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Generation of pure spin circular current in an open magnetic quantum ring
with vanishing net magnetization
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We report the existence of a nondecaying circular spin current in an antiferromagnetic (AFM) quantum ring
with zero net magnetization. In the presence of a finite voltage bias, a net circular spin current is generated in
the ring geometry without accompanying any charge current. Such a bias-driven pure spin circular current in
a magnetic ring with vanishing net magnetization has not been reported so far to the best of our knowledge.
Employing a tight-binding framework to describe the nanojunction which is formed by connecting the AFM
ring with two electrodes, we compute spin-dependent transport quantities along with spin circular current using
the standard Green’s function formalism. Most of the results are analyzed for the AFM ring where neighboring
magnetic moments are arranged in antiparallel directions and different other configurations of magnetic moments
are also taken into account for comparison. Various aspects are critically discussed like ring-electrode interface
sensitivity, impurities at different lattice sites, ring-electrode coupling strength, spin-dependent scattering factor,
Fermi energy, and system size, to make the present communication a self-contained one. For some input
conditions, a nonzero circular charge current may appear but that is too small compared to the spin circular
current. All the results are valid for a wide range of physical parameters which proves the robustness of the
phenomenon of bias-driven circular spin current in an AFM nanoring. In the end, we also provide experimental
perspectives for designing AFM ring systems. Our analysis red paves the way for obtaining a pure spin current
in open quantum systems, offering opportunities to explore various simple and complex AFM loop substructures
in the presence of external baths.

DOI: 10.1103/PhysRevB.108.195428

I. INTRODUCTION

The phenomenon of nondecaying circular charge current in
an isolated quantum ring (not attached to external electrodes)
has been a well-known topic over many years [1–4]. Büttiker,
Imry, and Landauer first proposed [1] that when a magnetic
flux threads a conducting loop, commonly referred to as
Aharonov-Bohm flux [5–7], a charge current is generated, and
once this current is established it does not vanish even when
the flux is removed. This is the so-called flux-driven persistent
charge current in an isolated loop conductor. Following this
proposition, later a substantial amount of theoretical [8–10]
and experimental [11–14] works have been done considering
different kinds of simple and complex loop conductors ex-
ploiting many fascinating results.

Analogous to persistent charge current, a persistent spin
current is also obtained in an isolated quantum ring in
presence of a spin-dependent scattering mechanism [15–17].
Several propositions have been put forward along this line.
For instance, a ferromagnetic ring can generate a circular spin
current where the spin-dependent scattering takes place due
to the interaction of itinerant electrons with local magnetic
sites. This scattering mechanism is very common and has
been considered extensively in different contexts [18–22].
Later another prescription came to light, where the scattering
occurs due to spin-orbit (SO) coupling. Usually, two types
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of spin-orbit coupled systems are considered, one is called
Rashba SO coupled systems [23], and the other is known as
Dresselhaus SO coupled ones [24]. Among them, Rashba SO
coupling becomes more promising since its strength can be
monitored by means of external gate electrodes [25]. Though
controlled spin transfer can be achieved, there are some un-
avoidable limitations in SO coupled systems. One of the key
issues is that the SO coupling strength is too weak [26], and
hence, large separation between up and down spin channels
cannot be achieved. The large channel mismatch is one of the
key prerequisites to have a favorable spin-dependent transport
phenomena.

Most of the studies available in the literature related to the
phenomenon of circular charge current have concentrated on
isolated ring conductors [4–10]. Recently another mechanism
has been proposed, where it is shown that a nondecaying
charge current can also be established in a quantum ring when
it is connected to external electrodes [27–33]. In this case,
magnetic flux is no longer required and the current is gener-
ated due to a finite voltage bias across the contact electrodes.
This phenomenon is referred to as bias-driven circular current
in an open quantum ring system. A very limited amount of
work is available so far, and further probing is definitely
required to get more insights into this phenomenon [27–33].
The bias-driven circular current needs a complete description
of currents in different branches of a quantum system, and
from the branch currents, one can get important information
about conducting behavior of different branches.
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FIG. 1. Sketch of the ring nanojunction where an antiferromag-
netic ring is symmetrically connected to source and drain electrodes.
The neighboring magnetic moments are oriented in the opposite
directions.

Like bias-driven persistent charge current, one can also
think about persistent spin current in an open quantum system.
The studies along this line are notably scarce. The generation
of bias-driven spin current in a nanoring, without accom-
panying any charge current is quite challenging, and in
the present work, we essentially focus on this phenomenon.
Our motivations are many-fold. First, we want to investigate
whether a magnetic ring system with zero net magnetization
can generate a circular spin current in response to a voltage
bias. Second, we want to explore, for such an antiferro-
magnetic system whether we can get spin current without
accompanying any net charge current. Third, the sensitivity
of circular spin current on different input parameters, i.e.,
we want to check the robustness of our analysis. These is-
sues have not been discussed so far in the literature, to the
best of our concern, and may open new insights into this
phenomenon.

Antiferromagnetic systems are nowadays considered the
promising functional elements for future generation spintronic
devices due to their unique and diverse characteristic features
over conventional ferromagnetic materials [34–39]. Among
many, the most two important advantages are the existence
of a higher temperature of phase transition of magnetic or-
dering [40,41] than the ferromagnetic samples, and, due to
vanishing net magnetization the antiferromagnetic systems do
not produce any stray fringe field [37,42]. These later systems
are also very less perturbed due to the external magnetic field
[36–38]. From the common wisdom, it seems that a magnetic
quantum ring with zero net magnetization cannot produce
any net spin circular current, as up and down spin energy
channels are identical to each other. However, here we prove
that it is absolutely possible, and the degree of current can
be reasonably large. The other important finding of our work
is that we can produce spin current without accompanying
any charge circular current. We choose a tight-binding (TB)
antiferromagnetic ring where the neighboring magnetic mo-
ments are oriented in opposite directions, which is the most
common arrangement. The ring is sandwiched between two
nonmagnetic contact electrodes (see Fig. 1). In the presence of
symmetric ring-electrode junction configuration, interestingly
we find that a reasonably large pure spin current is generated
in the ring. To find the robustness of our analysis, we choose
some other possible arrangements of local magnetic moments,
setting the condition of vanishing net magnetization, and also
analyze the behavior of circular spin current under different
input conditions by changing the physical parameters in a
wide range. In a few cases, circular charge current appears
in the ring but its magnitude is too small compared to the

spin circular current. Notably, our results are highly robust
as they are almost unperturbed in realistic conditions like in
presence of impurities, orientations of magnetic moments,
ring-electrode junction configurations, etc. All the relevant
spin-dependent quantities are worked out based on the well-
known Green’s function formalism [43–46]. In the end, we
briefly discuss the experimental possibilities for designing
AFM ring geometries that are considered in our work, for the
sake of completeness.

The organization of the rest other parts is as follows. Sec-
tion II deals with the description of one particular type of
nanojunction where neighboring magnetic moments in the
AFM ring are oriented in opposite directions, and, the theoret-
ical framework for the calculations. All the numerical results
of this AFM ring are presented and thoroughly scrutinized
in Sec. III. Moreover, two other AFM rings with different
arrangements of magnetic moments are taken into account
and their results are also analyzed in Sec. III. In Sec. IV,
we add a brief discussion about experimental possibilities for
designing AFM rings. Finally, Sec. V, includes the summary
of the present investigation.

II. PHYSICAL SYSTEM AND THEORETICAL
FRAMEWORK

This section is divided into two parts. In one part (part
A), we discuss the AFM ring nanojunction and tight-binding
Hamiltonian for the nanojunction. In the other part (part B),
the theoretical prescription is given for the calculation of
different spin-dependent quantities.

A. AFM ring nanojunction and TB Hamiltonian

The nanojunction is formed by sandwiching an AFM ring
between two contact electrodes. In our analysis, we consider
three different kinds of AFM rings, based on the specific
arrangement of local magnetic moments in the ring, for a
comparative analysis. The junction with one such arrangement
is schematically shown in Fig. 1 (other two will be discussed
in the appropriate parts). The AFM ring, possessing N sites
(N is taken to be even), is clamped between two nonmagnetic
electrodes, those are labeled as source (S) and drain (D). The
red arrows at different lattice sites represent the magnetic
moments. In the ring of Fig. 1, we assume that the successive
magnetic moments are aligned along ±Z directions. This is
the most common antiferromagnetic configuration and we
refer to this ring as ‘ring-1’. Instead of considering such a
specific arrangement, as already mentioned, other possible
configurations can also be taken into account, following the
condition of vanishing net magnetization. The general orien-
tation of any local magnetic moment at site i can be described
using polar angle θi and azimuthal angle φi. The source elec-
trode is always connected to site 1 of the ring, while the
position of ND where the drain is coupled can vary. Both the
sites 1 and ND are assumed to be nonmagnetic.

The spin-dependent scattering occurs due to the interaction
of conduction electrons with local magnetic sites via the usual
spin-moment interaction. It is relevant to note that, this scat-
tering strength is reasonably large [26] compared to the other
spin-dependent scatterings like spin-orbit coupling, Zeeman
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splitting, etc., and this is one of the fundamental reasons of
considering magnetic systems.

We employ a TB framework to illustrate the nanojunction.
The Hamiltonian of the full system (viz, AFM ring with side-
attached electrodes) is written as

H = HR + H elec + H coup, (1)

where different sub-Hamiltonians in the right side of Eq. (1)
are associated with different parts of the nanojunction, and
their forms are as follows. For the AFM ring, the Hamiltonian
HR reads as

HR =
∑

i

[c†
i (εi − �hi.�σ )ci + (c†

i tci+1 + c†
i+1tci )], (2)

where c†
i = (c†

i↑ c†
i↓). c†

iσ , ciσ are the fermionic operators
with σ = ↑,↓. εi and t are the site energy and hopping
matrices respectively, and, they are εi = diag(εi↑, εi↓) and
t = diag(t, t ). εiσ is the site energy of an electron at ith
site in the absence of any kind of magnetic scattering and
t is the nearest-neighbor hopping (NNH) strength. �hi is
spin-dependent scattering factor which is the product of the
spin-moment coupling strength J and the average local spin
〈�si〉. σ is the Pauli spin vector. In our formulation, σz is
diagonal.

The sub-Hamiltonians H elec and H coup are associated with
the contact electrodes and the coupling of the AFM ring with
the electrodes. We assume that the electrodes are nonmagnetic
in nature, and they are semi-infinite, one-dimensional, and
reflectionless. It is no longer required to write the explicit
forms of H elec and H coup as they can be understood quite easily
(just like 1D TB chain). The electrodes are parameterized by
the site energy ε0 (same for both up and down spin electrons)
and the NNH strength t0. The sites 1 and ND of the AFM ring
are coupled to S and D via the coupling parameters τS and τD,
respectively.

B. Theoretical framework

To evaluate bias-driven circular current, be it charge or
spin, we need to calculate the currents in individual bonds
of the ring system, and we do that using the well-known
Green’s function formalism. First, we need to define a cor-
related Green’s function which is [44,45,47]

Gn = GR( fS�S + fD�D)GA. (3)

Here, �S and �D are the coupling matrices, and fS , fD are
the Fermi functions of S and D, respectively. GR and GA are
the retarded and advanced Green’s functions, respectively, and
they are [44,47]

GR = (GA)† = (E − HR − �S − �D)−1 (4)

where �S(D) is the self-energy due to S(D). The self-energy
terms contain all the information of the electrodes. In presence
of a finite bias V among these electrodes, their electro-
chemical potentials get changed and they are μS = EF +
eV/2 and μD = EF − eV/2, where EF is the equilibrium
Fermi energy, and e is the electronic charge.

Using the correlated Green’s function, bond current den-
sities (current per unit energy) are evaluated. For an electron

with spin σ ′ which is transferred from site i to site j as spin
σ , the bond current density is defined as [8,48,49]

Jiσ ′→ jσ = 2e

h
	[

HR
iσ ′, jσ Gn

jσ,iσ ′
]
. (5)

The total bond current density is obtained by summing over
incident spin and it becomes

Jσ
i→ j =

∑
σ ′

Jiσ ′→ jσ . (6)

Adding the contributions of all individual bonds, we get the
circular current density which is expressed as

Jσ
cir =

∑
<i, j>

Jσ
i→ j . (7)

To understand the behavior of Jσ
cir in a more simpler way,

we can write it as a sum Jσ
cir = Jσ

U + Jσ
L , where Jσ

U and Jσ
L

correspond to the bond current densities associated to the “up-
per” and “lower” arms of the ring nanojunction, respectively.
We take positive sign of current when it flows in clockwise
direction and the sign becomes negative when the current
flows in opposite direction.

Now, we separately define the charge and spin current
densities through the expressions [22]

JC
cir = 1

N
(J↑

cir + J↓
cir ); JS

cir = 1

N
(J↑

cir − J↓
cir ). (8)

Finally, to have charge and spin circular currents in the ring
we need to integrate the respective current densities. They are
[8,22,48]

IC(S)
cir =

∫
JC(S)

cir ( fS − fD)dE . (9)

As the sign of the individual current components can be
both positive and negative, from the above definitions, it is
expected that charge current might be zero while spin current
is finite, and that is precisely our ultimate aim.

III. NUMERICAL RESULTS AND DISCUSSION

In what follows, we present and discuss our results. Three
separate sub-sections are used for three distinct arrangements
of magnetic moments associated with the AFM ring. Most
of the results are associated with the nanojunction of ring-1
type (placed in Sec. A), and for the other two configurations
the essential results are placed in Secs. B and C, for a di-
rect comparison. All the energies are measured in units of
electron-volt (eV). Throughout the numerical calculations we
choose ε0 = 0 and t0 = 2 (TB parameters of the side-attached
electrodes). The NNH strength t in the AFM ring is fixed
at 1. In the absence of any disorder in the ring we choose
εi↑ = εi↓ = 0, while for the disordered case these energies are
chosen randomly (more clearly described in the subsequent
subsection). Unless specified, the other physical parameters
are: hi = 1, τS = τD = 1, N = 32, and the results are worked
out for symmetric ring-electrode junction configuration con-
sidering perfect ring and fixing the system temperature at
100 K. For the sake of completeness of our investigation,
the characteristics features of circular spin currents under
different input conditions viz, by changing the spin-dependent
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FIG. 2. Variation of (a) up and (b) down spin circular current
densities as a function of energy. Here we choose the ring size
N = 32, Fermi energy EF = 0 and the bias voltage V = 6 V.

scattering parameter (hi), ring-electrode coupling (τS , τD),
ring size (N), disorder, ring-electrode interface configurations,
etc., are also discussed one by one in the appropriate parts.

A. Nanojunction where neighboring magnetic moments in the
AFM ring are aligned along ±Z directions

This section contains the results of the ring nanojunction
where the neighboring magnetic moments in the AFM ring
are oriented along

±Z directions. As the net current density and the corre-
sponding current specifically depend on the current densities
of the individual components associated with up and down
spin electrons, let us start with Fig. 2 where the variation
of up and down spin current densities are shown. The re-
sults are computed for the symmetric ring-electrode interface
configuration setting EF = 0. Several interesting features are
obtained those are as follows. Both up and down spin current
densities exhibit some peaks and dips with different heights
at some particular energies, while for other energies no such
peaks or dips appear. These peaks and dips are associated
with the discrete energy channels of the AFM ring which
is sandwiched between the source and drain electrodes, and
depending on the nature of the resonant energy channels we
get higher or lower current densities. Unlike transport current
density, i.e., current density in the contact electrodes, the
circular current density can be positive as well as negative.
Two different signs indicate the propagation of electrons in
two different directions (clockwise and counterclockwise).
This is expected as the central region is a ring system which
provides two possible paths to flow electrons from source
to the drain. Carefully inspecting the current density profiles

FIG. 3. Charge and spin circular current densities, shown in
(a) and (b) respectively, as a function of energy. All the physical
parameters remain same as used in Fig. 2.

of up and down spin electrons it is seen that in each case
the spectrum is anti-symmetric around E = 0. At the same
time, the other key feature is that the spin dependent current
densities are exactly opposite to each other. It means, for a
particular energy if up spin current density provides a peak
or dip, the down spin current density is exactly opposite to
that. The completely opposite natures (magnitude and sign)
of J↑

cir and J↓
cir (Fig. 2) arise due to the consideration of the

identical number of magnetic moments that are aligned in
opposite directions in the upper and lower arms of the ring,
and the ring is coupled to the electrodes symmetrically (arm
lengths are equal).

From the profiles of spin specific circular current densities,
presented in Fig. 2, the characteristic features of charge and
spin circular current densities can easily be followed. The
results are shown in Fig. 3, for the identical junction setup
as used in Fig. 2. The charge current density drops exactly
to zero for the entire energy window [Fig. 3(a)], as J↑

cir and

J↓
cir are exactly opposite to each other. On the other hand,

the spin current density becomes finite and in this case it is
two times the individual spin component [Fig. 3(b)]. Thus a
finite spin current density can be generated without having any
charge current density. Here it is relevant to note that, such a
situation cannot be established if the ring is a ferromagnetic
one, where all the moments are oriented in one particular di-
rection. Though spin current density is finite for some energy
regions, the choice of EF = 0 leads to exactly identical peaks
and dips around it. Therefore, for this typical EF , we cannot
get any net spin current as it is obtained by integrating the
current density function following Eq. (9). With increasing
the energy window, equal number of peaks and dips appear
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FIG. 4. Spin (indigo color) and charge (orange color) circular
current densities as a function of energy E in four distinct Fermi
energies, to explore the specific role of Fermi energy. The ring size
and the ring-electrode junction configuration are same as used in
Fig. 2.

within the window resulting a vanishing net current. It clearly
manifests that the choice of EF is undoubtedly important, and
this is common [50–54] to observe any other spin-dependent
phenomena like spin polarization, spin current rectification
and to name a few.

To have a finite spin circular current we need to choose
EF in such a way that within the energy window for which
the integration is made, the peaks and dips are nonuniform.
Otherwise, the current will be zero due to mutual cancellation.
In Fig. 4, we select four such typical Fermi energies around
which the spin current density profile is nonuniform. The
charge current density becomes always zero (orange line), as
expected. Several other Fermi energies can also be chosen
for which one can have the similar scenario. The effect of
EF directly enters into the correlated Green’s function via the
relation defined in Eq. (3). Using the density profiles given
in Fig. 4, we compute spin circular current as a function of
bias voltage and the results are shown in Fig. 5. Four different

FIG. 5. Spin circular current as a function of bias voltage, at four
distinct values of EF , where the black, green, red and purple curves
are associated with EF = −2, −1, 1, and 2, respectively. The ring
size and the ring-electrode junction configuration are same as used
in Fig. 2.

colored curves are used for four distinct Fermi energies. In
each case, the current provides quite a steplike behavior asso-
ciated with the discrete peaks and dips of the density profile.
The magnitude of the current is also reasonably large, that is
indeed an interesting finding. Depending on the choice of EF

we can have positive or negative spin circular current in the
ring.

Detailed physical argument for the generation of spin cur-
rent. For a more complete description, here we elucidate the
underlying mechanism responsible for the generation of circu-
lar spin current in a loop nanojunction. First, we concentrate
on the bias driven charge circular current, and thus, ignore the
spin degrees of freedom. If IU and IL are the currents in the
upper and lowers arms of a ring conductor which is clamped
between S and D, then the circular charge current is defined
by the average of these two currents viz, (IU + IL )/N , and
the transport current (say, Itr), i.e., current in the drain end
is defined as Itr = (IU − IL )/N (a comprehensive description
is given in Ref. [29]). For a symmetric ring nanojunction
IU = −IL, and hence, the charge current completely vanishes.
For this configuration, the identical magnitudes of the currents
in the two arms are naturally expected, and the appearance
of opposite sign is also easy to understand, otherwise the
transport current will vanish [29]. Thus symmetric configu-
ration is the primary requirement to have zero circular charge
current. Now, consider the magnetic ring where spin degrees
of freedom are involved. For our chosen AFM ring system,
we find that J↑

U = −J↓
L and J↑

L = −J↓
U , and these are directly

associated to the arrangements of local magnetic moments
in the two arms of the AFM ring. Therefore we reach to
the relation J↑

cir = −J↓
cir. Since the up and down spin circular

current densities have equal magnitudes and opposite signs,
the definitions given in Eq. (8) lead to the complete disap-
pearance of charge current density and the emergence of a
finite spin current density. Integrating the spin current density
[see Eq. (9)], we get the spin circular current associated with
a finite bias voltage. For a particular junction configuration,
the sign of the spin current essentially depends on the choice
of the Fermi energy. If the spin current density exhibits peaks
around the Fermi energy, it results in a positive spin current,
while a negative spin current occurs when the density profile
displays dips across the Fermi energy. When both peaks and
dips are concerned, the sign depends on the dominating ones
among them. A discussion about the role of Fermi energy
on spin circular current is already given above. Some other
factor are also involved that are explicitly addressed in the
subsequent sections.

Following the above overall analysis of current densities
and circular currents, now we critically explore the role of
different input parameters on circular current in the AFM
ring-1 system, and check how the results are robust.

1. Ring-electrode junction configuration: interface sensitivity

Quantum interference among the electronic waves passing
through upper and lower arms of the ring plays an important
role on circular current, and thus, it is indeed required to
inspect the behavior of bias-driven circular current for differ-
ent ring-electrode junction configurations. For a perfect AFM
ring, once we break the symmetry among the two arms by

195428-5



DEBJANI DAS GUPTA AND SANTANU K. MAITI PHYSICAL REVIEW B 108, 195428 (2023)

FIG. 6. Interface sensitivity on circular current. The spin (red
curve) and charge (black curve) circular currents as a function of
drain position ND. The source is always connected to site 1 of the
ring, as before. Here we set N = 100, EF = 1 eV, and V = 4 V.

connecting the drain electrode asymmetrically, a net charge
circular current appears along with the spin one. For an asym-
metric ring-electrode junction configuration, the individual
spin current components are no longer identical to each other,
resulting in a nonzero charge current. The results are given
in Fig. 6 for a 100-site AFM ring, where both charge (black
color) and spin (red color) circular currents are shown at a
particular bias voltage when the drain position is varied from
site 3 to 100. One important observation is that, though charge
current is finite for all the asymmetric junction configurations,
it is always smaller than the spin current, and especially for
the approximate range 40 � ND � 60, IC

cir << IS
cir. Due to

quantum interference as we approach the symmetric junction
configuration more closely, the charge current decreases, and
eventually drops to zero for the symmetric junction setup
(ND = 51 for the 100-site ring). The other notable fact is that,
the spin circular current is very less fluctuating for all the
possible choices of drain connection (red curve of Fig. 6). So
one can safely have circular spin current for any ND, but to
set vanishingly small charge current we need to choose ND

appropriately as clearly reflected from Fig. 6.

2. Effect of disorder

To inspect how disorder can perturb circular spin current
and at the same time to check whether a large charge current
appears or not, in this section, we discuss the role of disorder
[55–59] on these quantities.

The disorder in the antiferromagnetic ring is included by
choosing the site energies εi↑ and εi↓ randomly from a “Box”
distribution function of width W . We always set the condition
εi↑ = εi↓. For W = 0, the ring becomes a perfect one. Figure 7
displays the variation of spin and charge circular currents as
a function of bias voltage V at some distinct values of W .
The result for W = 0 (green curve) is also superimposed in
each spectrum for a better comparison. Here we set N = 32,
EF = 1 eV, and compute all the curves, for the disordered
ring, taking the average over 50 distinct random configura-
tions. In the absence of W , charge current completely vanishes
[green line of Fig. 7(b)], as expected, since the ring is con-
nected symmetrically with the contact electrodes. Under this
condition, the spin current becomes a maximum [green curve

FIG. 7. Role of disorder W . The spin and charge circular cur-
rents, shown in (a) and (b) respectively, as a function of bias voltage
at some typical disorder strengths for symmetrically connected ring
nanojunction with EF = 1 eV and N = 32. In each spectrum, the
green, magenta, cyan and maroon colored curves are for W = 0, 0.5,
1, and 1.5, respectively. The results are obtained by averaging over
50 distinct random disordered configurations.

of Fig. 7(a)]. When the disorder is introduced, along with spin
current, a finite charge current also appears due to the breaking
of the symmetry among the upper and lower arms, but the
notable fact is that the charge current is almost vanishingly
small than the circular spin current for the entire bias window.
Moreover, the spin current is quite appreciable even when the
disorder is too large. This is undoubtedly quite interesting.

3. Role of electrode-ring coupling

In this sub-section we discuss the specific role of ring-
electrode coupling strength (τS, τD), which controls the flow
of particles from the electrode to the ring system. This cou-
pling can be easily tuned in suitable experimental setup by
changing the distance of separation between the ring and the
electrodes. In Fig. 8, we show the results for two distinct
coupling strengths, 0.5 and 0.8, those are respectively pre-
sented in (a) and (b), respectively. The charge circular current
is zero throughout the bias window (black line) as we set sym-
metric ring-electrode junction configuration. The spin circular
current, on the other hand, provides reasonably large values.
In Fig. 5, IS

cir-V curve for EF = 2 is shown (purple curve)
when τS = τD = 1 eV, and in Fig. 8, IS

cir-V curves are plotted
for the same EF at two other coupling strengths. Comparing
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FIG. 8. Effect of ring-electrode coupling. Circular spin (red
color) and charge (black color) currents as a function of bias volt-
age for two different ring-electrode coupling strengths, where (a)
τS = τD = 0.5 and (b) τS = τD = 0.8. Here we set EF = 2 eV. The
ring size and the ring-electrode junction configuration are same as
used in Fig. 2.

all these results, it is seen that the spin current decreases
with τS(D), but in all these cases the current magnitude is
appreciable. This slight reduction of current with lowering the
ring-electrode coupling can nicely be explained as follows. As
already mentioned, circular current is obtained by integrating
the current density function, multiplied by the difference of
fS and fD [see Eq. (9)]. In the current density profile, we
get peaks and dips, which are quite analogous to the resonant
transmission peaks in a nanojunction [60–62] (dips cannot be
observed in the transmission spectrum as the probability is
always positive, but for the circular current both peaks and
dips are available due to clockwise and anticlockwise move-
ments of particles). The widths of the peaks and dips depend
on the ring-electrode coupling. For weak coupling, the widths
are narrow, while they get broadened in the strong-coupling
limit. Therefore, while integrating the density profile, we get
lesser and higher currents for the weak and strong coupling
limits respectively. It gives an interesting message that the
magnitude of spin circular current can be tuned selectively by
adjusting the coupling parameter. Here it is relevant to point
out that, such coupling effect on transmission probability and
junction current (or we can say drain current) has already
been reported in the literature in different other contemporary
articles [60–62].

4. Effect of spin dependent scattering factor

The spin dependent scattering factor h (in our calculation
we choose hi = h for all i) is no doubt one of the primary

FIG. 9. Role of spin-dependent scattering parameter. Spin (red)
and charge (black) circular currents as a function of bias voltage for
four different values of the spin-dependent scattering parameter h (in
our calculation, h′

is are same and hence we can safely skip the index
i). In (a)–(d), we choose h = 0.4, 0.6, 1, 1.2 respectively. The results
are worked out for the same ring size and junction configuration as
mentioned in Fig. 2. Here the Fermi energy is fixed at 2 eV.

parameters that is involved to have the spin specific phe-
nomenon, and thus, its dependence needs to be checked. The
higher value of h leads to a large mismatch among the up
and down spin energy channels, and hence more favorable
response might be expected. In Fig. 9, we display the vari-
ation of charge and spin circular currents as a function of
bias voltage for four distinct values of the spin-dependent
scattering parameter h those are given in (a) to (d). The re-
sults are worked out for the symmetric ring-electrode junction
configuration. The charge current (black line) is always zero
in each case, as expected. For the spin current (red curve),
quite a considerable change in current magnitude is seen.
Most importantly, we find that for large h, the spin current is
reasonably large even at low biases. Achieving of higher spin
circular current at lower bias is one of the key requirements of
our study, and here it is successfully established.

5. How spin current is perturbed with slight variation of ND from
symmetric configuration?

It is already established from the above discussion that
for the symmetric ring-electrode junction configuration, we
get pure spin circular current as the charge circular current
becomes exactly zero. Now the question is how the spin
current is perturbed if we just break the symmetric junction
configuration by slightly shifting the drain position, i.e., by
making a minor difference between the two arm lengths. This
inspection is no doubt required to check the robustness of
our analysis. To reveal this fact in Fig. 10, we consider two
different junction configurations where the drain position is
slightly shifted from the symmetric configuration. The sym-
metric case is also included, for the comparative analysis. Like
earlier, the source electrode is always coupled to site 1 of
the AFM ring. For the symmetric configuration ND becomes
identical to (N/2 + 1) [schematic setup is given in Fig. 10(a)].
For the other two configurations, we choose ND = (N/2 − 1)
and ND = (N/2 + 3), and they are schematically shown in
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FIG. 10. These results explores how the spin current is sensitive if the drain electrode is slightly shifted from the symmetric junction
configuration. The source is coupled to site 1 of the ring. For the symmetric configuration ND = (N/2 + 1) [schematically shown in (a)], and the
results of charge and spin circular currents are shown in (b). In (c) and (e), we choose ND = (N/2 − 1) and ND = (N/2 + 3), respectively, and
for these configurations the results are given in (d) and (f), respectively. All these results are found for a 32-site ring considering EF = 1.5 eV.
The red and black curves are for the spin and charge circular currents, respectively.

Figs. 10(c) and 10(e), respectively. The results for the three
different junction configurations are given in the second row
of Fig. 10, where the red and black curves are for the circu-
lar spin and charge currents, respectively. The outcomes are
interesting and significant as well. For both the asymmetric
configurations, a nonzero charge current appears, but the fact
is that this current is too small almost for the entire bias
window [black curves of Figs. 10(d) and 10(f)], compared to
the spin counterparts [red curves of Figs. 10(d) and 10(f)].
The other notable thing is that, for these asymmetric junction
setups, the spin circular currents are too large and more than
two times higher than the symmetric junction. All these fea-
tures are directly associated to the quantum interference of
electronic waves passing through upper and lower arms of the
ring nanojunction. Here we want to reiterate one point that in
Fig. 6 the dependence of spin circular current, at a particular
bias voltage, on ND is already shown by varying ND in a wide
range. The spin current exhibits a very less fluctuation with
ND. Thus it can be emphasized that the studied spin circular
current is quite robust, even when the drain position gets
shifted. But, as charge circular current may appear for any
arbitrary drain position, we need to select it accordingly such
that the charge current becomes negligibly small.

6. Dependence of spin circular current on ring size

To inspect whether ring size has any significant effect on
spin circular current, in Fig. 11, we present the variation of
IS
cir with N , by changing N in a broad range. Here we always

set the symmetric ring-electrode junction configuration. For
lower values of N , the current sharply decreases with N , but
after a few ring sizes the current becomes almost constant.
Very little fluctuation is obtained in current with the ring size,
and this phenomenon still continues for much higher values of
N (not shown here), which we confirm through our detailed
numerical calculations. The almost constant magnitude of
circular spin current can be explained as follows. The circular
current is obtained by taking the contributions of individual
bonds of the ring. Adding the contributions of all the bonds,

we divide by the factor N [see Eqs. (7) and (8)] to get the
circular current. With increasing N , the number of bonds gets
increased and thus the total current. Finally, when we divide
the sum by N , the ratio becomes almost constant. This is an
interesting phenomenon, unlike the transport current which
usually gets reduced by enhancing the system size. This result
gives a clear indication that we can observe the phenomenon
of bias-driven spin circular current even when the ring size is
too large, that is quite interesting from the experimental view
point.

7. Simultaneous variation of spin circular current with Fermi
energy and bias voltage

The above discussed results are worked out at some typical
Fermi energies, and it is already explained that the choice of
Fermi energy is quite crucial such that the peaks and dips of
current density profile do not mutually cancel to each other.
Now the question is how sensitive the choice of Fermi en-
ergy is. To answer it, in Fig. 12, we present a density plot
where the simultaneous variation of circular spin current as
functions of bias voltage and Fermi energy is given. Both the

FIG. 11. Effect of ring size. Dependence of spin circular current
as a function of ring size N . The results are worked out for the
symmetric junction configuration setting the Fermi energy at 1.5 eV.
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FIG. 12. Density plot. Simultaneous variation of spin circular
current as functions of Fermi energy and the bias voltage. In (a),
we vary EF in positive energy side, while in (b), EF is varied in the
negative energy side. The results are worked out for a 32-site AFM
ring considering symmetric ring-electrode junction configuration.
The color bars denote the spin current in units of μA.

bias voltage and Fermi energy are varied in a wide range. In
Fig. 12(a), the spin current is shown by varying EF in the
positive energy side, while for the negative energy side the
current is given in Fig. 12(b). Quite interesting features are
obtained. For a wide range of EF , we can have the possibility
to get a high circular spin current, and changing the Fermi
energy we can selectively regulate the current. Moreover, the
sign of the current can also be altered by adjusting the Fermi
energy in the appropriate region. All these features depend on
the contributing peaks and dips of the current density profile
around the Fermi energy. From the results we can infer that to
have the best possible response we need to make a thorough
scan over the entire allowed energy window.

8. Is the full compensation of magnetization required?

At this stage, one obvious question may appear what is
the necessity of full compensation for magnetization in the
ring? More specifically, we can say how the circular spin
current is sensitive if we slightly deviate from the condition
of full elimination of net magnetization. To reveal this fact,
in Fig. 13, we make a comparative analysis between two
rings. In one ring we consider full compensation of magne-
tization like previous discussion. In the other ring we slightly
deviate from the condition of full compensation, and in the
lowest order, it is done just by flipping one magnetic moment

FIG. 13. Comparative analysis of (a) spin and (b) charge cir-
cular currents between the magnetic ring with full compensation
of magnetization (magenta) and the ring without full compensation
(gray). For the later ring, just one magnetic moment is flipped in the
opposite direction (here the magnetic moment in site number 13 is
considered). The results are computed for EF = 1.2 eV considering
the symmetric junction configuration in a 32-site ring.

from its initial orientation. For these two rings, the results
are shown by the magenta and gray curves respectively. In
Fig. 13, we present the results of both spin and charge circular
currents as a function of bias voltage, those are computed
for the symmetric junction configuration placing the Fermi
energy at 1.2 eV. When the net magnetization is zero, the
charge current becomes zero [magenta curve of Fig. 13(b)],
as expected. However, a nonzero charge current is generated
once the vanishing condition of net magnetization is deviated
[gray curve of Fig. 13(b)]. The appearance of nonzero charge
current is due to the breaking of the symmetry between the
upper and lower arms of the ring. The notable thing is that,
though finite charge current is obtained, it is too less compared
to the spin circular current as clearly seen by comparing the
results given in Figs. 13(a) and 13(b). Moreover, the spin
currents in the two rings are also almost comparable to each
other [magenta and gray curves of Fig. 13(a)]. From these
results we can emphasize that, to have pure spin current, of
course the full compensation of magnetization is needed. But
a slight variation does not influence the behavior significantly,
which again proves the robustness of our analysis.

B. Nanojunction with magnetic moments in upper arm of the
ring along +Z and lower arm along −Z

The characteristic features of bias-driven circular spin
current discussed above in Sub-Sec. A are for the
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FIG. 14. Ring nanojunction, where the magnetic moments in the
upper and lower arms are oriented along +Z and −Z directions,
respectively.

antiferromagnetic ring with a specific arrangement of local
magnetic moments where the neighboring moments are ori-
ented along ±Z directions. That ring is refereed to as ring-1.
In the present section, we consider another arrangement of
magnetic moments, keeping the condition of zero net mag-
netization. Such an arrangement is schematically shown in
Fig. 14, where in one arm of the ring all the magnetic moments
are oriented along +Z , and in the other arm the moments are
oriented along −Z . We call this ring as ring-2. The aim of this
section is to check whether ring-2 is capable of producing a
circular spin current like the previous ring.

In Fig. 15, we present the variation of spin circular current
as a function of bias voltage for the ring-2 system, at four
distinct values of EF , like what is done for the case of ring-1
system in Fig. 5. The ring size and the junction configuration
remain unchanged to have a direct comparison between the
results of rings 1 and 2. It is clearly seen that for ring-2 finite
spin current is obtained and, most importantly, the magnitude
of the current is much higher than the ring-1 case, for a partic-
ular Fermi energy. Achieving of higher spin current in ring 2
compared to the ring 1 is directly linked with the arrangement
of local magnetic moments at different lattice sites. In ring 1,
the neighboring magnetic moments are arranged in opposite
directions, whereas for the case of ring 2, it seems that two
ferromagnetic arms are coupled at the two end points. Because
of the arrangements, in ring 1, much higher spin-dependent
scattering takes place than the ring 2, resulting a lesser spin
current in the former one. The other characteristic features
remain almost same, as expected.

FIG. 15. Dependence of circular spin current with bias voltage
at four distinct vales of EF for the ring-2 (similar to Fig. 5), where
the black, green, red and purple curves are for EF = −2, −1, 1, and
2, respectively. The results are worked out for the symmetric ring-
electrode junction setup, considering N = 32.

FIG. 16. Schematic view of an antiferromagnetic ring with a
different texture of magnetic moments compared to what is taken
into account in Fig. 1 and Fig. 14. Starting from a magnetic moment
aligned along +Z direction in the upper arm, each magnetic moment
is rotated by a specific angle, and in the lower arm the opposite
configuration is considered such that the net magnetization of the
ring becomes zero. In the upper arm, θi is scaled from 0 to π/2,
and accordingly, in the lower arm it is scaled from π to 3π/2. For
all these moments we set the azimuthal angle φi = 0. The ring is
coupled symmetrically to source and drain electrodes.

C. Ring nanojunction where the AFM ring contains textured
magnetic moments

The results discussed so far are performed for the antifer-
romagnetic rings where the magnetic moments are aligned
along ±Z directions. Under this condition, spin-dependent
scattering matrix ( �hi.�σ) becomes “diagonal,” and thus no
spin-flipping takes place. It is indeed required to inspect how
the spin-flip scattering affects the behavior of spin circular
current. To reveal this fact, we consider a specific texture
of magnetic moments in the ring, as shown in Fig. 16, and
we refer to this ring as ring 3. The moments in the two
arms are arranged in such a way that they are opposite to
each other, resulting in a vanishing net magnetization in the
ring. As the orientations of magnetic moments are different
compared to ±Z directions, both σx and σy are involved,
and hence the spin-dependent scattering matrix contains off-
diagonal elements. Because of this, we get spin-flip scattering
while traversing the electrons through the ring nanojunction.
For the AFM ring with such a textured magnetic moments,
the dependence of spin circular current with bias voltage is
given in Fig. 17. Four different curves are shown, associated
with four distinct Fermi energies, to have a direct comparison
with the results presented in Fig. 15. The results are com-

FIG. 17. Spin circular current vs bias voltage for ring 3 where the
magnetic moments are arranged as shown in Fig. 16. All the required
physical parameters are same as used in Fig. 15, to have a direct
comparison of the results.
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puted for the identical ring size and for the same junction
configuration (symmetric ring-electrode junction). Since the
upper and lower arms are identical in length and the magnetic
configurations are opposite to each other, charge circular cur-
rent does not appear. Thus we get pure spin circular current.
Comparing the results with Fig. 15 it is found that the overall
degree of spin current decreases. This reduction is solely due
to the spin-dependent scattering at different magnetic sites.
More spin-flip scattering means, more mixing of up and down
spins, resulting a decrement of pure spin current. Though
the current gets reduced, it is still reasonably large which is
quite interesting. Thus it can be manifested that bias-driven
pure spin circular current can be obtained in noncollinear
antiferromagnetic systems as well.

IV. EXPERIMENTAL POSSIBILITIES
FOR DESIGNING AFM RINGS

Nowadays different kinds of efficient and sophisticated
techniques are available through which patterned magnetic
rings can safely be designed. The most common methodolo-
gies are nanoscale lithography [63], electron beam lithog-
raphy [64], and silicon etching processes [65]. The droplet
epitaxy method [66] is also used quite frequently to design
magnetic ring geometries. Sometimes wet mixing prescrip-
tion is also employed for synthesizing antiferromagnetic rings
[67]. Probably, the most controlled and patterned geometries
can be constructed by dewetting magnetic nanoparticle solu-
tion in a substrate. Yang and co-workers have made significant
contributions along this line. The capillary force lithography
followed by reactive etching method can also be considered

for designing magnetic nanorings with good accuracy [68].
With these plenty of experimental possibilities, we may think
that the antiferromagnetic nanorings proposed in our work can
be substantiated in suitable laboratories.

V. CLOSING REMARKS

Appearance of pure spin current in an “isolated” nanoring
(not connected to electronic baths) is a well known fact and
can be generated in different ways, but in an open quantum
system it is a new phenomenon, and especially in a mag-
netic system with zero net magnetization. In this work, we
report this phenomenon for the first time, to the best of our
concern, considering an antiferromagnetic ring nanojunction.
Illustrating the quantum system within a TB framework, all
the results are worked out based on the standard Green’s
function formalism. The bias-driven circular current is ob-
tained by evaluating the individual bond currents with the
help of a correlated Green’s function. The effects of ring-
electrode interface configuration, impurities, spin-dependent
scattering parameter, ring size, Fermi energy, ring-electrode
coupling strength and arrangements of magnetic moments
on spin circular current are critically investigated. For some
specific input conditions, a charge circular current may appear
but its magnitude becomes too small compared to the spin
counterpart. All the results of spin circular current are valid
for a broad range of physical parameters which proves the
robustness of our work. Our analysis may provide a new route
of generating and manipulating bias-driven pure spin circular
current in different kinds of magnetic materials with vanishing
net magnetization.
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[54] S. Souma and B. K. Nikolić, Modulating unpolarized current
in quantum spintronics: Visibility of spin-interference effects in

195428-12

https://doi.org/10.1103/PhysRevLett.98.196801
https://doi.org/10.1103/PhysRevB.77.035327
https://doi.org/10.1016/j.ssc.2005.10.011
https://doi.org/10.1504/IJNT.2009.027567
https://doi.org/10.1166/jctn.2011.1686
https://doi.org/10.1038/s41598-019-42316-5
https://doi.org/10.1103/PhysRevB.100.165408
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1021/acs.nanolett.8b01462
https://doi.org/10.1088/0022-3727/49/1/015305
https://doi.org/10.1016/S1567-1739(03)00108-1
https://doi.org/10.1103/PhysRevB.79.073406
https://doi.org/10.1021/jp105030d
https://doi.org/10.1016/S0039-6028(99)00595-6
https://doi.org/10.1143/JJAP.43.2779
https://doi.org/10.1143/JPSJ.74.1079
https://doi.org/10.1103/PhysRevB.85.155440
https://doi.org/10.1103/RevModPhys.90.015005
https://doi.org/10.1038/s41567-018-0063-6
https://doi.org/10.1016/j.physleta.2018.01.008
https://doi.org/10.1126/science.aab1031
https://doi.org/10.1038/ncomms13985
https://doi.org/10.1038/s41567-018-0051-x
https://doi.org/10.1103/PhysRevB.89.134416
https://doi.org/10.1016/j.apsusc.2022.152821
https://doi.org/10.1103/PhysRevLett.113.157201
https://doi.org/10.1103/PhysRevB.23.6851
https://doi.org/10.1103/PhysRevB.80.165316
https://doi.org/10.1063/1.4790147
https://doi.org/10.1063/1.4801843
https://doi.org/10.1103/PhysRevB.82.125424
https://doi.org/10.1103/PhysRevB.104.115140
https://doi.org/10.1103/PhysRevLett.94.106602


GENERATION OF PURE SPIN CIRCULAR CURRENT IN … PHYSICAL REVIEW B 108, 195428 (2023)

multichannel Aharonov-Casher mesoscopic rings, Phys. Rev. B
70, 195346 (2004).

[55] S. J. Xiong and Y. Xiong, Anderson localization of electron
states in graphene in different types of disorder, Phys. Rev. B
76, 214204 (2007).

[56] S. Aigner, L. D. Pietra, Y. Japha, O. Entin-Wohlman, T. David,
R. Salem, R. Folman, and J. Schmiedmayer, Long-range order
in electronic transport through disordered metal films, Science
319, 1226 (2008).

[57] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[58] P. A. Lee and T. V. Ramakrsihnan, Disordered
electronic systems, Rev. Mod. Phys. 57, 287
(1985).

[59] N. F. Mott and W. D. Twose, The theory of impurity conduction,
Adv. Phys. 10, 107 (1961).

[60] K. Walczak, The role of quantum interference in determining
transport properties of molecular bridges, Cent. Eur. J. Chem.
2, 524 (2004).

[61] K. Walczak, Current fluctuations of polymeric chains, Physica
Status Solidi (b) 241, 2555 (2004).

[62] K. Walczak, Charging effects in biased molecular devices,
Physica E 25, 530 (2005).

[63] M. Winzer, M. Kleiber, N. Dix, and R. Wiesendanger,
Fabrication of nano-dot-and nano-ring-arrays by nanosphere
lithography, Appl. Phys. A 63, 617 (1996).

[64] S. M. Weekes, F. Y. Ogrin, and W. A. Murray, Fabrication of
large-area ferromagnetic arrays using etched nanosphere lithog-
raphy, Langmuir 20, 11208 (2004).

[65] Z. Cui, J. Rothman, M. Klaui, L. Lopez-Diaz, C. A. F.
Vaz, and J. A. C. Bland, Fabrication of magnetic rings for
high density memory devices, Microelectron. Eng. 61-62, 577
(2002).

[66] C. Z. Tong, and S. F. Yoon, Nanotechnology Investigation of
the fabrication mechanism of self-assembled GaAs quantum
rings grown by droplet epitaxy, Nanotechnology 19, 365604
(2008).

[67] A. V. Kurilova, A. E. Sokolov, A. L. Sukhachev, O. S. Ivanova,
K. V. Bogdanov, M. A. Baranov and A. Yu. Dubavik, Synthesiz-
ing antiferromagnetic α − Fe2O3 − rGO discs: Their magnetic
and magneto-optical properties, Bull. Russ. Acad. Sci. Phys. 86,
610 (2022).

[68] S. Y. Lee, J.-R. Jeong, S.-H. Kim, S. Kim, and S.-M. Yang,
Arrays of ferromagnetic nanorings with variable thickness fab-
ricated by capillary force lithography, Langmuir 25, 12535
(2009).

195428-13

https://doi.org/10.1103/PhysRevB.70.195346
https://doi.org/10.1103/PhysRevB.76.214204
https://doi.org/10.1126/science.1152458
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1080/00018736100101271
https://doi.org/10.2478/BF02476205
https://doi.org/10.1002/pssb.200302036
https://doi.org/10.1016/j.physe.2004.08.102
https://doi.org/10.1007/BF01567218
https://doi.org/10.1021/la048695v
https://doi.org/10.1016/S0167-9317(02)00476-8
https://doi.org/10.1088/0957-4484/19/36/365604
https://doi.org/10.3103/S106287382205015X
https://doi.org/10.1021/la901726b

