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The existence of a curved graphene sheet with the geometry of a Bour surface Bn is supposed, such as the
catenoid (or helicoid), B0, and the classical Enneper surface, B2, among others. In particular, in this paper, the
propagation of the electronic degrees of freedom on these surfaces is studied based on the Dirac model coupled
to a non-Abelian gauge field that captures topological defects present on each of the surfaces. As a consequence
of the polar geometry of Bn, it is found that the geometry of the surface causes the Dirac fermions to move as
if they would be subjected to an external potential coupled to a spin-orbit term. The geometry-induced potential
is interpreted as a barrier potential, which is asymptotically zero. Furthermore, the behavior of asymptotic Dirac
states and scattering states are studied through the Lippmann-Schwinger formalism. It is found that for surfaces
B0 and B1, the total transmission phenomenon is found for sufficiently large values of energy, while for surfaces
Bn, with n � 2, it is shown that there is an energy point EK where Klein’s tunneling is realized, while for energy
values E � EK it is found that the conductance of the hypothetical material is completely suppressed. In addition,
for a large number, N , of topological defects the transmission decays as N−2 as far as energy values are different
than EK .
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I. INTRODUCTION

One of the intriguing properties of graphene, among many
others [1,2], is that the charge carriers can be described by
quasiparticles with the same behavior as relativistic Dirac
fermions at the low-energy regime [3]. This fact had been
theoretically predicted when it was shown that Dirac’s field
theory emerges [4,5] from Wallace’s tight-binding model
[6,7]. These characteristics of graphene allowed for establish-
ing an analogy with relativistic quantum phenomena [8]. Even
more so, it is possible to think of graphene as the mother of
other graphitic materials since it can fold up to form fullerenes
[9,10], roll up into carbon nanotubes [11], and stack up to
shape graphite. Furthermore, using concepts from geometry
and topology, carbon nanostructured curved materials can be
created with unique properties [12,13]. Indeed, curved carbon
materials were proposed more than a decade before the ad-
vent of groundbreaking graphene [14]. Although there is still
no experimental synthesis of these nanostructured materials,
there is a good expectation [15] that there will be so with
technological advancement [13,16,17].

The possibility of studying quantum phenomena on curved
space-times was also raised [18] with the logical implication
to explore gravitational analogs phenomena in tabletop ex-
periments [19,20], for instance, through the conformal-gauge
symmetry encoded in the 2 + 1 Dirac theory [21,22], the
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intrinsic curvature of the graphene sheet gives up a gen-
eral relativistic description of fermionic degrees of freedom,
whereas the electronic properties of a sheet with a shape of
a Beltrami trumpet [23] is interpreted as the Unruh-Hawking
effect [24–26], forasmuch under a specific external magnetic
field the space-time metric is described by a Zermelo optical
metric which is conformally equivalent to the BTZ black hole
metric [22], where also Hawking-radiation phenomena can
be explored [27]. Likewise, using a variation of the hopping
parameters in the tight-binding model, an emergent Horava
gravity arises [28]. Additionally, a simulation of quantum
gravity analogs can be achieved when chiral symmetry is
broken; that is, when it considers trigonal warping of the
electronic spectrum [29,30]. From the condensed matter per-
spective, the Dirac equation in the curved space is a natural
model for studying the electronic properties of the graphene
sheet when undulations [31–34] and topological defects are
present; for instance, one can address the problem of im-
purities and topological defects [35,36]; in fact, the QFT
formulation on the curved space might also describe the ex-
ternal strain acting on the material [37]. Furthermore, the
corrugations on a curved sheet of graphene give up the appear-
ance of a pseudomagnetic field [18,38], which is proportional
to the Ricci scalar curvature [39,40].

Geometric and topology effects on the behavior of quan-
tum states have been quite interesting to the community for
a while. For example, by formulating Schrödinger quantum
mechanics on curves and surfaces using confining potential
formalism [41–43], the quantum states are analyzed for
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particles confined to a helix, catenary, helicoid (or catenoid),
and Möbius strip [44–47]. Also, evidence was found for
reminiscences of an analogous quantum Hall effect when
bending a strip helically [48,49]. At the same time, motivated
by the physics behind a wormhole space-time in general
relativity [50], the catenoid was shown to be the analogous
wormhole model in 2 + 1, while the external electric and
magnetic background fields on the catenoid material give up
bound states around the bridge and produce modified Landau
levels [51]. From the intrinsic perspective, [52], a geometry-
induced potential for Dirac fermions is deduced from the
intrinsic geometry of the helicoid, resulting in the emergence
of a pseudoelectric field near the potential minima giving rise
to a chiral separation on the opposite rims of the helicoid [53].

The helicoid and catenoid are isometric surfaces belonging
to the family of minimal surfaces, those surfaces that mini-
mize area or, equivalently, those such that mean curvature is
zero at each point on the surface, implying a negative Ricci
scalar curvature. Also, minimal surfaces are solutions of the
Willmore shape equation used to describe the conformation
of soft surfaces in biophysics [54]. These surfaces were pro-
posed three decades ago as representations of nanostructured
allotropes of carbon obtained by decorating a minimal surface
with carbon arrangement such as the triply periodic minimal
surface by considering the inclusion of octagon rings in the
carbon lattice structure [14]. Here, we assume that minimal
surfaces are stable nanostructured graphitic shapes [12]; par-
ticularly, we focus on a subset of this family known as Bour
surfaces [55] where the catenoid, helicoid, or the classical En-
neper surface belong, among other surfaces, all characterized
by their polar symmetry. As a consequence of the symmetry
and the Weierstrass-Enneper (WE) representation [56], we
can simplify the Dirac model in terms of two Dirac equations
to study the electronic degrees of freedom in each of the
valleys. Furthermore, we determine a geometry-induced po-
tential for the Bour surface that generalizes that found for the
helicoid [53]. In particular, we study the propagation of Dirac
waves, in each valley, using the Lippmann-Schwinger (LS)
equation along the latitudinal lines of the hypothesized mate-
rial to address the problem of elucidating the role of geometry
in the scattering states and the conductance of the material.

This paper is organized as follows. Section II introduces
the noncoordinate basis notation and the WE representation
for a minimal surface. These elements are necessary so that in
Sec. III, we can write the Dirac equation in space-time M =
R × �, where � is a surface of Bour. In Sec. IV, the Dirac
equation is rewritten so it can be interpreted as the equation
for a Dirac fermion subjected to a repulsive potential coupled
to a spin-orbit term. Furthermore, the asymptotic Dirac states
are determined and used as initial states in Sec. V to determine
the scattered states based on the LS formalism. Furthermore,
in Sec. VI, the transmittance and reflectance coefficients are
calculated using the Nöether current. In Sec. VII, conclusions
and perspectives are presented; also, Appendices A–C have
been added.

II. GEOMETRICAL PRELIMINARIES

This section introduces geometrical preliminaries suitable
to set up the analysis of electronic degrees of freedom for

curved Dirac materials performed here. Particularly, it in-
troduces the tetrad formalism for the geometry of a 2 + 1
space-time, which allows us to write the Dirac equation on a
curved space-time associated with the curved Dirac material.
Additionally, the WE representation of a minimal surface,
� ⊂ R3, is presented; it particularly introduces the Bour sub-
family of minimal surfaces. These surfaces are introduced,
since we shall analyze the electronic propagation on materials
associated with the space-time R × �.

A. Tetrad formalism for a 2 + 1 space-time

First, we introduce local coordinate bases for a 2 + 1
space-time geometry M. For the tangent space TpM, let the
set {∂μ} be a local coordinate basis, whereas the set {dxμ} the
corresponding basis for the cotangent space T ∗

p M. Here, p ∈ M
and the biorthogonality condition dxμ(∂ν ) = δμ

ν is satisfied.
The Greek indices μ split in the chosen local coordinate patch.

The following presents a noncoordinate basis for the
tangent space as the set {êA = eμ

A∂μ}, where the capital Latin
indices A are global indices A = 0, 1, 2, and the coefficients
sort up in a matrix structure E , building up an element of
GL(3,R). These coefficients, called vielbeins, are attached
to a local patch of the manifold M. The noncoordinate
basis is defined in such a way that it diagonalizes the
metric tensor g = gμνdxμ ⊗ dxν , that is, g(êA, êB) = ηAB,
where ηAB = diag(−1, 1, 1) is the Minkowski space-time
metric. This means that one can write the metric tensor
components as gμν = ηABeA

μeB
ν , where eA

μ are the elements
of the inverse matrix E−1. Additionally, the corresponding
noncoordinate basis for the cotangent space is defined as
the set {θ̂A = eA

μdxμ}. Now, the tensor metric can be written
as g = ηABθ̂A ⊗ θ̂B, that is clearly diagonal. Remark that
given a metric tensor g, the covectors θ̂A are not uniquely
determined since there is a gauge freedom to choose θ̂A or
�B

Aθ̂A, where �B
A ∈ SO(2, 1) is a local element of the Lorentz

group [57].
Now, let us introduce a connection one-form ωA

B = 
̂A
CBθ̂C ,

where 
̂A
BC are the coefficients of the affine connection, ∇,

defined through the equation ∇AêB = 
̂C
ABêC . The connection

one-form encodes geometrical information of M through the
Maurer-Cartan structure equations, which are given by

d θ̂A + ωA
B ∧ θ̂B = T A, (1)

dωA
B + ωA

C ∧ ωC
B = RA

B, (2)

where T A and RA
B are the torsion and Riemann curvature of

the manifold, respectively. Further, the connection one-form
written in the local coordinate basis looks like ωAB = ωAB

α dxα ,
where ωAB = ηBCωA

C . Note that under a local Lorentz trans-
formation, �, the connection one-form transform as ω′A

B =
�A

CωC
D�D

B + �A
C∂μ�D

B , where �D
B ≡ (�−1)D

B . Furthermore, if
one asks for a Levi-Civita affine connection ∇, one has
the metric compatibility condition ∇X g = 0 for any vec-
tor field X . This implies the conditions ωAB = −ωBA and
T A = 0 [58].
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B. Weierstrass-Enneper representation for a minimal
surface, and Bour surfaces

Minimal surfaces are mathematical surfaces in the space
corresponding to minimizing area surface or surfaces min-
imizing the Willmore energy [54]. The geometry of these
surfaces is determined using the WE representation follow-
ing Ref. [56]. The WE representation of a minimal surface
can be cast in terms of the mapping X : � ⊂ C → � ⊂ R3

defined by

X(ω) = X0 + Re
∫ ω

ω0

�(ω)dω, (3)

with ω ∈ �, where � is a simply connected domain �. The
differential volume dω represents an appropriate measure
for �; Re, and Im denote the real and imaginary parts, re-
spectively. The function �(ω) can be written in terms of a
holomorphic function F (ω) as

�(ω) = ((1 − ω2)F (ω), i(1 + ω2)F (ω), 2ωF (ω)), (4)

where F (ω) is called Weierstrass function. The Gauss map
using this WE representation is given by the normal vector
field N(ω) = (2Reω, 2Imω, |ω|2 − 1)/(1 + |ω|2). Addition-
ally, by taking the real and imaginary parts of ω = u + iv ∈ C,
respectively, it can be defined as a local patch with local
coordinates {u, v}.

Given a specific Weierstrass function F (ω), one can deter-
mine the parametrization X(ω), which allows us to determine
the whole extrinsic and intrinsic geometry of �. For instance,
the main feature of a minimal surface is the vanishing mean
curvature, H = 0. Furthermore, the intrinsic geometry of a
minimal surface is described in terms of the metric ten-
sor, introduced here, through the square of the line element
ds2 = gabdξ adξ b, where the metric tensor components, gab,
are calculated using the equation gab = ∂aX · ∂bX, with in-
dices a, b = u, v. Using the above parametrization of WE
representation, it can be shown that ds2 = �2(ω)|dω|2, where
|dω|2 = du2 + dv2, and the conformal factor, �2(ω), is given
by �2(ω) = |F (ω)|2(1 + |ω|2)2. Thus, WE representation al-
ready gives local isothermal coordinates that always exist in
a two-dimensional manifold [59]. In addition, the Gaussian
curvature is given by K = −4/|F (ω)|2(1 + |ω|2)4 for points
ω ∈ �′, where the set of regular points is given by �′ =
{ω ∈ � : F (ω) �= 0}. In the following, we focus on a subfam-
ily of minimal surfaces known as Bour’s minimal surfaces
[55,56] defined through the Weierstrass function F (ω) =
cωn−2, where c ∈ C and n ∈ R. In this subfamily belong the
catenoid with n = 0 and c = R0/2, R0 being the radius of the
neck; the helicoid with n = 0 and c = iα, α being the pitch
of the helicoid, and the Enneper surface with n = 2, c = 1.
Also, it is known that n and −n represent the same Bour
surface; thus, it is enough to consider the cases n � 0 [55].
Notice that in the case of the Bour’s surfaces, the conformal
factor depends just on the norm |ω| = √

u2 + v2, thus it is
convenient to use polar coordinates, (r, θ ), defined as usual,
r = |ω| and θ = arctan(v/u). The conformal factor is just
given by

�(r) = |c|rn−2(1 + r2), (5)

FIG. 1. Negative of Gaussian curvature [Eq. (6)] vs radial coor-
dinate r for the cases n = 0, 1, 2. The figure also shows examples
of minimal Bour surfaces from top to bottom: classical Enneper, B1-
Bour, catenoid, and helicoid surfaces, respectively. All the surfaces
inset have a finite value of curvature.

where we recall c ∈ C and n � 0 are parameters that give a
specific Bour’s surface. Now, the Gaussian curvature of these
surfaces is given by

K (r) = − 4

|c|2r2(n−2)(1 + r2)4 . (6)

By inspection, one can see that the Gaussian curvature is finite
for r ∈ R for the cases n = 0, 1, 2 [see Fig. 1], while for n > 2
all the Bn-Bour surfaces have a singular curvature at r = 0.
In addition, since Gaussian curvature has units of the inverse
square of the length |c|, it gives a natural length unit for a
Bour surface. Note that the catenoid and helicoid have the
same Gaussian curvature since these surfaces are isometric. In
addition, denoting dA = √

gdrdθ the area element, let us note
that the total curvature of each Bour surface � has the same
value, that is,

∫
�

dA K = −4π ; however, this does not mean
that they have the same topology, for instance, the Enneper
surface is simply connected but catenoid is not [60].

III. DIRAC FIELD ON THE CURVED
SPACE-TIME M = R × �

This section introduces the Dirac model on a space-time
geometry with the global structure M = R × �, where � is a
minimal surface. Later, � is specified as a specific member of
the Bour minimal surface family.

A. Dirac model with an artificial SU(2) gauge field
on the material curved space-time

The starting point is the Dirac equation iγ α∇αψ = 0, de-
fined on a 2 + 1 space-time M, where γ α (x) = γ Aeα

A(x) for
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x ∈ M, where eα
A are the vielbeins introduced in the previous

section and γ A being the Dirac matrices that satisfy the Clif-
ford algebra

{γ A, γ B} = 2ηAB1, (7)

where γ A have range 2 and 1 is the unit diagonal matrix. A
suitable representation of the Dirac matrices in 2 + 1 space-
time dimension that satisfy the Clifford algebra Eq. (7) is
given by the matrices γ 0 = −iσ3, γ 1γ 0 = σ1 and γ 2γ 0 = σ2,
where σi, are the standard Pauli matrices, with i = 1, 2, 3. In
addition, ∇α is the covariant derivative for the spinor repre-
sentation of the Lorentz group SO(2, 1) acting on the Dirac
spinors as ∇αψ , where ∇α = ∂α + �α , �α = 1

8ωAB
α [γA, γB]

being the spin connection, and ωAB
α are the components of the

Maurer-Cartan one-form connection defined in the previous
section.

To introduce the Dirac model on the curved material, let us
remark that on the curved sheet of graphene, two Dirac fields
are presented, �↑ and �↓, in a SU(2) color doublet

χ =
(

�↑
�↓

)
(8)

to consider valley degrees of freedom. Dirac spinors �↑ and
�↓ contribute equally whenever the valley symmetry has not
been broken. Thus, strictly speaking, the propagation of the
electronic degrees of freedom is given by

i
μ∇μχ = 0, (9)

where the Dirac matrices now are 
μ = γ μ ⊗ 1, and the
spinorial covariant derivative ∇μ = 1 ⊗ 1∂μ + �μ ⊗ 1 [61].
Furthermore, for the nanostructured material to preserve the
topology of a minimal surface, it is necessary to insert hep-
tagonal rings [14]; this is because this class of surfaces has
negative Gaussian curvature at each point. Although our work
does not contemplate an analysis at the lattice level, as does
the tight-binding model, it is known that such intrusions
are considered topological defects, which modify the energy
spectrum and the number of states [62].

At the level of the continuous model, the topological de-
fects manifest as non-Abelian magnetic fluxes that go out
transversally to the surface through the heptagonal incisions
[18,35,63,64]. Thus, we ask whether this non-Abelian gauge
field influences the Nöether current used below for the trans-
mittance analysis. The Dirac field coupled with a non-Abelian
gauge field is considered to answer this question,

i
μ(∇μ − iAμ)χ = 0, (10)

where Aμ is the non-Abelian gauge field taking values in the
Lie algebra of SU(2), which strictly must be written as 1 ⊗
Aμ, and χ turns out to be a SU(2) color doublet that contains
the two-component of the Dirac spinor mentioned above. In
the continuum limit, we consider the approximation that the
field is zero in the neighborhood of a finite flux traversing a
section with effective area zero, thus the artificial non-Abelian
gauge field is considered as a pure gauge field [64]

Aμ(x) = iU −1(x)∂μU (x), (11)

where U (x) is a local element of the group SU(2). Note that
the strength tensor Fμν = ∇μAν − ∇νAμ − i[Aμ,Aν] is lo-
cally zero for the gauge field Eq. (11), but the flux is different

than zero to take into account the topological defects. Next, we
choose a coordinate chart and specific gauge field to approach
this problem.

B. Polar coordinates and the gauge field on M = R × �

The metric of the space-time R × � using polar coordi-
nates is written through the square of the line element as
follows:

ds2 = −v2
F dt2 + �2(r, θ )(dr2 + r2dθ2). (12)

The local indices, in this case, can be split as α = t, r, θ .
From the metric Eq. (12), one can easily read θ̂0 = vF dt ,
θ̂1 = �dr and θ̂2 = �rdθ , from where one can extract the
components of the vielbeins eA

μ [65]. Also, recall that once
θ̂A have been chosen, the gauge associated with the Lorentz
invariance is fixed. Now, from the Maurer-Cartan Eq. (1) and
the torsionless condition, one can obtain d θ̂0 = 0, and

d θ̂1 + �θ

�2r
θ̂1 ∧ θ̂2 = 0, (13)

d θ̂2 + (�r)r

�2r
θ̂2 ∧ θ̂1 = 0, (14)

where (X )r ≡ ∂rX . Now, from Eq. (13) one can deduce ω1
0 =

0 and ω1
2 = �θ

�2r θ̂
1 + X θ̂2 for some local function X , whereas

from Eq. (14) one can deduce that ω2
0 = 0 and ω2

1 = (�r)r

�2r θ̂2 +
X̃ θ̂1. Now, we use the metric condition, ωAB = −ωBA, thus
one can determine X and X̃ , turning that the only nonzero
components of the connection one-form are

ω12 = −ω21 = �θ

�2r
θ̂1 − (�r)r

�2r
θ̂2. (15)

These components expressed in local coordinates are given
by ω12

r = −ω21
r = 1

r ∂θ log � and ω12
θ = −ω21

θ = − 1
�

∂r (�r).
Consequently, the spin connection �α is given simply by
�t = 0, �r = i

2
1
r ∂θ (log �)σ3, and �θ = − i

2
1
�

∂r (�r)σ3.
The above coordinates (r, θ ) are particularly useful for the

Dirac model since the conformal factor � for the Bour’s min-
imal surface family depends just on the coordinate r. In this
case, due to the polar symmetry, the non-Abelian gauge field
must be of the form Aθ = ϕ

2π
τ2, At = Ar = 0, as suggested

in Refs. [62,63], where τ2 is the second Pauli matrix in the
space of the two Dirac points. This field can be written like
the previous expression Eq. (11) using the group element
U = e−iθ ϕ

2π
τ2 .

Now we use all this information to write an explicit ex-
pression for the Dirac Eq. (10) in polar coordinates. Denoting
the 2 + 1 doublet Dirac spinor by χ and now performing the
transformation χ = r− 1

2 �− 1
2 �, we can show that the Dirac

equation can be written as

ih̄∂t� = −i
h̄vF

�

(
σ1∂r� + 1

r
σ2

(
∂θ − i

ϕ

2π
τ2

)
�

)
. (16)

Following the same strategy as Ref. [63], i.e., by passing to the
basis of eigenvectors of τ2, the above equation can be written
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as the two Dirac equations

ih̄∂t�
τ = −i

h̄vF

�

(
σ1∂r�

τ + 1

r
σ2

(
∂θ − i

τϕ

2π

)
�τ

)
, (17)

where τ = ± is the valley index and the eigenvalues of τ2.
As we can appreciate in Eq. (17), the topological defects are
taken into account by introducing an effective non-Abelian
gauge flux ϕ in two Dirac equations. Since, in the present
paper, we lack specific lattice geometry, one cannot infer a
value for the artificial flux ϕ as it is performed in previous
works [62,63]. However, according to Ref. [64], the value of
each individual flux is classified in two forms ±π

2 and ±π
6 ,

depending on the disposition of the defects in the lattice; if one
has N heptagons intrusions, the value of the effective fluxes
in each case correspond to ϕ

2π
= ±N

4 and ϕ

2π
= ± N

12 . Since
the lattice geometry of Bour surfaces is presently unknown,
we will utilize these values as working examples for the time
being and defer the construction of particular lattices to future
research.

IV. GEOMETRY-INDUCED POTENTIAL
AND ASYMPTOTIC STATES ON THE BOUR’S

MINIMAL SURFACES FAMILY

This section determines the geometry-induced potential
and the Dirac asymptotic states on the Bour’s minimal surface.
These states are defined as the solutions of the Dirac equation
for r → ∞.

A. Dirac fermions under effective potential

Our starting point is the Dirac equation on polar coordi-
nates deduced above Eq. (17), where the conformal factor
�(r) is given just by Eq. (5). Since the conformal factor
depends on just one of the coordinates, one can make a further
change of variables using the transformation

xn(r) =
∫

�(r)dr = |c|
[

rn−1

n − 1
+ rn+1

n + 1

]
(18)

for n �= 1, while for n = 1 the appropriate change of variable
is x1(r) = |c|(log r + 1

2 r2). One can verify that these trans-
formations are injective maps; thus, one can guarantee the
existence of their corresponding inverse functions r = r(x),
where x would be defined in an appropriate domain Dx. Us-
ing this variable, each Dirac equation from Eq. (17) can be
simplified as

ih̄∂t�
τ = vF σ1 p̂x�

τ + vF σ2V (x)Ĵθ,τ�
τ , (19)

where p̂x = −ih̄∂x is a linear momentum operator and Ĵθ,τ =
�̂θ + τϕ

2π
h̄ is a total angular momentum, being �̂θ = −ih̄∂θ the

two-dimensional angular momentum operator and τ
ϕ

2π
h̄ a val-

ley pseudospin. Noticeably, the second term of this equation
can be interpreted as an effective potential; although this term
comes entirely from the intrinsic geometry of the surface,
this potential is geometry induced. The effective potential is
given by

V (x) = 1

r(x)�(r(x))
. (20)

FIG. 2. Effective potential [Eq. (20)] vs coordinate x Eq. (18) for
the classical Enneper (n = 2), B1-Bour, n = 1, and catenoid (heli-
coid) (n = 0).

This potential generalizes the effective potential found in
Ref. [53] for the helicoid.

Let us note that for those cases with n � 2, such as the clas-
sical Enneper surface, the domain of the variable x is R+ [see
Eq. (18)]. Thus, it is useful to define an extension to the whole
reals defining U (x) = V (x) for x � 0 and U (x) = V (−x) for
x � 0 as an extension for x ∈ R. This construction makes the
potential symmetric, and the Dirac equation for this exten-
sion turns out to be ih̄∂t�

τ = vF σ1 p̂x�
τ + vF σ2U (x)Ĵθ,τ�

τ ,
which reduces to Eq. (19) for x � 0.

Now, we deduce the main characteristics of the effective
potential V (x). Using the conformal factor Eq. (5) and the
change of variable x(r), it can be shown that near x ≈ 0 for
the catenoid (or helicoid) surface with n = 0, the potential is
V (x) ≈ c, where c is a positive constant; for B1-Bour surface
n = 1, the potential is linear V (x) � mx + b, with a negative
slope m and a positive y-intercept b; and for any Bour surface
with n > 1, the effective potential behaves as V (x) = c/((n −
1)x) for some positive constant c. Therefore, the potential
V (x) is a scattering potential. Furthermore, we are interested
in the states far away from the center x = 0 to use them
as initial states propagating along the surface. Additionally,
one can verify that the effective potential, V (x), vanishes for
x → ∞ for all n � 0. Figure 2 plots the geometry-induced
potential for the first three cases n = 0, 1, 2.

a. Example B0 (catenoid/helicoid). Let us note that, for
example, in the case of the catenoid (or helicoid) n = 0 and
|c| = R0/2, one has x = R0

2 (r − r−1), where the domain is the
whole R and recall R0 is the radius of the neck of the catenoid.
Using the expression for the conformal factor Eq. (5) and the
generalized effective potential Eq. (20), it is straightforward
to show that V (x) = 1/

√
x2 + R2

0, which satisfies the quali-
tative characteristics deduced above. Note that this effective
potential is the same found in Ref. [53].
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b. Example (B1-Bour surface). Let us note that, for exam-
ple, in the case of B1-Bour surface n = 1 and choosing c = 1,
one has x = log r + 1

2 r2, where the domain is the whole R.
One can express r in terms of x using the principal value of
the Lambert W function r2 = W (e2x ). Using the expression
for the conformal factor Eq. (5) and the generalized effective
potential Eq. (20), it is straightforward to show that V (x) =
1/(1 + W (e2x )), which satisfies the qualitative characteristics
deduced above.

c. Example B2 (Enneper surface). Now, for the Enneper
classical surface n = 2 using c = 1, one has

x = r + r3

3
. (21)

Let us note that contrary to the previous examples, in this
case, the domain of this variable x ∈ R+. Using the expression
for the conformal factor Eq. (5) and the generalized effective
potential Eq. (20) is V (x) = 1/(r(x) + r3(x)), thus one needs
to find the positive root of a third-order polynomial Eq. (21).
The effective potential in terms of x is given explicitly by

V (x) = 1

3x + 2
2
3
(
R

1
3−(x) − R

1
3+(x)

) , (22)

where R±(x) = √
9x2 + 4 ± 3x. Note that series expansion

of R1/3
± (x) around x � 0 is R1/3

± (x) � 2
1
3 ± 2− 2

3 x. Thus,
the effective potential near x = 0 behaves similarly to a
Coulombic-type potential, V (x) � 1

x , while it is clear that
for large values of x, that is for x → ∞ the potential V (x)
vanishes as was shown qualitatively above.

B. Qualitative analysis of quantum states

An alternative way to qualitatively understand the na-
ture of the states consists of decoupling Eq. (19) into two
Schrödinger-type equations as was done for the helicoid case
in Ref. [53]. Indeed, by squaring the operators on each side of
Eq. (19), it is not so difficult to obtain

−h̄2∂2
t � = v2

F

(
p̂2

x + Ĵ2
θ V 2(x) + σ3h̄ĴθV ′(x)

)
�, (23)

where we are ignoring the notation ± for the sake of simplicity
and V ′(x) = d

dxV (x).
Now, writing the stationary states in the form � =

ei Et
h̄ +imθU (x), it is straightforward to obtain the time-

independent Schrödinger-type equation[
− d2

dx2
+ V m,α

eff (x)

]
Uα (x) = εUα (x) (24)

for each spinorial component Uα (x) with α = ± for the upper
and lower spinorial components, respectively, where

V m,α
eff (x) = m2

τV 2(x) + αmτV ′(x), (25)

with mτ = m + τϕ

2π
and ε = (E/(h̄vF ))2. Let us first note that

this potential vanishes for those cases when mτ = 0; this
happens when quantum number m turns out to be m = ϕ

2π

or m = − ϕ

2π
; this case describes the propagation of a Dirac

wave in one valley without obstacles, while the Dirac wave in
the other valley encounters some resistance.

The potential Eq. (25) is the same obtained in the study
of a helical nanoribbon performed in Ref. [53] when we

FIG. 3. Effective potential [Eq. (25)] vs coordinate x. Top for the
catenoid (helicoid) (n = 0), middle for the B1-Bour surface, n = 1,
and down for the classical Enneper (n = 2). Each effective potential
is plotted for each case m ∈ {−1, 0, 1}, α = ± with an effective
gauge flux ϕ

2π
= 8/3.

substitute V (x) in the case of the catenoid (example B0

above) and take zero topological flux ϕ = 0; this means that
similar conclusions obtained in Ref. [53] are obtained in
the case of the catenoid, at least near the catenoid neck. In
Fig. 3, we present the behavior of V m,α

eff (x) for the catenoid,
B1-Bour, and Enneper surface for the working example
of a flux ϕ

2π
= N

12 = 8/3. For the catenoid surface and
B1-Bour, the potential for each m is similar to a potential
barrier. In contrast, in the case of Enneper, the potential is
a potential barrier except for the cases m = 1, where there
is a region where bound states could exist. However, note
that this region is required for ε < 0, which means that E
is imaginary, so we associate these states with quasibound
states. Remark that the structure of the effective potential
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V m,α
eff (x) does not change qualitatively from other values of

the flux ϕ.

C. Asymptotic Dirac states on the Bour’s minimal surfaces

The previous analysis allows us to justify that for the
asymptotic states, the second term of Eq. (19) can be ne-
glected. Thus, the equation reduces to a 1 + 1-Dirac equation
i∂t�

τ = vF σ1 p̂x�
τ . For the solutions of this equation, we pro-

pose the spinor solution as �τ (x, θ, t ) = eikx−i Et
h̄ f (θ )v, where

the function f (θ ) is an arbitrary nonzero periodic function
in the azimuthal angle θ , and v is a vector that acquires
the pseudospin character of the spinor. These solutions are
independent of the valley index τ . By imposing the one-
dimensional Dirac equation, the dispersion relation turns out
to be E = ±h̄vF |k|, and v satisfies the equation ĥv = ± 1

2v,
where ± refers to a positive and energy Dirac states, where

ĥ = 1

2
σ1

k

|k| (26)

is the one-dimensional analog of the helicity operator. For
positive energy value, the pseudospin states are given by v↑
(v↓) for positive (negative) helicity k > 0 (k < 0), whereas for
negative energy values the pseudospin states are interchanged
themselves, v↑ → v↓, where the normalized states {v↑, v↓}
are given by

v↑ = 1√
2

(
1
1

)
and v↓ = 1√

2

(
1

−1

)
. (27)

For positive energy values, one has the following two
independent solutions: �+,+(x, θ, t ) = eikx−i |E |t

h̄ f (θ )v↑ and

�+,−(x, θ, t ) = eikx−i |E |t
h̄ f (θ )v↓ for positive and negative he-

licity, k > 0 and k < 0, respectively. Similarly, for negative
values of energy, one has �−,+(x, θ, t ) = eikx+i |E |t

h̄ f (θ )v↓ and

�−,−(x, θ, t ) = eikx+i |E |t
h̄ f (θ )v↑ for positive and negative he-

licity, k > 0 and k < 0, respectively. These four states can
be cast together as follows: �τ

μ,σ (x, θ, t ) = �μ,σ (x, θ )e−iμ |E |t
h̄ ,

being

�μ,σ (x, θ ) = eiσ |k|x f (θ )vμ·σ , (28)

where we have introduced a mnemonic rule for μ · σ as
+ · + =↑, − · + =↓, + · − =↓ and − · − =↑, where μ =
sgn(E ). Finally, let us recall that the transformation performed
above, � = �/

√
r�, thus the asymptotic Dirac state far away

from the scattered center is given by

�τ
μ,σ (x, θ, t ) =

√
V (x)eiσ |k|x−iμ |E |t

h̄ f (θ )vμ·σ , (29)

which vanishes for x → ∞. In addition, as a conse-
quence of the periodicity of the function f (θ ) = f (θ + 2π ),
one can write the following series representation: f (θ ) =∑

m∈Z fmeimθ .

V. SCATTERING ANALOG ON THE BOUR’S SURFACES

A. Outscattering states by Lippmann-Schwinger equation

In this section, we introduce the LS equation [66,67] to
study how the states propagate along the surface considered.
In particular, we are interested in describing the manner in

which the initial states, found above, are scattered due to the
effective potential V (x). Let us consider the Hamiltonian Ĥ =
Ĥ0 + V̂ split between a free Hamiltonian Ĥ0 and a perturbed
potential V̂ . Now, the LS equation is given by

|�〉 = |�in〉 + 1

E − Ĥ0 + iε
V̂ |�〉, (30)

where |�in〉 is the initial state and |�〉 is the out scattering
state. Note that, in general, we are considering that Ĥ0 and V̂
are differential matrix operators acting on spinors. Thus, the
states {|�〉} acquire spinorial components.

The Born approximation is obtained by substituting |�in〉
instead of |�〉 in the second term of the LS Eq. (30). To
go further to higher-order approximation, it is standard to
introduce the transition operator T̂ defined using the equation
T̂ |�in〉 = V̂ |�〉. In fact, multiplying the LS equation by V̂ ,
one arrives at the well-known self-consistent recursive opera-
tor equation for the transition operator T̂ :

T̂ = V̂ + V̂
1

E − Ĥ0 + iε
T̂ . (31)

A series solution for T̂ can be gotten using this equation
through a usual iterative procedure

T̂ = V̂ + V̂
1

E − Ĥ0 + iε
V̂

+ V̂
1

E − Ĥ0 + iε
V̂

1

E − Ĥ0 + iε
V̂ + · · · , (32)

where the first approximation T̂ � V̂ corresponds to the so-
called Born approximation.

To determine the out scattering states, one can follow two
common procedures that are to project {|�〉} along space
states {|x〉} or momentum states {|p〉}. For the projection
along the space states, one obtains the spinorial wave func-
tion �(x) = 〈x|�〉, where x = (x1, x2) are certain coordinates
associated with a local patch on the surface. Thus, using the
transition operator, the LS equation can be rewritten as

�(x) = �in(x) +
∫
D

d2x′ G(x, x′)〈x′|T̂ |�in〉, (33)

where the Green’s function satisfies the Green’s equation de-
fined by

(E − Ĥ0)G(x, x′) = 1δ(x − x′). (34)

Now, when we project the outscattering states along the mo-
mentum states, one obtains the spinorial wave function in the
momentum space, which we have abusedly written with the
same notation �(p) = 〈p|�〉. Assuming that Ĥ0 is an operator
that depends exclusively on the momentum operator, thus the
LS equation can be written as

�(p) = �in(p) + 1

E − H0(p) + iε
〈p|T̂ |�in〉, (35)

where H0(p) is the matrix free Hamiltonian evaluated at the
momentum value p.

B. Out scattering states on the Bour surfaces

In this section, we study the electronic states on the Bour
surfaces starting from Eq. (19). Noticeably, the second term
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of this equation can be thought of as a barrier potential.
This potential energy is crucial in the behavior of the Dirac
particle states on the Bour surface. Now, to implement the LS
Eq. (30) we identify the free Hamiltonian Ĥ0 = vF σ1 p̂x and
the perturbed Hamiltonian by V̂ = vF σ2U (x)Ĵθ,τ , where we
recall U (x) as the symmetrized form of the effective potential
V (x). In the following, we carry out the Born and higher-order
Born approximations to determine the outscattering states on
the curved surface.

1. Born approximation

Now, to determine the outscattering states �(x), we con-
sider the initial states �in,σ (x) far away from the scattering
center, which in our case correspond to x � 0. In particular,
the states that are considered here are �in(x) = �μ,σ (x, θ )
found in the last section [see states given by Eq. (28)].
Since the free Hamiltonian Ĥ0 is independent of θ , thus the
Green’s function acquires the expression G(x, x′; E ) = G(x −
x′; E )δ(θ − θ ′), where x = (x, θ ). Now, the LS equation, in
this case, can be written as

�τ (x, θ ) = �in(x, θ )

+ vF

∫ ∞

−∞
dx′ G(x − x′; E )U (x′)σ2Ĵθ,τ�

τ (x′, θ ),

(36)

where G(x − x′; E ) is the Green’s function for the one-
dimensional operator E − vF σ1 p̂x, that is, a function that
satisfies (E − vF σ1 p̂x )G(x − x′; E ) = δ(x − x′)1. Following
the standard procedure (see Appendix A), it is not difficult
to show that

G(x − x′; E ) = 1

2ih̄vF
[sgn(E ) + sgn(x − x′)σ1]ei |E |

h̄vF
|x−x′|

,

(37)

where we recall that E = ±h̄vF |k|. In the following, as a
consequence of the polar geometry of the surface, the states
�τ (x, θ ) are periodic in the angular variable θ . Thus, it can be
written in the next expansion �τ (x, θ ) = ∑

m∈Z �m(x)eimθ .
Now, using the orthonormal relation of the basis {eimθ } one
has the following integral equation for �(μ)

m (x), that is:

�τ (μ)
m (x) = eiσ |k|x fmvμ·σ

+ h̄vF mτ

∫ ∞

−∞
dx′G(x − x′; E )U (x′)σ2�

τ (μ)
m (x′),

(38)

where we have introduced the labeled μ to distinguish the
positive and energy outscattering states; also recall that μ =
sgn(E ). At the Born approximation, it is enough to make the
substitution �(μ)

m (x′) by eiσ px′
fmvμ·σ in the second term of the

last equation, where we have defined the magnitude of the mo-
mentum |k| = p. Let us choose an initial wave with σ = −,
that is, a left wave with k < 0 going to the scattering center.
Noticeably, after a straightforward calculation, the states are
given by

�τ (μ)
m (x) � fm[e−ipxv−μ + mτ Ũ (2p)eipxvμ], (39)

where we have found that negative energy states with pseu-
dospin up ↑ propagating along the scattering center reflecting
into a pseudospin down ↓. The amplitude of the reflection
is given by mτ Ũ (2p), where Ũ is the Fourier transform of
the effective potential U (x). To have a better understanding
of this scattering phenomenon, we proceed to carry out a
higher-order Born approximation in the following section.

2. Higher-order Born approximation

For the higher-order Born approximation, we found the
momentum representation useful for the states. The starting
point is the equation for the outscattering states Eq. (35),
where the term 〈p|T̂ |�in〉 is determined approximately by
using the series approximation of the recursive equation for
the transition operator Eq. (32), that is,

〈p|T̂ |�in〉 = 〈p|V̂ |�in〉 + 〈p|V̂ ĜV̂ |�in〉 + · · ·
+ 〈p|V̂ ĜV̂ · · · V̂ ĜV̂ |�in〉 + · · · , (40)

where we have defined the resolvent operator Ĝ := 1/(E −
Ĥ0 + iε). Now, for each term of Ĝ of the last expansion, one
introduces two completeness relations in momentum space
1 = ∑

q |q〉〈q|, where
∑

q = 1
2π

∑
m

∫ dq
2π

and |q〉 := |q, m〉.
These completeness relations are introduced before and after
the operator Ĝ. Thus, one has the first term τ1(p) := 〈p|V̂ |�in〉
and the (n + 1)th term, with n � 1, has the following struc-
ture:

τn+1(p) :=
∑

q(1),··· ,q(2n)

〈p|V̂ |q(1)〉〈q(1)|Ĝ|q(2)〉

× 〈q(2)|V̂ · · · V̂ |q(2n−1)〉〈q(2n−1)|Ĝ|q(2n)〉
× 〈q(2n)|V̂ |�in〉. (41)

Now, one can reduce half of the integrals since for
each term 〈q(i)|Ĝ|q( j)〉 = G(q j )δqi,q j , where G(q j ) = 1/(E −
H0(q) + iε). Thus, (n + 1) − th can be simplified as follows:

τn+1(p) =
∑

q(1),··· ,q(n)

〈p|V̂ |q(1)〉
(

n−1∏
�=1

G(q�)〈q(�)|V̂ |q(�+1)〉
)

× G(q(n) )〈q(n)|V̂ |�in〉, (42)

where the state |q�〉 = |q�, m�〉 for � = 1, 2, · · · , n. To sim-
plify the last expression, it is necessary to find the following
two generic expressions: (a) 〈p|V̂ |q〉 and (b) 〈p|V̂ |�in〉.
The momentum states are expressed by |p〉 = |p, m〉 and,
similarly, |q〉 = |q, m′〉. Thus, for the terms, type (a) can
be written as 〈p|V̂ |q〉 = (2π )h̄vF σ2mτ δmm′ 〈p|Û (x)|q〉,
where we have acted the total angular momentum operator
Ĵθ,τ |m〉 = h̄mτ |m〉 and introduced the orthogonal relation
〈m|m′〉 = 2πδmm′ . Now, we introduce the completeness
relation 1 = ∫

dx|x〉〈x| and we use 〈x|p〉 = eipx, thus one has

〈p|V̂ |q〉 = (2π )h̄vF σ2mτ δmm′Ũ (p − q); (43)

Ũ (q) := ∫
dxe−iqxU (x) being the Fourier transform of the

potential. Now, for the type-(b) terms, one introduces a
completeness relation in the momentum space such that
〈p|V̂ |�in〉 = ∑

q〈p|V̂ |q〉〈q|�in〉. Now, it is necessary
to calculate the term �in(q) = 〈q|�in〉, which is the
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Fourier transform of the initial wave eiσ |k|x fmvμ·σ , that
is, �in(q) = 2πδ(q − σ |k|) fmvμ·σ , thus one has

〈p|V̂ |�in〉 = h̄vF σ2vμ·σ fmmτŨ (p − σ |k|). (44)

Notice that the right-hand side of the last equation corresponds
to the first term in the series Eq. (40), that is,

τ1(p) = h̄vF fm(iμmτ )Ũ (p + |k|)vμ, (45)

where we have put σ = −1 since we have an initial left wave,
and where we have used the identity σ2v−μ = iμvμ. Now,
we introduce the terms types (a) Eq. (43) and (b) Eq. (44)
in the (n + 1th) term τn+1(p) (42). Now, again one has to
put σ = −1, and following the straightforward calculation
developed in Appendix B, one is able to find

τn+1 = h̄vF fm(iμmτ )nmτŨ (p − |k|)Ũ (2|k|)∣∣Ũ (2|k|)∣∣n−1
v−μ

(46)

for odd n, whereas

τn+1 = h̄vF fm(iμmτ )n+1Ũ (p + |k|)∣∣Ũ (2|k|)∣∣n
vμ (47)

for even n, where | · | is the complex norm. In this manner, the
series (40) is 〈p|T̂ |�in〉 = ∑∞

n=0 τn+1(p). This expectation
value must be introduced in the LS Eq. (35). Afterward, one
needs to compute the Fourier transform to find an expression
of the Dirac wave

�τ (μ)
m (x) = e−i|k|x fmv−μ +

∞∑
n=0

Cn+1(x), (48)

where one has still to compute the inverse Fourier transform
Cn+1(x) = ∫ d p

2π
eipxG(p)τn+1(p). See Appendix B for detailed

integral calculations. Thus, the result for Cn+1(x) is the
following, for odd integers n = 2 j + 1:

C2 j+2(x) = (−1) j+1(m2
τ

∣∣Ũ (2|k|)|2) j+1
fme−i|k|xv−μ, (49)

while for even integers n = 2 j,

C2 j+1(x) = (−1) j+1mτŨ (2|k|)(m2|Ũ (2|k|)|2) j fmei|k|xvμ

(50)

for j ∈ N ∪ {0}. Now, after inserting these expressions in
Eq. (48), it is noticeable that each of the factors appearing
in front of the ongoing (e−i|k|x) and incoming (ei|k|x) terms
can be cast as a geometric series that can be summed
up as

∑∞
�=0(−1)�a�(mτ , k) = 1/(1 + a(mτ , k)) while

a(mτ , k) < 1, where a(mτ , k) = m2
τ |Ũ (2|k|)|2. Thus, the

final expression for the Dirac wave is

�τ (μ)
m (x) = fm[F (mτ , k)e−i|k|xv−μ + G(mτ , k)ei|k|xvμ],

(51)

where the coefficients F (mτ , k) and G(mτ , k) are given by

F (mτ , k) = 1

1 + m2
τ |Ũ (2|k|)|2 , (52)

G(mτ , k) = mτŨ (2|k|)F (mτ , k). (53)

The Born approximation Eq. (39) is recovered when
F (mτ , k) ≈ 1. This is expected to be achieved for large
values of momenta |k|.

Since one can prepare an initial Dirac wave with values of
m and k such that a(m, k) � 1, here we consider an analyti-
cal continuation of the geometric series to take into account
values of m and k under the last condition. This analytical
continuation means that the factors F (m, k) and G(m, k) have
the same function for values of (m, k) in a region where
a(m, k) � 1.

VI. TRANSMISSION OF THE DIRAC WAVES THROUGH
THE GEOMETRY OF A BOUR SURFACE

In this section, using the LS formalism developed above,
we carry out a transmission analysis of the Dirac waves on
the geometry of Bour surfaces, considering the propagation,
taking into account each valley.

A. Nöether current Jμ on the curved nanostructured material

We introduce the Nöether current Jμ of the Dirac Eq. (10)
as the probability current density. This quantity is introduced
to study how the initial Dirac wave is propagated along the
surface. In particular, we can determine the transmission and
reflection coefficients using the current Jμ. This conserved
quantity is given by [57]

Jμ = χ
μχ, (54)

even in the presence of a gauge field Aμ, where χ = χ†
0.
Considering both Dirac fields, the Nöether current is
given by [57]

Jμ =
∑
τ=±

�
τ
γ μ�τ , (55)

where �
τ = �τ†γ 0. Also, we recall that γ μ are given in

terms of the vielbeins and the Dirac matrices γ A introduced
above in Sec. III A. Also, recall that �τ (x) = r−1/2�−1/2�τ ,
where � is the conformal factor introduced above. The zero
component of the current, J0(x), allows us to determine the
probability density function, whereas the spatial components
of the current allow us to determine how the Dirac wave
propagates through the space geometry, that is, using the
spatial components one can define the reflection coefficient as

R =
∣∣∣∣Ja

ref na

Jb
incnb

∣∣∣∣ (56)

and the transmission coefficient by its complement
T = 1 − R, where n is a tangent vector on the surface that is
normal to a curve γ embedded on the surface. In particular,
for the Bour surface, we choose γ to be an r-constant curve;
thus n is a tangent vector along the θ direction. See Fig. 4
to see level curves with the r constant and θ constant on the
catenoid, B1, and Enneper surfaces.

In the following, we focus on determining the general
expressions for the probability density J0, transmission co-
efficient T , reflection coefficient R, and conductance G for
the Bour surfaces, where particular emphasis is made on the
catenoid/helicoid, B1-Bour, and classical Enneper surface.
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FIG. 4. Catenoid, B1-Bour, and classical Enneper minimal sur-
face, from the top to the bottom, drawn with the parametrizations
(D1), (D4), and (D3). Each of the surfaces includes examples of level
curves with r and θ constant.

B. Probability density function J0

Before presenting the result for the probability density
function, let us obtain normalization factors N0, for the free
wave Eq. (29), and N for the scattered wave Eq. (51). For
this purpose, consider a large portion of the area of the sur-
face, and let us impose the condition

∫
D dAJ0 = 1, where

dA = r�(r)drdθ is the area element in the surface. This
condition guarantees that a Dirac fermion is surely, at some
point, (r, θ ) ∈ D = [0, L] × [0, 2π ], from the domain D.

Now, the zero component of the Nöether current
is the probability density function given for our par-
ticular space-time geometry [see Eq. (12)] by J0(r) =
1
vF

∑
τ=± �τ†(μ)

m �τ (μ)
m . Thus, for the free initial wave one has

the density J0(r) = 2N 2
0 | fm|2

vF r� , thus the normalization factor is

easily obtained as N0 = (vF /(2πL))
1
2 /

√
2| fm|, while for the

scattered wave J0(r) = N 2| fm|2
vF r�

∑
τ=± F (mτ , k) the normal-

ization factor is given by N = N0/
√∑

τ=± F (mτ , k). Now,
the probability density function is given for both waves the
probability density by the expression

J0(r, θ ) = 1

2πLr�(r)
, (57)

which means that it is most probable to find Dirac particles
near the scattering center on the Bour surface. It is noteworthy
to mention that the scattering point (x � 0) corresponds to
the point where the curvature attains its maximum value [see
Fig. 1)].

C. Transmittance and conductance on the Bour geometries

Now we want to determine the reflection and the transmis-
sion coefficients. We choose γ as the r-constant curve on a
Bour surface; thus, the normal vector to γ is tangent to a θ -
constant curve. Notice that Jθ = − 1

r2�2

∑
τ=± �τ†(μ)

m σ1�
τ (μ)
m

after using γ θ = γ 2eθ
1, where the vielbein in this case is

eθ
1 = 1/�. Now, recalling that σ1vμ = μvμ and v†

μvμ = 1,
we compute the incidence current Jθ

inc using the initial wave
N0e−i|k|x fmv−μ,

Jθ
inc = vF μ

(2πL)r2�2
, (58)

and compute Jθ
ref using the reflection wave

N fmG(m, k)ei|k|xvμ, getting

Jθ
ref = − vF μ

(2πL)r2�2

∑
τ=± |G(mτ , k)|2∑
τ=± F (mτ , k)

.

where recall that mτ = m + τϕ

2π
, ϕ being the non-Abelian flux,

and G(mτ , k) and F (mτ , k) are given by Eqs. (53) and (52).
Now, using the reflection coefficient definition Eq. (56), it is
not difficult to get

R = |G(m+, k)|2 + |G(m−, k)|2
F (m+, k) + F (m−, k)

. (59)

Both coefficients R and T can be expressed in terms of the
Fourier transform Ũ (p) = ∫ ∞

−∞ dxe−ipxU (x), thus it is conve-
nient to make further simplifications. Since the potential is
proportional to 1/|c|, it is convenient to perform the following
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change of variable x̃ = x/|c|, thus let us define the function

U (ξ ) =
∫ ∞

−∞
dx̃e−iξ x̃|c|U (|c|x̃). (60)

Now, instead of using the wave number k, we use the energy
dispersion relation E = ±h̄vF |k|. Also, notice that the Bour
material introduces a natural scale of energy given by E0 =
h̄vF /|c| in terms of the characteristic length, |c|, associated to
each Bour surface. Therefore, the reflection and transmission
coefficients in terms of the energy E are given for any Bour
surface within the present approximation as

R(E ) = 1 − T (E ), (61)

T (E ) =
1+m2

−|Ũ (2E∗ )|2

1+m2+|Ũ (2E∗ )|2 + 1+m2
+|Ũ (2E∗ )|2

1+m2−|Ũ (2E∗ )|2

2 + (m2− + m2+)
∣∣Ũ (2E∗)

∣∣2 . (62)

where E∗ = |E |/E0 is a dimensionless parameter. The con-
ductance can be computed using the simple expression
G(E ) = e2

π h̄T (E ). Notice that each Bour material with typical
characteristic length |c| introduces a natural scale of energy
E0 = h̄vF /|c|; for surfaces with |c| ∼ 1 nm the characteris-
tic scale energy is E0 ∼ 8.27 eV. Note that for big values
of energy, that is, |E | � E0, the above result Eqs. (61) and
(62) reduces to the Born approximation since in this param-

eter region one has R(E ) � m2
++m2

−
2 |U (2E∗)|2 and T (E ) �

1 − m2
++m2

−
2 |U (2E∗)|2, which is the Born approximation result.

In addition, in the case |m| � ϕ/2π (|m| � ϕ/2π ), the reflec-
tion and transmission are given by

R(E ) � m2|U (2E∗)|2
1 + m2|U (2E∗)|2 , (63)

T (E ) � 1

1 + m2|U (2E∗)|2 , (64)

where m = max(|m|, ϕ

2π
). In the case m = |m|, the topological

defects do not affect the reflection and transmission behavior.
In the opposite case, m = ϕ/2π , topological defects dominate
the reflection and transmission coefficients; in particular, they
scatter out the Dirac particles such that for a large N number
of defects T ∝ N−2 and R ∝ 1 + O(N−1), while energy E∗
such that U (2E∗) �= 0.

Now, we still need to compute the Fourier transform of
the effective potential. Conspicuously, for any Bour surface,
it is useful to go back to the original radial coordinate instead
of x since dx = �(r)dr and the effective potential V (r) =
1/(r�(r)), thus the Fourier transform is

U (ξ ) =
∫ ∞

0

dr

r
exp

[
−iξ

xn(r)

|c|
]
, (65)

where for each Bour surface labeled with n, xn(r) is the change
of variable introduced above [see, for instance, Eq. (18) for
n �= 1].

1. Transmission on the catenoid/helicoid

In this case, one has x0(r) = |c|(r − r−1). Here, it is con-
venient to make the change of variable y = log r ∈ R, thus
the argument of the exponential in Eq. (65) turns out to be
the odd function sinh(y), meaning that the Fourier transform

FIG. 5. Family of transmission and reflection coefficients
[Eqs. (61) and (62)] versus reduced energy E∗ = E/E0

using the Fourier transform Eq. (66) corresponding to the
catenoidal/helicoidal geometry. The set of curves was obtained for
cases with m = 1, · · · , 10, and for the effective gauge flux ϕ

2π
= 8

3 .
The orange and green curves are guides for the eyes to identify the
m = 10 case.

is simplified to U (ξ ) = ∫ ∞
−∞ dy cos[2ξ sinh(y)]. This integral

can be expressed in terms of a modified Bessel function [68]:

U (ξ ) = 2K0(2ξ ). (66)

Figure 5 shows the reflection and transmission coefficient
for a propagation wave through the catenoid, where we have
used Eq. (66). In addition, one can see that the value of
E∗ = Ex, where the transmission and reflection have the same
value, is translated to the right as long as the value of m
increases. The interception value of energy is Ex, where the
transcendental equation is satisfied, T (Ex) = 1

2 , as can appre-
ciate in Fig. 5.

2. Transmission on B1-Bour

In this case, one has x1(r) = |c|(log r + 1
2 r2). Let us sub-

stitute iξ → z, where z is a complex value with Rez < 0.
Additionally, it is convenient to make the change of variable
y = r2 ∈ R+, thus the integral Eq. (65) turns out to be U (ξ ) =
2

∫ ∞
0

dy
y y− z

2 e− z
2 y, which can be related to a gamma function

[68] as

U (ξ ) = lim
z→iξ

2
( z

2

) z
2



(
− z

2

)
. (67)

Since we need the complex norm of U (ξ ), we use the iden-
tity |
(iy)|2 = π/(y sinh(πy)) for y ∈ R [68], and it remains
to compute the complex norm of the factor in Eq. (67);
by straightforward elementary calculation one has ( z

2 )
z
2 =

ei ξ

2 log ξ

2 e− ξπ

4 . Therefore,

|U (ξ )|2 = 4

ξ (eπξ − 1)
. (68)

Figure 6 shows the reflection and transmission coefficient
for a propagation wave through the B1-Bour surface, where
we have used Eq. (68). The structure of these curves is very
similar to the previous case. The principal difference corre-
sponds to that the total transmission occurs to a bigger value
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FIG. 6. Family of transmission and reflection coefficients
[Eqs. (61) and (62)] versus reduced energy E∗ = E/E0 using the
Fourier transform Eq. (67) corresponding to the B1 geometry. The
set of curves was obtained for cases with m = 1, · · · , 10, and for
the non-Abelian flux ϕ

2π
= 8

3 . The orange and green curves guide the
eyes to identify the m = 10 case.

of E∗. In addition, how the curves are moving to the left is
given according to the transcendental equation T (Ex) = 1/2.

3. Transmission on the classical Enneper surface
and n > 2 Bour surfaces

In this case, one has xn(r) = |c|( rn−1

n−1 + rn+1

n+1 ) with n � 2,
thus the Fourier transform reduces to the integral

U (ξ ) = 2
∫ ∞

0

dr

r
cos

(
ξ

(
rn−1

n − 1
+ rn+1

n + 1

))
. (69)

This integral is strictly divergent due to the singularity at r =
0. The integral is regularized, introducing an inferior cutoff
such that r � ε.

Classical Enneper case. To isolate the singular part, let
us consider the next approximation. First, let us focus on
the classical Enneper surface n = 2. One can argue that
the most important contribution to the integral is near r =
ε, where the cubic term of the cosine argument may be
neglected since r3 � ε3; moreover, for large r value, the con-
tributions to the integral decay to zero as r−1. Using this
rationale, let us ignore the cubic term inside the argument of
the cosine function; thus, the integral reduces to the cosine
integral

U (ξ ) � 2
∫ ∞

ε

dr

r
cos (ξr) := −2Ci(εξ ), (70)

where Ci(x) is the cosine integral that has the series ex-
pansion Ci(x) = γ + log x + ∑∞

n=1(−1)nx2n/(2n(2n)!) [68].
Thus, one has

U (ξ ) �= −2(γ + log (ξ )) + 2 log (1/ε) + O(ε2), (71)

where γ is the Euler-Mascheroni constant. Therefore, the
singular part is given by 2 log(1/ε). Now, we performed a
numerical evaluation of Eq. (69), subtracting the singular
part and comparing it with the previous result Eq. (71) [see
Fig. 7)]. The main error is close to k � 0, while for the rest of
the values, the error is around 1%.

FIG. 7. Fourier transform Eq. (69) versus argument ξ for the
classical Enneper geometry with n = 2 (blue color curve). It also
shows a comparison between the numerical calculation of Eq. (69),
and analytical approximation Eq. (71), corresponding to blue and
orange curves, respectively.

Figure 8 shows the reflection and transmission coefficient
for a propagation wave through the classical Enneper surface,
where we have used numerical calculation of the Fourier
transform U (ξ ). The main feature of the transmission curves
for the classical Enneper surface is the transmission value
T (EK ) = 1 at energy EK showing the Klein tunneling phe-
nomena in this case [69]. The Klein value EK corresponds
to the value where the Fourier transform U (ξ ) vanishes [see
Fig. 7)]. Using the approximation Eq. (71), one can estimate
the value of EK � E0

2 e−γ ≈ 0.28E0, with an error of 5% re-
spect to the numerical calculation. However, in contrast to the
previous cases, catenoid and B1-Bour surfaces, in the present
case, show a strong suppression of the transmission for values
above the Klein value EK , giving rise to a total reflection effect

FIG. 8. Family of transmission and reflection coefficients
[Eqs. (61) and (62)] versus reduced energy E∗ = E/E0 using the
numerical evaluation of the Fourier transform Eq. (72) corresponding
to the classical Enneper geometry with n = 2. The set of curves was
obtained for cases with m = 1, 2, 3, 4, and for the non-Abelian flux
ϕ

2π
= 8

3 . The purple and green curves guide the eyes to identify the
m = 3 and m = 4 cases, respectively. For all transmission curves,
we identify the same single Klein point EK � 0.23E0, where the
transmission is 1 and a clear trend of suppression after such a point.
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and thus vanishing conductance G(E ) → 0 for E � EK . In
addition, one can observe the Fig. 8 oscillations for the modes
m near the value of ϕ/2π , whereas for values of m far from ϕ

the behavior of reflection and transmission follow Eqs. (63)
and (64), without changing the conclusion of the existence
of the Klein point. Indeed, for |m| � ϕ/2π , there are two
interception values, and both values move towards the Klein
value as the m value increases. This effect can be explained
using the approximation Eq. (71) by making the condition
m2|U (2E∗(m))|2 = 1, thus one obtains the values in terms of
m by the equation E∗(m) � EK e± 1

2m , showing the effect just
mentioned.

Bn-Bour cases for n > 2. In this case, one can follow the
same line of argument as in the Enneper case. For instance,
let us perform the change of variable y = rn−1

n−1 , thus Fourier
transforms turn out as

U (ξ ) = 2

n − 1

∫ ∞

ε

dy

y
cos(ξ (y + αnyβn )), (72)

where αn = (n − 1)βn/(n + 1) and βn = n+1
n−1 . Observe 1 <

βn � 3, where equality corresponds to the classical Enneper
case. Since βn > 1, one can attempt to argue that this term
is not dominant near the singularity; thus, in this approxi-
mation, one has U (ξ ) � −2Ci(εξ/(n − 1))/(n − 1), thus the
difference between the present case and the Enneper case is a
factor of 1/(n − 1). However, in this case, the error increases
more than 10%. Thus, we numerically compute the Fourier
transform Eq. (69) in this case.

Figure 9 shows the reflection and transmission coefficient
for a propagation wave through the B3-Bour and B4-Bour sur-
faces. Like in the classical Enneper case, it can be appreciated
that for each Bn-Bour surface, there is a single Klein point
EK,n, where the transmittance is one. The Klein point moves
to the right for greater values of n. After the Klein point EK,n,
the transmission decreases slowly as n increases; however, it
is also wholly suppressed for large energy values.

According to Figs. 8 and 9 and Eq. (62), Klein tunneling
is achieved for all m cases, including m = 1, which we have
associated with quasibound states in the above discussion
in Sec. IV. Thus, our explanation for the Klein tunneling
on the Bn-Bour surfaces with n � 2 has to do with the fact
that the scattered wave is decomposed into a combination of
orthogonal components of the pseudospins v−μ and vμ [see
Eq. (51)]for the reflected and transmitted waves in each valley,
respectively, and the fact that V (x) behaves as a Coulomb-type
potential which is entirely a consequence of the geometry.

VII. CONCLUDING REMARKS

In this paper, we study the electronic degrees of freedom
on a curved sheet of graphene based on the Dirac equation.
On this occasion, we propose the hypothetical existence of
a graphene sheet with the geometry of a Bour surface; ex-
amples of these surfaces are the catenoid, the helicoid, and
the classical Enneper surface, among other Bn-Bour surfaces
that can be labeled using the n parameter. Bour surfaces be-
long to the large family of minimal surfaces that minimize
the area or solutions of the Willmore shape equation. It is
conspicuous that the geometry of the minimal surfaces was
proposed to model specific carbon structures in Ref. [14].

FIG. 9. Family of transmission and reflection coefficients
[Eqs. (61) and (62)] versus reduced energy E∗ = E/E0 using the
numerical evaluation of the Fourier transform Eq. (72) correspond-
ing to the B3-Bour surface with n = 3 (top) and B4-Bour surface
with n = 4 (bottom). The set of curves was obtained for cases with
m = 1, 2, 3, 4 and for the non-Abelian flux ϕ

2π
= 8

3 . The green and
purple curves guide the eyes to identify the m = 3 and m = 4 cases,
respectively. For all sets of transmission curves, we identify the same
single Klein point EK � 0.39E0 (top) and EK � 0.54E0 (bottom),
where the transmission is 1, and a clear downward trend in transmis-
sion after that point. Moreover, the higher the value of n, the slower
the downward trend.

Although there is still no artificial or natural realization of
these carbon allotropes in either laboratory or nature, there
are good expectations of their existence from numerical and
experimental investigations [12,15–17].

Now, for each n, the space-time M is built with the global
structure of M = R × Bn over which we define the Dirac field.
In particular, using an elementary change of parameters, it is
possible to rewrite the metric of M as ds2 = −v2

F dt2 + dx2 +
(1/V 2(x))dθ2, and the Dirac equation reads

ih̄∂t�
τ = vF σ1 p̂x�

τ + vFV (x)σ2Ĵθ,τ�
τ , (73)

where vF is the Fermi velocity and σ1 and σ2 are the Pauli
matrices. In this equation, V (x) has been interpreted as an ef-
fective scattering potential coupled to a pseudospin orbit term
of the form σ2Ĵθ,τ , where σ2 the direction of the pseudospin
and Ĵθ,τ = �̂θ + τ

τϕ

2π
h̄ is a total angular momentum in two

dimensions, ϕ being the non-Abelian gauge flux due to the
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topological defects, and τ the valley index. For each Bour
surface, it was found that V (x) decays to zero as x → ∞,
while V (x) works as a potential barrier near x = 0. It can be
shown that for n � 2, V (x) approach a repulsive Coulombic-
type potential.

The asymptotic behavior of the states in x → ∞ is de-
termined with Eq. (73), which effectively corresponds to
solutions of a Dirac equation in a space-time 1 + 1. These
states in terms of x are characterized as plane waves with a
pseudospin up ↑ (or down ↓) depending on the positive or
negative value of the energy. Furthermore, through the LS
formalism, we studied the outscattering states, giving rise to
an outscattering state divided into a transmitted and a reflected
wave. This is done through the Born and the high-order Born
approximation, which can be summed up. In particular, it is
observed that the reflected wave transmutes the pseudospin
direction, which we coined the spin-orbit interaction.

In addition, through the Nöether current Jμ, the probability
density, J0, is determined, which allows us to argue that it is
more probable to find Dirac fermions near the scattering point,
in fact, within this approximation we found that the proba-
bility density is proportional to V (x). Now, using the spatial
components of Jμ, the incident and scattered currents are
determined to find expressions for the reflectance R(E ) and
the transmittance T (E ), respectively. As expected [70], R(E )
and T (E ) depend on the number of topological defects, N . It
is found that for the Bour surfaces B0, catenoid (or helicoid),
and B1-Bour, there is usual behavior for the transmittance
and reflectance, giving rise to the effect of total transmittance
for large values of energy. Although the potential barrier in
the cases B0 and B1 evokes the usual situation where Klein’s
tunneling arises, the difference lies in the coupling with σ2

that appears in Eq. (73), which we coin the absence of Klein’s
tunneling [69]. However, for Bour surfaces Bn with n � 2,
including the classical Enneper surface, we show that there
is an energy point EK for which the transmittance is equal
to T (EK ) = 1, giving rise to a manifestation of Klein’s tun-
neling. In contrast, for large values of energy E � EK , the
transmittance decays to zero, suppressing the conductance
completely. Furthermore, it is found that the transmittance
T (E ) ∝ N−2 for large numbers of topological defects on all

surfaces Bn, as long as the energy is different than the Klein
point, E �= EK .

The present paper can be extended as follows. For n � 2,
one can approximate the geometry-induced potential V (x) as
a Coulombic potential near the scattering region, where one
can attempt to figure out an analytical solution for the states
and the electronic spectrum. Following a different direction,
through the WE representation, we can propose the study of
electronic degrees of freedom on other minimal surfaces, such
as simply periodic minimal surfaces, k-noids, or Schwartzites
that are much more involved. In particular, for these surfaces,
it is found that the conformal factor �(r, θ ) depends intri-
cately on r and θ , so it is not possible to perform a separation
as in the case of Bour surfaces [56]. However, we can im-
plement traditional methods like the finite element to solve
the Dirac Eq. (17) to study other electronic properties like the
density of states, Kubo conductivity, etc.
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APPENDIX A: GREEN’S FUNCTION CALCULATION

Calculation of the one-dimensional Green’s function.
Let us start with the equation (E − vF σ1 p̂x )G(x, x′, E ) =
δ(x − x′), where the momentum operator p̂x = −ih̄∂x, and
let us recall that the dispersion relation is given by E =
±h̄vF |k|. Now, let us define the function g0(x, x′, E ) such
that G(x, x′, E ) = (E + vF σ1 p̂x )g0(x, x′, E ), thus it is not dif-
ficult to show that g0(x, x′, E ) satisfies the Green’s-Helmholtz
equation (h̄vF )2(−∂2

x + k2)g0(x, x′, E ) = δ(x − x′). Now, the
solution of this equation is known to be [71]

g0
(
x, x′, E

) = 1

2i(h̄vF )2|k|ei|k||x−x′|. (A1)

APPENDIX B: CALCULATION OF THE HIGHER-ORDER BORN APPROXIMATION

1. Calculation of τn+1(p) terms

We start with the expression Eq. (42),

τn+1(p) = (h̄vF )n+1(2π )n
∑

q(1),··· ,q(n)

σ2mτ δmm(1)Ũ (p − q(1) )

(
n−1∏
�=1

G(q(�) )σ2m�
τ δm(�)m(�+1)Ũ (q(�) − q(�+1))

)

× σ2vμ·σ fm(n) m(n)
τ Ũ

(
q(n) − σ |k|), (B1)

where we have substituted the expression for type (a) Eq. (43) and type (b) Eq. (44). Taking advantage of the Kronecker deltas
δm(�)m(�+1) , we can simplify the last expression as follows (note that each 2π cancels out with each 2π that appears in 1

2π

∑
m):

τn+1(p) = (h̄vF mτ )n+1 fm

∫ (
n∏

�=1

dq(�)

2π

)
σ2Ũ (p − q(1) )

(
n−1∏
�=1

G(q(�) )σ2Ũ (q(�) − q(�+1))

)
G(q(n) )

× σ2vμ·σŨ (q(n) − σ |k|). (B2)
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FIG. 10. Contour curves 
1 and 
2 for the complex integrals in the z plane [Eq. (B4)] and in the qn−1 plane [Eq. (B5)], respectively.

Now, we organize the integrals in the following nested structure:

τn+1(p) = (h̄vF mτ )n+1 fm

∫
dq(1)

2π
σ2Ũ (p − q(1) )G(q(1) )U (1)(q(1) )σ2vμ·σ , (B3)

where U (1)(q(1) ) is written in terms of U (2)(q(2) ), and so on. In general, one has the following definition:

U (�)(q(�) ) =
∫

dq(�+1)

2π
σ2Ũ (q(�) − q(�+1))G(q(�+1))U (�+1)(q(�+1)),

where � = 1, · · · , n − 1 and U (n)(q(n) ) = Ũ (q(n) − σ |k|).
Next, let us proceed to calculate U (n−1)(q(n−1)). The integral involved in this quantity can be performed using complex

integration, replacing q(n) by the complex variable z,

U (n−1)(q(n−1)) = i
∫


1

dz

2π i
σ2Ũ (q(n−1) − z)G(z)Ũ (z + |k|), (B4)

where we have put σ = −1 since we have an initial left wave. The contour complex integration 
1 is chosen as shown on the left
side of Fig. 10, since we exclude the points where the argument of the Fourier transform is zero. Note that Ũ (0) = ∫ ∞

−∞ dxU (x)
is strictly divergent since U (x) is a long-range potential which for all Bour surfaces decay as 1/x. The Green’s function G(p) in
momentum space can be written as

G(p) = μ

h̄vF

|k| + μσ1 p

[p − (|k| + iε)][p + (|k| + iε)]
,

where μ = ± represents the positive and negative energy states, and one can identify two poles at |k| + iε and −|k| − iε. Using
the Cauchy integral theorem, it is not difficult to show that

U (n−1)(q(n−1)) = Ũ (q(n−1) − |k|) iμ

h̄vF
Ũ (2|k|)σ2Pμ,

where Pμ = 1
2 (1 + μσ1) is a projector. Now, to be transparent in the calculation, let us insert this result into the integration by

the qn−1 variable, turning it out as

U (n−2)(q(n−2)) = ∫ dq(n−1)

2π
σ2Ũ (q(n−2) − q(n−1))G(q(n−1))Ũ (q(n−1) − |k|) iμ

h̄vF
Ũ (2|k|)σ2Pμ.

Although the integration is similar to the previous one, it is convenient to perform the change of variable q(n−1) → −q(n−1), thus
the integration results in

U (n−2)(q(n−2)) =
∫

dq(n−1)

2π
σ2Ũ (q(n−2) + q(n−1))G(−q(n−1))Ũ ∗(q(n−1) + |k|) iμ

h̄vF
Ũ (2|k|)σ2Pμ, (B5)

where Ũ ∗(k) = Ũ (−k) is the complex conjugate. Now, we proceed to calculate this integral again using complex integration as
in the previous integration. The result is the same except that Pμ changes by P−μ, that is,

U (n−2)(q(n−2)) = Ũ (q(n−2) + |k|)
(

iμ

h̄vF

)2

|Ũ (2|k|)|2σ2P−μσ2Pμ,
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where | · | is the complex norm. Now, by an iterative process, one can conclude that

U (1)(q(1) ) = Ũ
(
q(1) + (−1)n−1|k|)( iμ

h̄vF

)n−1

B(n)
μ ,

where

B(n)
μ =

⎧⎪⎨
⎪⎩

∏(n−1)/2
j=1 [|Ũ (2|k|)|2σ2P−μσ2Pμ], for n odd

Ũ (2|k|)σ2Pμ

∏(n−2)/2
j=1 [|Ũ (2|k|)|2σ2P−μσ2Pμ], for n even.

(B6)

Note that Eq. (B6) can be simplified further as a consequence of the following algebra: σ2Pμ = P−μσ2, thus σ2P−μσ2Pμ =
Pμσ 2

2 Pμ = P2
μ = Pμ. Using this algebra and the property P2

μ = Pμ, one obtains

B(n)
μ =

⎧⎨
⎩

|Ũ (2|k|)|n−1Pμ, for n odd

Ũ (2|k|)|Ũ (2|k|)|n−2σ2Pμ, for n even.

Now, we substitute U (1)(q(1) ) inside the expression for τn+1(p) in Eq. (B3). We proceed to perform the calculation for n odd
and even cases using the same strategy used to calculate the integrals on the variables q(n) and q(n−1). Additionally, we use the
property Pμvμ = vμ and σ2v−μ = iμvμ. Thus, the result of the n + 1 − th term corresponds to the expressions in Eqs. (46)
and (47).

2. Calculation of Cn+1(x) terms

The starting point to calculate the terms Cn+1(x) corre-
sponds to the Fourier integral

Cn+1(x) =
∫

d p

2π
eipxG(p)τn+1(p)

in the cases even n and odd n. For odd n, we use Eq. (46), make
the change of variable p → −p, and perform the complex in-
tegration using the contour 
2. In contrast, for even n, we use
Eq. (47), and the complex integration is performed using the
contour 
1. In this manner, we obtain the desired expressions
Eqs. (49) and (50), respectively.

APPENDIX C: ALTERNATIVE SET OF LOCAL
COORDINATES

1. Cartesian coordinates

The metric of the space-time M written through the square
of the line element considered here is

ds2 = −v2
F dt2 + �2(ω)|dω|2, (C1)

where �2(ω) is the conformal factor introduced above for the
minimal surfaces and |dω|2 = du2 + dv2. The local indices,
in this case, can be split as α = t, u, v. From the metric
Eq. (C1), one can easily read θ̂0 = vF dt , θ̂1 = �du, and
θ̂2 = �dv, from where one can extract the components of the
vielbeins eA

μ. Now, from the Maurer-Cartan Eq. (1) and the
torsionless condition, one can obtain d θ̂0 = 0, and

d θ̂1 + �v

�2
θ̂1 ∧ θ̂2 = 0, (C2)

d θ̂2 + �u

�2
θ̂2 ∧ θ̂1 = 0. (C3)

Now, from Eq. (C2) one can deduce ω1
0 = 0 and ω1

2 = �v

�2 θ̂
1 +

X θ̂2 for some local function X , whereas from Eq. (C3) one can
deduce that ω2

0 = 0 and ω2
1 = �u

�2 θ̂
2 + X̃ θ̂1. Now we use the

metric condition ωAB = −ωBA; thus one can determine X and

X̃ , turning that the only nonzero components of the connection
one-form are

ω12 = −ω21 = �v

�2
θ̂1 − �u

�2
θ̂2. (C4)

These components expressed in local coordinates are
given by ω12

u = −ω21
u = ∂v log �(ω) and ω12

v = −ω21
v =

−∂u log �(ω). Consequently, the spin connection �α is
given simply as �t = 0, �u = i

2∂v log �(ω)σ3, and �v =
− i

2∂u log �(ω)σ3.
Now we use all this information to write an explicit ex-

pression for the Dirac equation in these space-times. Denoting
the 2 + 1 Dirac spinor by � and making the transformation
� = �− 1

2 �, we can show that the Dirac equation is given by

ih̄∂t� = −i
h̄vF

�
(σ1∂u� + σ2∂v�). (C5)

In the simplest case, when � = 1, the above equations cor-
respond to the Dirac equation in Minkowski’s space-time.
The Dirac equation in these coordinates u, v is particularly
useful when the conformal factor � depends on one of the
coordinates. Noticeably, Eq. (C5) is valid for any conformally
flat space metric [22].

2. Natural coordinates for the catenoid

In this section, we write the Dirac equation in the most
natural coordinates of the catenoid before considering the WE
representation Eq. (3). Indeed, let us consider the parametriza-
tion of the catenoid obtained from the 2π -rotation of the
catenary, that is,

X(z, ϕ) = (R(z) cos ϕ,−R(z) sin ϕ, z), (C6)

where R(z) = R0 cosh(z/R0), with R0 the radius of the neck
of the catenoid, where z ∈ (−∞,∞), and ϕ ∈ [0, 2π ). The
metric square line, in this case, is given by

ds2 = R2
0 cosh2

(
z

R0

)(
1

R2
0

dz2 + dϕ2

)
. (C7)
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Clearly, one can identify the coordinates u → ζ = z/R0

and v → ϕ, and the conformal factor �(ω) → λ(ζ ) =
R0 cosh(z/R0). The expression Eq. (C5) is advantageous
since the conformal factor depends on one of the coordi-
nates. Further, it is convenient to define the following change
of variables: x = R0 sinh ζ , where x ∈ (−∞,∞), thus it is
not difficult to show that λ−1(ζ )∂ζ = ∂x. Indeed, the Dirac
equation reduces to the equation found above Eq. (19),
ih̄∂t� = vF σ1 p̂x� + vF σ2V (x)�̂ϕ�, where p̂x = −ih̄∂x and
�̂ϕ = −ih̄∂ϕ are linear and angular momentum operators,
and the expected effective potential found above V (x) =
1/

√
x2 + R2

0. The connection between the natural coordinates
and the polar coordinates can be accomplished by using the
change of variable r = eζ and identified ϕ → θ .

APPENDIX D: EXPLICIT PARAMETRIZATIONS

In this section, we show explicit parametrizations for the
catenoid, helicoid, B1-Bour, and the classical Enneper sur-
faces in polar coordinates (r, ϕ), following Ref. [55]. For the
catenoid

Xc(r, ϕ) =
(

α

2

(
1

r
+ r

)
cos ϕ,

α

2

(
1

r
+ r

)
sin ϕ,−α log r

)
;

(D1)

for the helicoid

Xh(r, ϕ) =
(

β

2

(
r − 1

r

)
sin ϕ,

β

2

(
r − 1

r

)
cos ϕ; βϕ

)
,

(D2)

for the classical Enneper surface

Xe(r, ϕ) =
(

r cos ϕ − r3

3
cos 3ϕ,−r sin ϕ

− r3

3
sin 3ϕ, r2 cos 2ϕ

)
, (D3)

and for the B1-Bour surface

Xb(r, ϕ) =
(

log r − r2

2
cos 2ϕ,−ϕ

− r2

2
sin 2ϕ, 2r cos ϕ

)
. (D4)

Using these parametrizations, Xc, Xh, Xb, and Xe, we have
drawn the surfaces inside Figs. 1, and 2, 4 with the help of
MATHEMATICA.
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