
PHYSICAL REVIEW B 108, 195425 (2023)

Cone-dependent retro- and specular Andreev reflections in AA-stacked bilayer graphene
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We theoretically study the Andreev reflection (AR) in AA-stacked bilayer graphene-superconductor junction.
AABG has a linear gapless energy band with two shifted Dirac cones and the electronic states are described by
the cone indices. The results indicate that the property of AR strongly depends on the cone degree of freedom.
In the absence of the interlayer potential difference, only intracone AR and normal reflection (NR) could occur,
and the intercone process is forbidden. By adjusting the potential, the intracone AR can be specular AR (SAR)
in one cone and it is retro-AR (RAR) in the other cone. The existence of the interlayer potential difference would
lead to the intercone scattering. As a result, double ARs and double NRs can take place between the two cones.
The intercone SAR could happen in a broad potential region. Furthermore, the intercone retro-NR (RNR) could
happen as well. The switch between SAR and RAR, and the switch between specular NR (SNR) and RNR can
be achieved by regulating the potential. Therefore, different cone carriers can be separated spatially based on the
RAR and SAR. The cone-dependent Andreev conductance may be separately measured near the critical values
where RAR crosses over to SAR.
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I. INTRODUCTION

Andreev reflection (AR) is an important phenomenon of
quantum transport, which occurs at the interface between the
metal and superconductor (SC) [1]. An incident electron from
the metal is reflected as a hole at the metal-SC interface and
a Cooper pair is formed in the SC. In conventional metal,
the hole is reflected back along the path of incident elec-
tron, which is called retro-AR (RAR). However, the hole can
be expected to be reflected specularly at the graphene-SC
interface due to the interband Andreev processes, which is
named specular AR (SAR) [2,3]. Recently, the SAR process
has been discovered and studied in graphene [3–11], silicene
[12,13], semimetals [14–17], topological insulators [18], and
two-dimensional electron gas [19]. Because of the quantum
interference of the reflected holes from two superconductor
terminals, the RAR and SAR processes could be selected by
tuning the phase difference [6]. Experimentally, the observa-
tion of transitions between RAR to SAR has been reported at
the van der Waals interface of graphene and NbSe2 supercon-
ductor [9,10].

Bilayer graphene (BG) exhibits additional properties that
make it distinct from monolayer graphene, such as trigonal
warping [20] and unusual quantum Hall effect [21]. BG ex-
ists in three configurations: AA stacking, AB stacking, and
twisted bilayer [22]. For the usual AB-stacked BG (ABBG),
the A sublattice of the top layer is stacked directly above
the B sublattice of the bottom layer. ABBG can open a gap
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between the conduction and valence bands by adjusting the
gate voltages between the two layers [23–26]. ABBG is also
a candidate to observe the crossover from RAR to SAR since
the Fermi energy broadening near the Dirac point is weaker
compared to monolayer graphene [27,28]. Some interesting
features of AR in ABBG-SC hybrid system have been theoret-
ically investigated by several groups [27–32]. The differential
conductance across the ABBG-SC junction suggests a char-
acteristic signature of the crossover from intraband RAR to
interband SAR that manifests itself in a strongly suppressed
interfacial conductance [27]. However, the signature of SAR
is not very pronounced in experiment [9]. It is found that the
SAR process can be enhanced in the presence of a Zeeman
field due to the separation of Dirac points for up spin and
down spin [28]. Furthermore, the valley-entangled Cooper
pair splitter could be realized and controlled based on the
nonlocal AR in the ABBG-SC-ABBG junction [30–32].

For the AA-stacked bilayer graphene (AABG), each car-
bon atom of the top layer is stacked directly above the
corresponding atom of the bottom layer [22]. The stability
and electronic structure of AABG have been theoretically
predicted [33], and stable samples of AABG have been re-
alized in experiment [34,35]. Contrary to ABBG, AABG
possesses a linear gapless energy spectrum with two shifted
Dirac cones in the low-energy regime. Recently, the electronic
properties of AABG have attracted considerable attention
[36–54], including quantum Hall effect [36–38], Landau lev-
els [39–41], antiferromagnetic states [43–45], and electronic
transport [46–51]. Since the energy bands of the AABG
are different from ABBG, many interesting characteristics of
quantum Hall effect in AABG are predicted, which are not
seen in ABBG [36]. The magnetooptical absorption spectra

2469-9950/2023/108(19)/195425(9) 195425-1 ©2023 American Physical Society

https://orcid.org/0000-0003-0959-9622
https://orcid.org/0000-0002-5512-9608
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.195425&domain=pdf&date_stamp=2023-11-21
https://doi.org/10.1103/PhysRevB.108.195425


WEI-TAO LU AND QING-FENG SUN PHYSICAL REVIEW B 108, 195425 (2023)

of AABG exhibit two kinds of absorption peaks resulting
from two groups of Landau levels, different from the spectra
of ABBG [39]. Discussion on the Landauer conductance for
both AABG and ABBG demonstrates that the conductance
is very sensitive to the geometry of the system, which could
be used as an electromechanical switch [46]. The electrons in
AABG are not only chiral but also are described by a cone
degree of freedom. The unique cone transport, together with
the negative refraction, suggests the possibility of conetronic
devices based on AABG [49]. The van der Waals domain wall
between monolayer graphene and AABG, which is described
by a local variation of interlayer coupling, can be used to
generate two distinct types of collimated electron beams that
correspond to the lower and upper cones in AABG [51].
Nonetheless, the AR phenomenon in the AABG still need to
be explored, which may provide specific signatures for the
AABG.

In this work, we study the property of AR in the AABG-SC
junction in the framework of the Bogoliubov-de Gennes equa-
tion. The cone-dependent RAR and SAR are found in AABG,
which are not observed in ABBG and monolayer graphene.
In the presence of the interlayer potential difference, both the
intracone and intercone scatterings can take place, giving rise
to the double ARs and double NRs. The intercone AR (or
NR) may be SAR and RAR (or SNR and RNR) depending
on the value of the potential. The Andreev conductances for
the upper cone and lower cone exhibit different features, and
they can be separately measured near the critical values for
SAR and RAR. The property of AR and NR scatterings may
be understood by the ray equations and the orthogonality of
wave functions.

The rest of this paper is organized as follows. The Hamilto-
nian of the AABG-SC junction and the reflection processes at
the two cones are given and studied in Sec. II. The results on
cone-polarized AR and double ARs are discussed in Sec. III.
A brief summary is presented in Sec. IV.

II. THEORETICAL FORMULATION

A. Theoretical model and reflection probabilities

The AABG consists of two graphene layers and each layer
consists of two triangular sublattices, A and B. Considering
the nearest-neighbor hopping, the system can be described by
the tight-binding Hamiltonian [43],

H = − t
∑

〈i j〉�,σ
a†

i�σ a j�σ

− γ
∑

i∈A,σ

a†
i1σ ai2σ − γ

∑
j∈B,σ

a†
j1σ a j2σ + H.c., (1)

where a†
i�σ (ai�σ ) is the creation (annihilation) operator with

spin σ at the sublattice i ∈ A, B in the layer � = 1, 2. The first
term is the in-plane nearest-neighbor hopping with amplitude
t ≈ 2.8 eV. The second and third terms describe the inter-
layer nearest-neighbor hopping with amplitude γ ≈ 200 meV
[47]. The in-plane and interlayer next-nearest neighbor hop-
pings are very weak compared with t and γ , which are
neglected in the following calculation. In the basis ψ =
(ψA1, ψB1, ψA2, ψB2)T , the tight-binding Hamiltonian in the

k space can be written in the following matrix representation:

Hη

AABG =
(

Hη + Uτ0 + δτ0 γ τ0

γ τ0 Hη + Uτ0 − δτ0

)
, (2)

with Hη = h̄vF (kxτx + ηkyτy). τ = (τx, τy) are the Pauli ma-
trices in the sublattice A and B spaces and τ0 is unit matrix.
The valley index η = ±1 corresponds to the K and K ′ valleys.
The interlayer potential difference is δ = (U1 − U2)/2 and the
potential is U = (U1 + U2)/2 with U1 and U2 being the elec-
trostatic potential at the two layers, which can be induced by
the top and back gates on the sample. δ could open a band gap
in ABBG due to the asymmetric interlayer coupling [23,24].
However, δ cannot open a gap in AABG since the coupling
is symmetric, but it could induce the intercone scattering, as
discussed in Sec. III B.

For the proposed AABG-SC junction in the (x, y) plane,
the SC electrode covers the region x > 0 and the normal
AABG electrode covers the region x < 0. The interlayer po-
tential difference δ and the potential U are only applied in
the AABG region. Note that here the SC refers to supercon-
ducting AABG, which can be induced via the proximity effect
by depositing SC on AABG [55–57]. The electron and hole
excitations can be described by the Bogoliubov-de Gennes
(BdG) Hamiltonian

HBdG =
(

Hη

AABG 	I4×4

	I4×4 −T Hη

AABGT −1

)
, (3)

where I4×4 is the 4 × 4 unit matrix and 	 is the su-
perconducting gap coupling the time-reversed electron and
hole states. T = (τz 0

0 τz
)C with the complex conjugation

C is the time-reversal operator, which satisfies T −1 = T
and T Hη

AABGT −1 = H−η

AABG. The Hamiltonian HBdG is time-
reversal invariant and the two valleys are degenerate. Thus, we
only discuss the AR process of one valley in the following.

The dispersion relation for electron and hole in the AABG
region can be written as

εe = ±h̄vF

√
k2

x + k2
y + α

√
γ 2 + δ2 + U, (4)

εh = ±h̄vF

√
k2

x + k2
y − α

√
γ 2 + δ2 − U, (5)

and α = ± for the upper and lower cones. In the SC region,
the eigenvalue for Hamiltonian HBdG has the form

εS = ±
√(

h̄vF

√
k2

x + k2
y ± γ

)2 + 	2. (6)

Figure 1(a) shows the band structure in the AABG region
calculated by Eqs. (4) and (5). The solid and dashed curves are
energy bands for electron and hole, respectively. We can find
that the bands of pristine AABG are two copies of the band of
monolayer graphene, one shifted by −γ and the other by +γ .
Thus, the linear band consists of two Dirac cones, that is the
lower and upper cones [see black and red cones in Fig. 1(a)].

The eigenvectors of the junction are given by solving the
BdG Hamiltonian (see Appendix for detail). For an electron
injecting from the upper cone, the wave functions in the
AABG (x < 0) and SC (x > 0) regions of the AABG-SC
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FIG. 1. (a) Band structures in the AABG region. An incident
electron from the A± points can be Andreev reflected as a hole from
B± points and normally reflected as an electron from C± points.
The solid and dashed curves are the energy bands for electron and
hole. The black and red curves are the energy bands at upper and
lower cones, respectively. (b) and (c) The projection of the Andreev
scattering and normal scattering processes (b) on the kx-ky plane
and (c) on the x-y real space. The black and red arrows denote the
group velocities at the upper and lower cones. The arrows with filled
circles and empty circles are for the electrons and holes, respectively.
The potential satisfies Uc1 < U < Uc2 in (a)–(c). (d) The Andreev
scattering and normal scattering processes on the kx-ky plane when
Uc3 < U < Uc4.

junction can be written as:

ψAABG(x) = ψ+
e1 + r+

e1ψ
−
e1 + r+

e2ψ
−
e2 + r+

h1ψ
−
h1 + r+

h2ψ
−
h2, (7)

ψSC(x) = t+
S1ψ

+
S1 + t+

S2ψ
+
S2 + t+

S3ψ
+
S3 + t+

S4ψ
+
S4. (8)

For the eigenvectors ψ±
e(h)1 and ψ±

e(h)2, the indexes 1 and 2 refer
to the upper and lower cones, e and h refer to electron and
hole, ± represent the right-going and left-going propagating
waves, respectively. ψS1–S4 are the eigenvectors in the SC
region (see Appendix for detail). r+

e1(e2), r+
h1(h2), and t+

S1–S4 are
the NR coefficient, AR coefficient, and tunneling coefficient,
respectively. Based on the continuity of wave function and the
conservation of current density at the interface with x = 0, the
reflection coefficients can be derived, and then the reflection
probabilities can be obtained as

R++
N = |r+

e1|2, (9)

R+−
N = E − U − �

E − U + �
Re

(
ke2x

ke1x

)
|r+

e2|2, (10)

R++
A = E − U − �

E + U + �
Re

(
kh1x

ke1x

)
|r+

h1|2, (11)

R+−
A = E − U − �

E + U − �
Re

(
kh2x

ke1x

)
|r+

h2|2, (12)

where � =
√

γ 2 + δ2 and E is the energy of the incident
electron. R++

N and R++
A are the intracone NR and AR for the

upper cone. R+−
N and R+−

A are the intercone NR and AR for
electron from the upper cone (+) to the lower cone (−). ke1(2)x

and kh1(2)x are x components of momentums ke1(2) and kh1(2),
respectively. In the same way, when electron injects from the
lower cone, the reflection probabilities can be derived as

R−+
N = E − U + �

E − U − �
Re

(
ke1x

ke2x

)
|r−

e1|2, (13)

R−−
N = |r−

e2|2, (14)

R−+
A = E − U + �

E + U + �
Re

(
kh1x

ke2x

)
|r−

h1|2, (15)

R−−
A = E − U + �

E + U − �
Re

(
kh2x

ke2x

)
|r−

h2|2. (16)

Here, R−−
N and R−−

A are the intracone NR and AR for the lower
cone. R−+

N and R−+
A are the intercone NR and AR for electron

from the lower cone (−) to the upper cone (+). The defined
reflection probabilities satisfy the conservation conditions,

R±
total = R±+

N + R±−
N + R±+

A + R±−
A = 1, (17)

in the subgap with the energy |E | < 	.
The Andreev conductance for the electron from the upper

and lower cones at zero temperature can be evaluated by the
Blonder-Tinkham-Klapwijk formula [58]:

G±
AR = G0

∫ π/2

0
(1 + R±+

A + R±−
A − R±+

N − R±−
N ) cos θdθ,

(18)

where θ is the incident angle of electron with respect to the
x direction, G0 = e2N±

0 (E )/h characterizes the ballistic con-
ductance of the AABG-SC junction, N±

0 (E ) = W |ke1(2)|/π
denotes the number of transverse modes, W labels the width
of the junction, and the incident energy is E = eVb with the
voltage Vb on the AABG-SC junction.

B. Reflection processes at the two cones

Before giving the numerical results, in this section, we
discuss the property of AR and NR in the scattering process
by analyzing the eigenvectors and the ray equations. For a
given incident energy E , there are two incident electronic
states corresponding to the wave vectors A+ and A− and four
reflection states corresponding to the wave vectors B+, B−,
C+, and C−, as shown Fig. 1(a). The two ARs correspond to
the wave vectors B+ and B−. The two NRs correspond to the
wave vectors C+ and C−. A+, B+, and C+ are the wave vectors
at upper cone while A−, B−, and C− are the wave vectors
at lower cone. Below we discuss the effect of the interlayer
potential difference δ and the potential U on the AR and NR
processes.

When δ = 0, regardless of the values of U , the eigenvectors
in the AABG region satisfy the relations

〈ϕ±
ei |ϕ±

e j〉 = 0, 〈ϕ±
ei |ϕ±

h j〉 = 0, (19)

with i, j = 1, 2 and i �= j. That is, the eigenvectors with dif-
ferent cone indices are orthometric. The orthogonality of the
wave function suggests that both AR and NR between the
cones are forbidden. The AR and NR are only allowed in the
intracone.
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When δ �= 0 and U = 0, the eigenvectors satisfy

〈ϕ±
ei |ϕ±

e j〉 �= 0, 〈ϕ±
ei |ϕ±

h j〉 = 0, (20)

suggesting that NR between the cones is allowed but the AR
between the cones is still forbidden. Consequently, not only
the intracone NR but also the intercone NR would occur, and
it is referred to as double NRs.

When δ �= 0 and U �= 0, the eigenvectors satisfy

〈ϕ±
ei |ϕ±

e j〉 �= 0, 〈ϕ±
ei |ϕ±

h j〉 �= 0, (21)

suggesting that both NR and AR between the cones are al-
lowed. The intracone AR and intercone AR can occur. This
means that both double NRs and double ARs could occur.
Therefore, the occurrence of AR and NR strongly depends on
the interlayer potential difference δ and the potential U .

For the AR process, both SAR and RAR processes could
take place in the AABG-SC junction. Next, we analyze the
SAR and RAR by the ray equations [59], which can be
controlled by δ and U . Based on the dispersion relations in
Eqs. (4) and (5), there are four critical values for the potential
in the AR process:

Uc1(c2) = −� − (+)E , (22)

Uc3(c4) = � − (+)E . (23)

When Uc1 < U < Uc2, as shown in Fig. 1(a), the wave vector
k and the group velocity v for the incident electron at the A+
and A− points are positive, and they have the relation:

k(A+ ) · v(A+ ) > 0, k(A− ) · v(A− ) > 0. (24)

However, for the Andreev reflected holes at the B+ and B−
points, k and v satisfy

k(B+ ) · v(B+ ) > 0, k(B− ) · v(B− ) < 0. (25)

For the normal reflected electrons at C+ and C− points, k and
v satisfy

k(C+ ) · v(C+ ) > 0, k(C− ) · v(C− ) > 0. (26)

Comparing the ray equations (24) and (26), one may find
that k(C± ) · v(C± ) of the reflected electron has the same sign
as that of the incident electron, suggesting that the reflection
of electron at both C+ and C− points is specular reflection.
Nevertheless, the ray equations (24) and (25) indicate that
k(B+ ) · v(B+ ) has the same sign as k(A+ ) · v(A+ ) and k(A− ) · v(A− )

and so the reflection of hole at B+ point is SAR regardless of
the intercone and intracone ARs. While k(B− ) · v(B− ) has the
opposite sign as k(A+ ) · v(A+ ) and k(A− ) · v(A− ), so the reflection
at B− point is RAR [see Figs. 1(b) and 1(c)]. On the other
hand, when Uc3 < U < Uc4 in Fig. 1(d), the intracone AR in
the upper cone and the intercone AR from the upper cone to
the lower cone are RAR, but the intracone AR in the lower
cone and the intercone AR from the lower cone to the upper
cone are SAR. Furthermore, it is possible that the SAR and
RAR processes could happen at the same time, as discussed
in the following.

III. RESULTS AND DISCUSSIONS

In this section we discuss the property of AR process in
the AABG-SC junction and its dependance on cone degree

FIG. 2. AR probabilities R++
A and R−−

A in the (U, ky ) plane for
the incident electron from the (a) upper cone and (b) lower cone at
E = 	 and δ = 0. The white dashed curves are energy bands in the
AABG region, which are also the boundaries of the zero and nonzero
probabilities.

of freedom, including the cone-polarized AR at δ = 0 in
Sec. III A and the double ARs at δ �= 0 in Sec. III B. The value
of superconducting gap is set as 	 = 0.01γ and its value does
not affect the conclusion. 	 is the unit of E , δ, and U .

A. Cone-polarized Andreev reflection

First, we discuss the AR process in the absence of δ and
the results are given in Figs. 2–4. Equation (19) indicates that
when δ = 0 the AR and NR for the intercone are forbidden
and only the intracone processes are permitted. For the elec-
tron from upper cone, R++

N + R++
A = 1 and R+−

N = R+−
A = 0.

For the electron from lower cone, R−−
N + R−−

A = 1 and R−+
N =

R−+
A = 0.

Figure 2 shows the AR probabilities R++
A and R−−

A in the
(U, ky) plane for the incident electron from [Fig. 2(a)] upper
cone and [Fig. 2(b)] lower cone at E = 	. One can clearly
see that the SAR could happen in the region Uc1 < U < Uc2

for the upper cone. When δ = 0, Uc1(c2) = −γ − (+)E =

FIG. 3. Andreev conductance G−
AR of the AABG-SC interface for

the lower cone at δ = 0. The insets show the AR probability R−−
A

in the (E , θ ) plane at U = 99.6	 and 100.0	. The cyan curve are
the Andreev conductance G+

AR for the upper cone at δ = 0 and U =
99.4	.
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FIG. 4. Andreev conductances (a) G+
AR, (b) G−

AR, and (c) Gtotal
AR of

the AABG-SC interface at δ = 0. The insets in (a) and (b) show the
AR probabilities R++

A and R−−
A in the (E , θ ) plane at U = 60.0	 and

δ = 0, respectively.

−100	 − (+)E . Namely, the SAR could happen in the region
|γ + U | < E . On the other hand, the AR is RAR in the region
|γ + U | > E . Similarly, for the lower cone, the SAR happens
in the region Uc3 < U < Uc4 (i.e., |γ − U | < E ) and the RAR
appears in the region |γ − U | > E , as shown in Fig. 2(b).
Here the SAR occurs between the conduction band and va-
lence band in the intracone, and the RAR is in the intraband
(the conduction band or valence band) in the intracone. In par-
ticular, when the potential U is in the region −γ − E < U <

−γ + E , the AR processes are, respectively, the SAR and
RAR for the incident electron from the upper cone and lower
cone [see Fig. 1(b)]. When γ − E < U < γ + E , the AR
processes are RAR and SAR for the electron from the upper
and lower cones [see Fig. 1(d)]. Therefore, based on the AR
processes, different cone carriers can be spatially separated
according to their cone indices by adjusting the potential U .
Here the potential U can be well controlled by the gate voltage
in the experiment. In addition, because of the duplicate band
structures between the two cones, the profiles of their ARs
are the same, as exhibited in Figs. 2(a) and 2(b). The AR
probabilities are symmetric with respect to ky = 0 due to the
invariance of the Hamiltonian τxHη(ky)τ−1

x = Hη(−ky). The
SAR for the upper and lower cones are also symmetric about
U = −γ and γ (here γ = 100	), because of the intracone
particle-hole symmetry. Furthermore, the AR probability is
equal to one at ky = 0, indicating a complete conversion of
electron to hole for the normal incidence case.

Taking the lower cone for example, Fig. 3 shows the
Andreev conductance G−

AR of the AABG-SC interface for
different values of potential U near the critical values Uc3(c4).
The upper cone has the similar properties near the critical
values Uc1(c2). In the subgap energy region, the AR is RAR
when eVb < γ − U and it is SAR when eVb > γ − U . The
conductance G−

AR contributed by RAR decreases with eVb

and reduces to zero at eVb = γ − U where RAR crosses over
to SAR. At eVb = γ − U , the mode number of the incident
electron from the lower cone becomes zero, leading to the
disappearance of the conductance. Then the conductance G−

AR
by SAR increases from zero with the further increase of
eVb. When the potential increases to U = 100.0	, G−

AR is

completely governed by SAR, which decreases monotonously
with eVb. The insets in Fig. 3 show the AR probability R−−

A in
the (E , θ ) plane at U = 99.6	 and 100.0	. As E increases
at U = 99.6	, the angle range for RAR probability reduces
rapidly while the angle range for SAR probability becomes
increasing. At U = 100.0	, the SAR probability is weakened
gradually with the increase of E . The property of Andreev
conductance can be understood by Eq. (18) and the AR prob-
ability in the (E , θ ) plane. In addition, in the limit eVb → 0
one has G−

AR → 4G0/3 for RAR process. Such a characteristic
is also proved in other systems [3]. Figure 3 also exhibits
the Andreev conductance G+

AR for the upper cone at δ = 0
and U = 99.4	 (see the cyan curve). We can see that G+

AR
always has a large value while G−

AR is zero at U = 99.4	 and
eVb = γ − U = 0.6	. Therefore, the Andreev conductance
of the two cones can be separately measured near the critical
values Uc1(c2) and Uc3(c4).

Figure 4 shows the property of Andreev conductances G±
AR

in a wider range of potential U for the [Fig. 4(a)] upper cone
and [Fig. 4(b)] lower cone. From Figs. 4(a) and 4(b), one
may find that although the AR is RAR for both cones in
the considered region, the features of the two RAR processes
are different. With the increase of U , the conductances G±

AR
for both cones decrease gradually, but the decrease of G+

AR
for upper cone is more significant. G−

AR is larger than G+
AR

for given eVb and U , because R−−
A occurs in a wide angle

range while R++
A occurs in a narrow angle range [see the

insets in Figs. 4(a) and 4(b)], corresponding to the critical
angles of Eq. (27) in the following. In the superconducting
band gap, G±

AR increases with eVb, and the increase is more
significant for the lower cone, due to the increase behavior
of R++

A and R−−
A as functions of E . The Andreev conduc-

tance G+
AR for upper cone has a maximum value at eVb = 	

where G+
AR = 2G0, regardless of the value of U . However, the

conductance G−
AR keeps declining as U increases at eVb = 	

for the lower cone. Figure 4(c) presents the total conductance
Gtotal

AR = G+
AR + G−

AR, and its feature is similar to that of G+
AR

and G−
AR.

B. Double Andreev reflections

Next, we discuss the double ARs and double NRs at δ �= 0
in which the intercone AR and intercone NR can occur, and
the results are given in Figs. 5–8. Figure 5 presents the AR
and NR probabilities R±±

N,A as functions of incident angle θ for
the incident electron from the [Figs. 5(a)–5(c)] upper cone and
[Figs. 5(d)–5(f)] lower cone.

When U = δ = 0.0 in Figs. 5(a) and 5(d), the intercone
AR and intercone NR processes are forbidden, that is R+−

N =
R−+

N = R+−
A = R−+

A = 0. Interestingly, the perfect intracone
ARs with R++

A and R−−
A almost being one appear in a wide

angle region. The relation between the incident angle θ and
the AR angle φ satisfies ke1(e2) sin θ = kh1(h2) sin φ due to the
conservation of the transverse momentum. When φ = π/2,
we can obtain the critical angles for the intracone ARs R++

A
and R−−

A , θA
c++(c−−) = ± arcsin[kh1(h2)/ke1(e2)], that is

θA
c++(c−−) = ± arcsin{[E + U + (−)�]/[E − U − (+)�]}

(27)

for the upper cone (c + +) and lower cone (c − −).
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FIG. 5. AR and NR probabilities R±±
N,A versus incident angle θ

for the electron from the (a)–(c) upper cone and (d)–(f) lower cone at
E = 0.8	. The parameters U = 0.0 and δ = 0.0 in (a) and (d), U =
0.0 and δ = 120.0	 in (b) and (e), and U = 60.0	 and δ = 120.0	

in (c) and (f).

When U = 0 and δ �= 0 in Figs. 5(b) and 5(e), the intercone
NR occurs, but the intercone AR is still forbidden. In this
situation, the total reflection has

R++
N + R+−

N + R++
A = R−+

N + R−−
N + R−−

A = 1 (28)

for the upper and lower cones. For both cones, the range
of intracone ARs R++

A and R−−
A are greatly reduced by δ.

The critical angles for intercone NRs R+−
N and R−+

N can be
obtained as

θN
c+−(c−+) = ± arcsin{[E − U + (−)�]/[E − U − (+)�]}.

(29)

R+−
N and R−+

N reach the maximum value near the incident an-
gle θ = ±0.22π and show the peaks. The intracone NRs R++

N
and R−−

N reach the maximum value at the angle θ = ±π/2

FIG. 6. The projection of the Andreev scattering and normal
scattering processes on the kx-ky plane when (a) U < Uc1, (b) Uc2 <

U < Uc3, and (c) U > Uc4. The black and red arrows denote the
group velocity at upper and lower cones. The arrows with filled
circles and empty circles are for the electrons and holes, respectively.

FIG. 7. AR and NR probabilities (a) R++
N , (b) R+−

N , (c) R++
A , and

(d) R+−
A in the (U, ky ) plane for the electron from the upper cone at

E = 0.0 and δ = 120.0	. The white dashed curves are energy bands
in the AABG region, which are also the boundaries of the zero and
nonzero probabilities.

and they monotonously reduce with the decrease of the angle
|θ |.

As predicted by Eq. (21), when U �= 0 and δ �= 0 in
Figs. 5(c) and 5(f), not only intercone NR but also intercone
AR could occur. Thus, double ARs and double NRs take place
simultaneously in the AABG-SC junction. The critical angles
for the intercone ARs R+−

A and R−+
A are

θA
c+−(c−+) = ± arcsin{[E + U − (+)�]/[E − U − (+)�]}.

(30)

For incident electron from the upper cone, the intercone
AR R+−

A and NR R+−
N mainly occur near the critical angle

θA
c+− ≈ ±0.15π [see Fig. 5(c)]. The intracone AR R++

A also
mainly appears in the range of (−θA

c+−, θA
c+−), and outside

of this range R++
A is very small but not zero. The intracone

NR R++
N mainly occurs in the range from ±π/2 to ±θA

c+−
[see Fig. 5(c)]. For incident electron from the lower cone, the

FIG. 8. Andreev conductances (a) G+
AR, (b) G−

AR, and (c) Gtotal
AR of

the AABG-SC interface at δ = 120.0	.
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intercone AR R−+
A and intercone NR R−+

N can occur in the
range from −π/2 to π/2, and they are larger in the vicinity
of ±π/2 [see Fig. 5(f)]. In addition, the intracone AR R−−

A
can occur and keep the large value at a wide angle range
[see the green dotted-dashed curve in Fig. 5(f)]. Note that the
intracone ARs R−−

A and R++
A always keep perfect reflection at

the normal incidence (θ = 0).
Based on Eqs. (4), (5), (22), and (23), we can classify the

ARs and NRs by adjusting U and δ, as shown in Figs. 1(b),
1(d), and 6. One may find that for the intracone process,
the SAR for the incident electron from upper cone (or lower
cone) only appears when Uc1 < U < Uc2 (or Uc3 < U < Uc4)
[see Figs. 1(b) and 1(d)]. The intracone NR is always SNR,
independent of the value of U . For the intercone process, the
SAR for the electron from upper cone could occur when Uc2 <

U < Uc3 [see Fig. 6(b)], otherwise, the intercone AR is RAR.
The intercone SAR for the electron from lower cone could
happen in a broader region Uc1 < U < Uc4 [see Figs. 1(b),
1(d), and 6(b)]. Note that the potential range Uc2 < U < Uc3

or Uc1 < U < Uc4 for the appearance of the intercone SARs
is about 2� = 2

√
γ 2 + δ2 � 2γ . This potential range is a few

hundred of meV, which is much larger than the potential range
for the intracone SARs, a few of superconducting gap 	.
Dramatically, the intercone RNR, an abnormal NR, would
occur when Uc2 < U < Uc4 for both cones [see Figs. 1(d) and
6(b)], where the path of reflected electron is the same as that
of incident electron [see Fig. 1(c)]. Therefore, we can realize
a spatially separated cone carrier by regulating the potential U
in the AABG-SC junction.

Figure 7 displays double ARs and double NRs in the
(U, ky) plane for the electron from upper cone when E = 0.0.
The distributions of various types of AR and NR in Fig. 7 are
consistent with the results in Figs. 1(b), 1(d), and 6. The in-
tracone reflections take a leading role in the scattering process
[see Figs. 7(a) and 7(c)]. As expected, all the AR and NR are
symmetric about ky = 0. The intercone AR and NR are also
symmetric about U = 0, and they mainly appear in the range
|ky| > 0.1 nm−1 [see Figs. 7(b) and 7(d)]. Similar results may
be obtained for the lower cone.

Finally, we discuss the Andreev conductances G±
AR for dif-

ferent values of the potential U when double ARs and double
NRs take place, as shown in Fig. 8, which is different from
the one exhibited in Fig. 4. Below we focus on the energy in
the superconducting gap. For the electron from upper cone,
the conductance G+

AR decreases as U increases, but G+
AR in-

creases with the continuous increase of eVb. G+
AR presents an

approximately linear change with eVb for a large U such as
U = 120.0	 [see Fig. 8(a)]. For the lower cone, the conduc-
tance G−

AR is a nonmonotonic function of the potential U . With
the increase of U , G−

AR increases first and gets its maximum at
U ≈ 90.0	, then decreases gradually [see Fig. 8(b)]. G−

AR re-
mains larger than G+

AR for given eVb and U , since R−±
A appear

in a wide angle range but R+±
A appear in a narrow angle range

[see Figs. 5(c) and 5(f)], corresponding to the critical angles of
Eqs. (27) and (30). The conductance G±

AR for both the upper
and lower cones reaches the maximum at eVb = 	 and then
it gradually decreases as eVb further increases. Figure 8(c)
indicates that because of the occurrence of intercone AR and
intercone NR when δ �= 0, the total conductance Gtotal

AR is in-
creased by the finite potential U , different from that at δ = 0.

IV. CONCLUSION

In summary, we studied the cone-dependent SAR and RAR
in the AABG-SC junction by solving the BdG equation. Due
to the peculiar band structure of AABG, some fascinating
scattering phenomena are found, such as double ARs, double
NRs, intercone AR, intercone NR, which are not observed in
monolayer graphene and other layered materials. The inter-
cone AR can be SAR and RAR, and the intercone SAR can
exist in a large range of the potential energy. The properties
of AR and NR processes can be effectively controlled by
regulating the potential and the interlayer potential difference.
These results provide an electrical method for testing SAR in
experiment and suggest a potential application in conetronic
devices.
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APPENDIX: EIGENVECTORS OF BDG HAMILTONIAN

In this Appendix, we calculate the eigenvectors of BdG
Hamiltonian. For given energy E and transverse momentum
ky, the eigenvectors in the AABG region have the form:

ψ±
e1(2)(x) = e±ike1(2)xx

�e1(2)

(
ϕ±

e1(2)

O

)
, (A1)

ψ±
h1(2)(x) = e±ikh1(2)xx

�h1(2)

(
O

ϕ±
h1(2)

)
, (A2)

with

ϕ±
e1(2) =

⎛
⎜⎜⎜⎝

h̄vF [±ke1(2)x − iky][δ + (−)�]

+[E − U − (+)�][δ + (−)�]

h̄vF [±ke1(2)x − iky]γ

+[E − U − (+)�]γ

⎞
⎟⎟⎟⎠, (A3)

ϕ±
h1(2)(x) =

⎛
⎜⎜⎜⎝

h̄vF [±kh1(2)x − iky][δ + (−)�]

−[E + U + (−)�][δ + (−)�]

h̄vF [±kh1(2)x − iky]γ

−[E + U + (−)�]γ

⎞
⎟⎟⎟⎠, (A4)

and O = (0, 0, 0, 0)T is the null matrix. Here, ψe(h)1 and ψe(h)2

are the wave functions for the electron (hole) near the upper
and lower cones, respectively. The related parameters are de-
fined as

�e1(2) = [E − U − (+)�]
√

2[(δ + (−)�)2 + γ 2], (A5)

�h1(2) = [E + U + (−)�]
√

2[(δ + (−)�)2 + γ 2], (A6)

ke1(2)x = sgn[ke1(2)]
√

k2
e1(2) − k2

y , (A7)

kh1(2)x = sgn[kh1(2)]
√

k2
h1(2) − k2

y , (A8)
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ke1(2) = [E − U − (+)�]/h̄vF , (A9)

kh1(2) = [E + U + (−)�]/h̄vF , (A10)

�e1(2) and �h1(2) are the normalization factors for the electron
and hole. ke1(2)x and kh1(2)x are x components of momentums
ke1(2) and kh1(2), respectively. The two eigenvectors in the SC
region are given as

ψ±
S1(2)(x) = e±iq1(2)x

�S1(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�[� − (+)γ ]

h̄vF [±q1(2) + iky]E

+(−)E [� − (+)γ ]

+(−)h̄vF [±q1(2) + iky]�

0

h̄vF [±q1(2) + iky]	

+(−)	[� − (+)γ ]

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A11)

ψ±
S3(4)(x) = e±iq1(2)x

�S1(2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h̄vF [±q1(2) − iky]E

�[� − (+)γ ]

+(−)h̄vF [±q1(2) − iky]�

+(−)E [� − (+)γ ]

h̄vF [±q1(2) − iky]	

0

0

+(−)	[� − (+)γ ]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A12)

with

�S1(2) = 2E [� − (+)γ ], (A13)

q1(2) = sgn[E − (+)
√

	2 + γ 2]

√
[� − (+)γ ]2

(h̄vF )2
− k2

y ,

(A14)

� =
√

E2 − 	2. (A15)

�S1(2) is the normalization factor and q1(2) is x component of
momentum.
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