Qualitatively, the
dependences of Pl , Pl ′ , and Pc on the transverse magnetic

field remain the same as in Fig. 1(b) obtained in the ab-
sence of nonradiative recombination, but they get smoother.
In particular, the peak with two symmetrical valleys in the
component 


(0)
ll disappears. This happens because the width

of this peak is determined by the exciton lifetime, and the
nonradiative recombination reduces this time, thus broadening
the peak, which leads to its disappearance for the chosen
parameters.

The strong exchange splitting, δ0 � 1/T ∗
2 , suppresses mix-

ing between the bright and dark exciton states. As a result,
the effect of the transverse magnetic field on the PL intensity
is reduced, and the dependence I (B) becomes weaker and
broader, as one can see in Fig. 3.

As mentioned above, the magnetic dipole-dipole hole-
nuclear interaction can play a role if the corresponding
hole spin precession frequency �h

N is larger than the exci-
ton inverse lifetime. An analysis of the model where �h

N
is nonzero will be reported elsewhere. Also, it would be
interesting to generalize the developed theory for quantum
dots of the C2v symmetry, where the two different contribu-
tions to the transverse hole g factor are symmetry allowed.
The role of intervalley scattering in (In,Al)As/AlAs quan-
tum dots is not clear yet. For moiré excitons in bilayers
of transition metal dichalcogenides the ground electron and
hole states form a quadruplet of excitons with selection
rules like those in Eq. (6). With this in mind, we can
predict similar physics except for the much smaller trans-
verse electron and hole g factors, which describe intervalley
mixing.

In conclusion, we have developed a theory of polarized
PL of excitons confined in quantum dot structures with weak
electron-hole exchange interaction. The particular nanosys-
tem can be realized in quantum dots where the excitons are
indirect either in the real or reciprocal space. For them the
leading role is played by the electron-nuclear hyperfine in-
teraction. We have derived a relation between the PL Stokes
parameters and those of the exciting light, which can be
directly observed in future experiments. It is quite different
from the similar relation for conventional nano-objects with
excitons characterized by a strong exchange interaction and
short lifetimes. In particular, the optical alignment can be
a nonmonotonic function of the transverse magnetic field.
We have started with the model of vanishing exchange in-
teraction and nonradiative exciton recombination and then
took them into consideration. The present work opens up
exciting possibilities in exciton physics and can be applied
to study the confined excitons in (In,Al)As/AlAs quantum
dots, interlayer excitons in transition metal dichalcogenides,
etc.
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