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Quantum interference is studied in a three-band model of pseudospin-1 fermions in the α − T3 lattice. We
derive a general formula for magnetoconductivity that predicts a rich crossover between weak localization (WL)
and weak antilocalization (WAL) in various scenarios. Recovering the known results for graphene (α = 0), we
remarkably discover that WAL is notably enhanced when one deviates slightly from the graphene lattice, i.e.,
when α > 0, even though Berry’s phase is no longer π ; this is attributed to the presence of multiple Cooperon
channels. Upon further increasing α, a crossover to WL occurs that is maximal for the case of the Dice lattice
(α = 1). Our work distinctly underscores the role of nontrivial band topology in the localization properties of a
two-dimensional lattice.
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The interference of waves is so fundamental to physics
that it unites various branches, including but not limited to
optics, acoustics, quantum mechanics, solids, and cold atoms.
In solids, if the disorder is sufficiently high, wave interference
can lead to a complete suppression of electronic transport.
This phenomenon is known as Anderson localization (AL)
[1]. A precursor to AL, weak localization (WL) refers to the
negative quantum correction to the Drude conductivity due
to the interference of electron waves [2,3]. In WL theory,
the deviation to the conductivity is expanded in terms of the
parameter λF /l (λF and l being the Fermi wavelength and
the mean free path, respectively). Since disorder is inevitable
in nature, WL is the standard method to measure the phase
coherence length as well as determine the relevant processes
responsible for electron scattering [4,5]. Coupling the elec-
trons to the magnetic field introduces a finite phase difference
between the interfering waves, and hence, magnetoconduc-
tivity is a critical tool in the study of WL. In contrast to
conventional WL, the presence of spin-orbit coupling can lead
to phase shift via spin precession resulting in destructive inter-
ference of electron waves, thereby enhancing the conductivity.
This phenomenon, termed weak antilocalization [6] (WAL),
also occurs in Dirac and Weyl materials where pseudospin
replaces the actual spin [7–17].

The Dirac and Weyl equations that originated in particle
physics now describe the low-energy physics of materials
such as graphene, Weyl semimetals, and van der Waals struc-
tures, leading to their resurgence in condensed matter physics
[18–20]. The band topology of these materials makes them of
high interest, which leads to peculiar properties. For instance,
the presence of π Berry phase leads to the WAL effect in
graphene [7–9]. Recent experimental breakthroughs in van
der Waals heterostructures, such as the discovery of twisted
bilayer graphene exhibiting flat bands, have further intensified
research in this arena [21].

Almost all the quantum interference studies in these mate-
rials so far have been typically based on a two-band model that
mimics Dirac and Weyl physics. Specifically, it was pointed
out in the two-band Dirac fermion that a crossover from weak

antilocalization to weak localization occurs as the π Berry
phase reduces to zero with the inclusion of Dirac mass [14].
The problem of quantum interference effects on localization
properties in multiband models is largely unexplored, despite
the prevalence of such systems in solid-state experiments as
well as cold atoms. For instance, the α − T3 lattice model [22]
that synthesizes the Dirac and flat-band physics in a single
model comprises a hexagonal lattice with atoms situated at
the vertices of the hexagons and their centers, thus describing
a three-band system of pseudospin-1 fermions [Fig. 1(f)]. By
varying the hopping parameter between two sublattices, one
interpolates between graphene (α = 0) and the dice lattice
(α = 1). The α − T3 model can be realized in trilayers of
cubic lattices, Hg1−xCdxTe quantum wells, and cold-atom
systems [23–26].

In this work, we solve the problem of quantum interfer-
ence in pseudospin-1 fermions and examine the localization
properties of electrons in the α − T3 lattice, deriving a general
formula for magnetoconductivity that predicts a rich crossover
between localization and antilocalization in various scenarios.
We first recover the known results for graphene (α = 0). For
the case of only elastic impurities, we remarkably discover
that weak antilocalization is notably enhanced when one de-
viates slightly from the graphene lattice (i.e., when α > 0),
even though Berry’s phase is no longer π . We attribute this
behavior to the presence of two Cooperon channels. Upon
further increasing α, we cross over to weak localization that is
maximal for the case of Dice lattice (α = 1). Since the band
structure is independent of α, our model distinctly highlights
the role of nontrivial band topology in the localization prop-
erties of electrons confined to the two-dimensional α − T3

lattice.
We consider the following model of pseudospin-1 fermions

in the α − T3 lattice [22]:

Hμ(k) =

⎛
⎜⎝

0 a fμ(k) 0

a f ∗
μ (k) 0 b fμ(k)

0 b f ∗
μ (k) 0

⎞
⎟⎠, (1)
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FIG. 1. (a) The retarded Green’s function. (b) Vertex correc-
tion to the velocity. (c) The Bethe-Salpeter equation for the vertex.
(d) Bare and (e) two dressed Hikami boxes for calculation of con-
ductivity. (f) The α − T3 lattice. The hopping between sublattices A
and B, and A and C is t and αt , respectively. (g) The band structure
of the α − T3 lattice model with a flat band in the middle intersecting
the Dirac cones.

where fμ(k) = μh̄vF (kx − iky), μ = ±1 is the valley index,
vF is the velocity parameter, ψ = tan−1(α) with a = cos ψ ,
b = sin ψ . The energy dispersion is given by εk = 0, +h̄vF k,
and −h̄vF k, corresponding to a flat zero-energy band inter-
secting the linearly dispersing Weyl cone [Fig. 1(g)]. We focus
on the case when the Fermi level intersects the conduction
band, in which case the corresponding eigenfunction is given
by ψk(r) = (1/

√
2)[μae−iμφ, 1, μbeiμφ]eik·r.

We consider both elastic and (pseudo)magnetic impuri-
ties such that the impurity potential is given by U (r) =
U0(r) + Um(r), where U0(r) represents the elastic scattering
potential and Um(r) the magnetic scattering potential. We
assume pointlike disorder with U0(r) = ∑

Ri
ui

0S0δ(r − Ri ),
Um(r) = ∑

Ri

∑
α=x,y,z

ui
αSαδ(r − Ri ), where we sum over im-

purity potentials located at random positions Ri, S0 ≡ I3,
S = (Sx, Sy, Sz ) is the vector of spin-1 matrices, and ui

0,α’s are
the corresponding impurity potentials [27]. While comparing
our results to the particular case of graphene (a → 1), we
must note that the spin matrices Si’s do not reduce to the
two-component Pauli spin matrices σi’s. For example, when
a → 1, the sublattice C is wholly decoupled, and while the
Sz matrix couples with energy uz to sublattice A and zero
energy to sublattice B, different from a σz impurity where the
coupling would be uz to sublattice A and −uz to sublattice
B. Thus when focusing on graphene with magnetic impu-
rities, we must draw the comparison carefully, although we
don’t find qualitative differences in the results. We neglect the
interference of different impurities with each other. In what
follows, we assume in-plane isotropy (ux = uy), although, in
Ref. [27], we also present results for the general case.

Quantum interference to conductivity in pseudospin-1
fermions is calculated diagrammatically [see Figs. 1(a)–1(e)].
The retarded (R) and advanced (A) Green’s functions are
GR/A

k (ω) = 1/(ω − εk ± ih̄/2τ ), where the scattering rate is
given by τ−1 = τ−1

e + τ−1
z + 2τ−1

x ; h̄τ−1
e = 2πNF n0u2

0(a4 +

b4 + 1)/4 defines the elastic scattering rate, while h̄τ−1
x =

2πNF nmu2
x/2 and h̄τ−1

z = 2πNF nmu2
z (a4 + b4)/4 define the

magnetic scattering rates. Furthermore, τe is related to
the elastic scattering length �e by �e = √

Dτe, where D =
v2

F τ/2 is the diffusion constant. We similarly define the
magnetic scattering lengths lx and lz as well. The ver-
tex correction to the velocity [Fig. 1(b)] is evaluated by
self-consistently solving the following equation: ṽi

k = vi
k +∑

k′ GR
k′GA

k′ 〈Uk,k′Uk′,k〉impṽ
i
k′ , where ṽi

k = ηνvk, and ην is
evaluated to be [27]

η−1
v = 1 − [αe/(a4 + b4 + 1) + 2abαx]. (2)

We recover ην = 2 for graphene [7,9]. The net conductivity is
evaluated by summing over the contribution of one bare and
two dressed Hikami boxes [Figs. 1(d) and 1(e)] [27]:

σ = −e2NF τ 3η2
vv

2
F

h̄2 (1 + 2ηH )
∑

q

�(q), (3)

where NF = EF /2π (h̄vF )2 is the density of states,
ηH = −(1/2)(1 − η−1

v ), and the vertex �(q) is evaluated
by solving the Bethe-Salpeter equation �k1,k2 = �0

k1,k2
+∑

k �0
k1,kGR

kGA
q−k�k,k2 , where q = k1 + k2. We recover

ηH = −1/4 for graphene. In the limit when q → 0, the
bare vertex is evaluated to be �0

k1,k2
≡ 〈Uk1,k2U−k1,−k2〉imp=

(h̄/2πNF τ )
∑

m

∑
n zmneimφ1 einφ2 , where both m and n run

between −2 and +2, and zmn are entries of the matrix z given
by [27]

z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 z(−22)

0 0 0 z(−11) 0

0 0 z(00) 0 0

0 z(1−1) 0 0 0

z(2−2) 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

and the elements are given by z(−22) = b4αe
a4+b4+1 + b4αz

a4+b4 ,

z(−11)= 2b2αe
a4+b4+1 − 2b2αx, z(00)= (2a2b2+1)αe

a4+b4+1 − 2a2b2αz

a4+b4 − 4abαx,

z(1−1) = 2a2αe
a4+b4+1 − 2a2αx, and z(2−2) = a4αe

a4+b4+1 + a4αz

a4+b4 .
The Bethe-Salpeter equation [Fig. 1(c)] is solved using

the ansatz �k1,k2 = (h̄/2πNF τ )
∑

m

∑
n = γ mneimφ1 einφ2 ,

where the coefficients γ mn of the matrix γ are
solved by the equation γ = (I − z�)−1z, and �mn =

1
2π

∫ 2π

0 ei(m+n)φ (1 + iτq · vF )−1dφ. We evaluate [27]

γ (−mm) = 2
∏

p	=m g(−pp)∏
k

[
g(−kk) + Q2

( ∑
l

1
g(−ll ) + ∑

q
1

g(−qq)g(−q−1,q+1)

)] ,

(5)

where the “Cooperon gaps” have been introduced g(−ii) =
2(1 − z(−ii) )/z(−ii), and Q = qvF τ . Equation (5) along with
Eq. (3) form the main results of this paper. We evaluate the
vertex �(q) retaining Cooperon gaps that result in diverging
contributions to the conductivity [27].

The conductivity is evaluated by integrating Eq. (3) be-
tween 1/le and 1/lφ [7]. In the presence of a magnetic
field, the wave vector q is quantized as q2

n = (n + 1/2)4eB/h̄,
where n is the Landau-level index. Summing over n and
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TABLE I. Coefficients �ϑ
i , Gϑ

i , and φϑ
i for graphene (g), dice (d), α − T3 with elastic impurities (o), and α − T3 with magnetic impurities

in the z direction (z).

ϕ
g
0 1 ϕd

0 1 ϕo
0 -1 ϕz

0 1

�
g
0 (g(1−1) )−1 �d

0 (g(−11) )−1 �o
0 (g(00) )−1 �z

0 0

Gg
0 g(2−2) Gd

0 g(00) Go
0 g(1−1) Gz

0 g(2−2)

ϕ
g
1 -1 ϕd

1 0 ϕo
1 1 ϕz

1 1

�
g
1 (g(00) )−1 + (g(2−2) )−1 �d

1 0 �o
1 (g(1−1) )−1 + (g(−11) )−1 �z

1 0

Gg
1 g(1−1) Gd

1 0 Go
1 g(00) Gz

1 g(−22)

ϕ
g
2 0 ϕd

2 0 ϕo
2 -1 ϕz

2 0

�
g
2 0 �d

2 0 �o
2 g(00) �z

2 0

Gg
2 0 Gd

2 0 Go
2 g(−11) Gz

2 0

subtracting the zero-field conductivity gives us magnetocon-
ductivity �σ (B) [3]. We present magnetoconductivity results
focusing on the weak-B regime, i.e., l2

B 
 l2
e , and specifically

focus on four special cases: graphene, dice lattice, and the
α − T3 with either elastic impurities or magnetic impurities in
the z direction. We evaluate the following general expression
for magnetoconductivity [27]:

�σ (B) = e2

πh

sϑ∑
i=0

αϑ
i

[
�

(
�2

B

�2
φ

+ �2
B(

�ϑ
i

)2 + 1

2

)

− ln

(
�2

B

�2
φ

+ �2
B(

�ϑ
i

)2

)]
, (6)

where � is the digamma function, ϑ ∈ {g, d, o, z} indicates
graphene (g), dice (d), α − T3 with elastic impurities (o), and
α − T3 with magnetic impurities in the z direction (z), and

αϑ
i = ϕϑ

i

(
ηϑ

v

)2(
1 + 2ηϑ

H

)
2
(
1 + �ϑ

i

) ,
(
�ϑ

i

)−2 = Gϑ
i

2�2
(
1 + �ϑ

i

) , (7)

where l−2 = l−2
e + l−2

z + 2l−2
x . The values of the coefficients

�ϑ
i , Gϑ

i , and φϑ
i are presented in Table I.

In the case of graphene (a = 1), the Cooperon gaps that can
vanish are g(1−1), which results in WAL and g(2−2) that results
in WL. We observe a crossover from weak localization to
weak antilocalization as αe varies from zero to unity. Magnetic
impurities suppress WAL in graphene, as expected [14]. We
plot this behavior in Fig. 2(a). Note that the other solution of

FIG. 2. Magnetoconductivity in the units of e2/π h̄. (a) Crossover
from weak localization to weak antilocalization in graphene as αe is
increased, i.e., the relative scattering rate of the elastic impurities is
increased compared to magnetic impurities. (b) Dice lattice displays
only weak localization. We chose lφ = 300 nm and le = 1000 nm.

graphene (a = 0) is similar; the Cooperon gaps that vanish are
g(−11), which results in WAL and g(−22) that causes WL.

In the case of dice lattice (a = 2− 1
2 ), the only vanish-

ing Cooperon gap is g(00), which causes WL. In contrast to
graphene lattice, dice lattice displays only weak localization,
as seen in Fig. 2(b). This can be understood as the quantized
Berry phase changes from π to zero as we change the hopping
parameter from a = 1 (graphene) to a = 2− 1

2 (dice lattice).
In the presence of only elastic impurities

(αe = 1), the Cooperon gaps that vanish are g(1−1), g(−11), both
of which are WAL channels, and g(00), which is a WL channel.
In Fig. 3(a) we plot the corresponding magnetoconductivity as
a function of the parameter a. When a = 0 we observe WAL,
as expected for graphene. Remarkably, as the parameter
a is increased, WAL is notably enhanced even though the
Berry phase decreases from its peak value π at a = 0. As the
parameter a is increased to 2− 1

2 , WAL gradually crosses over
to WL. The α → α−1 duality of the α − T3 is reflected in the
weak (anti)localization as a is increased beyond 2− 1

2 . The
notable enhancement in WAL is attributed to the presence
of two WAL channels (g(−11) and g(1−1)) when 0 < a < 1.
We estimate that WAL is maximum when a = 1/4 or when
a = √

3/2.
In the presence of only magnetic Sz impurities (αz =

1), the Cooperon gaps g(−22) and g(2−2) yield the diverging
contributions. In Fig. 3(b) we plot the corresponding mag-
netoconductivity. We observe WL throughout that attains its

FIG. 3. Magnetoconductivity in the units of e2/π h̄. (a) Crossover
from WAL (a = 0, graphene) to WL (a = 2− 1

2 , dice) to WAL (a = 1,
graphene) for elastic impurities (αe = 1). WAL is maximum slightly
away from the graphene lattice, while WL is maximum for the dice
lattice. (b) WL for the case of only Sz impurities. We chose lφ = 300
nm and le = lz = 1000 nm.
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maximum value for the dice lattice. For only Sx impurities
(i.e., αx = 1/2), no diverging contributions to the Cooperon
channels are obtained, and hence we do not discuss this case
here.

In the α − T3 Hamiltonian, when α = 0 (hexagonal
graphene lattice), the Hamiltonian belongs to the symplectic
AII Wigner-Dyson class [28], similar to a spin-orbit cou-
pled two-dimensional electron gas (2DEG). The in-plane
spin-momentum locking necessitates (pseudo)spin-flip for
quasiparticle backscattering. The sum of incoming and out-
going (pseudo)spins becomes zero, leading to the weak
antilocalization from the Cooperon mode. For an arbitrary
value of α ∈ (0, 1), time-reversal (TR) symmetry is still
preserved, and thus the system belongs to the orthogonal
Wigner-Dyson AI class. In general, such a system is similar
to the conventional 2DEG and would show weak localization.
Thus interpolating the value of α from zero to unity would
result in smooth crossover from WAL to WL as shown earlier.
In general, if the TR symmetry is microscopically broken,
there would be a crossover to the unitary class where both WL
and WAL are suppressed due to cancellation of time-reversed

electron interference paths. We speculate that trigonal warping
effects may suppress WAL at higher densities, but time-
reversal symmetry will tend to restore WL due to intervalley
scattering [9]. Detailed analysis of trigonal warping and inter-
valley scattering is reserved for future studies.

In summary, quantum interference of electrons confined
in the two-dimensional α − T3 lattice can result in strikingly
different localization-antilocalization properties, which can
be manipulated by controlling the hopping strength of the
electrons as well by magnetic doping. We derived a gen-
eral formula for magnetoconductivity and predicted a rich
crossover between weak localization and weak antilocaliza-
tion in various different scenarios. We recovered the known
results for graphene (α = 0), we discovered that WAL is
notably enhanced when the lattice is deviated slightly from
the usual graphene lattice, i.e., when the Berry’s phase is
no longer π . We attributed this behavior to the presence
of multiple Cooperon channels. Our work not only makes
an important advance in the study of electron transport in
two-dimensional materials but also will significantly drive
experimental studies in cold atoms.
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