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Electronic heat tunneling between two metals beyond the WKB approximation
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Two metals at different temperatures separated by large gaps exchange heat under the form of electromagnetic
radiation. When the separation distance is reduced and they approach contact (nanometer and subnanometer
gaps), electrons and phonons can tunnel between the bodies, competing and eventually going beyond the flux
mediated by thermal photons. In this transition regime the accurate modeling of electronic current and heat flux
is of major importance. Here we show that, in order to quantitatively model this transfer, a careful description
of the tunneling barrier between two metals is needed and going beyond the traditional WKB approximation is
also essential. We employ analytical and numerical approaches to model the electronic potential between two
semi-infinite jellium planar substrates separated by a vacuum gap in order to calculate the electronic heat flow
and compare it with its radiative counterpart described by near-field radiative heat transfer. We demonstrate that
the results for heat flux and electronic current density are extremely sensitive to both the shape and height of the
barrier, as well as the calculation scheme for the tunneling probability, with variations up to several orders of
magnitude. Using the proximity force approximation, we also provide estimates for tip-plane geometries. The
present work provides realistic models to describe the electronic heat flux, in the scanning-thermal-microscopy
experiments.
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I. INTRODUCTION

Two bodies at different temperatures separated by a vac-
uum gap can exchange heat through a variety of channels.
At large separation distances this energy exchange is purely
radiative and governed by the Stefan-Boltzmann law, setting
an upper limit for this energy flux, reached only in the the-
oretical scenario of two blackbodies. When the separation
distance becomes smaller than the thermal wavelength (of
the order of 10 µm at ambient temperature) we move into
the regime of near-field radiative heat transfer (NFRHT) the-
ory. In this domain, it is known that the radiative flux can
exceed the Stefan-Boltzmann limit thanks to the contribution
of evanescent (i.e., nonpropagative) photons [1]. This strong
flux amplification can reach several order of magnitude for
materials supporting resonant surface modes of the electro-
magnetic field in the infrared, such as phonon-polaritons for
polar materials [2–4] or a continuum of hyperbolic modes [5].

The physics at play becomes even richer when going to
smaller distances, in the so-called extreme-near-field regime,
at separation distances in the nanometer range and below. This
distance regime has been recently probed by two experiments
[6,7] reaching diverging conclusions, the former confirm-
ing theoretical predictions, the latter observing a strong flux
amplification, to date unexplained. In the extreme-near-field
regime, it has been shown that radiation can be influenced by
nonlocal effects [8–10], which could lead to new interesting
phenomena, such as the existence of a radiative contribution
stemming from nonoptical modes between polar materials
[11,12]. It has also been argued that at subnanometer scales
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two new heat carriers contribute to energy transfer [13–16].
On the one hand, acoustic vibrations from a surface can have
an influence on another surface due to molecular and electro-
static forces, leading to phonon tunneling [12,15–21]. On the
other hand, when dealing with metals, electron tunneling is
expected to significantly contribute and predicted to dominate
close to contact.

Besides the development of experimental setups probing
heat flux in the extreme near field (for which the agreement
with theory is often qualitative due to vibration, deformation,
and contamination [22]), the study of energy exchange at
such short distance scales is also of remarkable importance
due to recent and ongoing developments in nanofabrication
and miniaturization. As a matter of fact, nanodevices need
efficient thermal management techniques in order to be reli-
able, since slight temperature differences can drive significant
uncontrolled amounts of heat. Motivated by these challenges,
the study of the electronic contribution to energy exchange
is of major importance. Moreover, the study of energy and
heat flux by thermal electrons in the tunneling regime is of
interest for the development of thermal transistors and thermal
amplifiers [23,24]. “Thermal” refers to electrons described
by local-equilibrium Fermi-Dirac statistics but below the
work function. Electrons in the tail of the distributions are
exchanged by tunneling if the barrier is thin, carrying both
charge and heat. Under the influence of an electric potential
bias, this can lead to the Nottingham effect where the elec-
tronic heat flux is large and nonreciprocal [16,25], leading
to the mutual heating of both electrodes. So far most studies
comparing it with the radiative counterpart have modeled the
effect of the barrier under a single model, including single-
step potentials [13] or under the influence of classical image
forces [14,15] which need to be regularized.
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The study of the barrier height is of special importance
for the study of surfaces in field emission and scanning tun-
neling microscopy (STM). For the latter, phenomenological
or semiclassical formulas are derived to deduce the barrier
height from the measured current [26,27]. However these
calculations need additional corrections depending on the
electrodes, as deformations of the tip and the surface can
lead to apparent barrier height and apparent gap distances,
and thus apparent surfaces that differ from the expected
results [28–30]. It also does not help that the current often
varies exponentially with respect to various parameters, lim-
iting the sensitivity to small feature changes [22]. Slight
differences in chemical composition can lead to asymmetrical
barriers which shift the conductance minima [31]. Attractive
forces can also appear near the surface producing a vibrating
motion of the tip which in turn influences the measured barrier
heights [28]. The sensibility to the tip motion and deforma-
bility has led to the development of atomic force microscopy
[32]. Another problem is contamination: even for clean sur-
faces and ultrahigh vacuums, the work functions measured
using these techniques can be lower than the expected value
by some eV [33]. All of these issues imply that near-field
scanning thermal microscopy [9], which adapts the equipment
of STM and AFM to measure heat currents, suffers from the
same problems in the presence of electronic heat transfer.
Nevertheless, probing these heat exchanges could provide a
secondary test for the barriers and interactions at extreme and
near fields.

In this work we focus on providing a numerical bound to
the electronic tunneling heat current by analyzing the effects
of the modeling of the barrier in various extreme cases. The
tunneling probability of electrons is calculated from a rigor-
ous calculation based on the transfer-matrix method applied
within a density functional approach to ideal jellium bodies
as well as an analytic nonlocal Poisson equation under the
Thomas-Fermi approximation [34,35]. We also analyze the
case of a parametrized phenomenological barrier given by a
generalized Gaussian function. These approaches allow us to
explore the influence of the height but also the shape of the
barrier between two metallic electrodes.

This paper is organized as follows: The definitions of cur-
rent density and heat flux are discussed in Sec. II for the
case of thermal electron tunneling and NFRHT. In Sec. III,
we discuss the results of the classical potential under semi-
classical approximations and illustrate the limitations of such
an approach. Section IV is devoted to more realistic models
for the electronic barrier potential between two metals and
the calculation of the transmission probability. In Sec. V we
discuss the electronic heat flux in two different configurations,
namely two metallic half spaces (plane-plane configura-
tion) and a tip-plane configuration using the proximity force
approximation (PFA) as shown in Fig. 1. We finally conclude
in Sec. VI.

II. ELECTRONIC CURRENT DENSITY
AND EXTREME-NEAR-FIELD HEAT FLUX

Let us consider the system depicted in Fig. 1(a), consist-
ing of two metallic parallel planar substrates, separated by a
vacuum gap of thickness d along the z direction. They are

FIG. 1. Extreme-near-field heat fluxes between (a) two semi-
infinite slabs of temperatures T1 and T2 made of the same metal
with Fermi energy EF separated by a vacuum gap of length d and
(b) between tip and sample with the same parameters. Near-field
electromagnetic radiation (rad) and thermal electrons (el) can chan-
nel heat from body 1 to body 2. In (b), the tip is considered spherical
with radius R, divided into infinitesimal disks for proximity force
calculations.

assumed to be large enough along the x and y directions so
that they can be considered infinitely extended. The two sub-
strates are kept at two different temperatures T1 and T2 by two
external thermostats and they are characterized by the same
Fermi level EF. As explained above, even when separated by
a vacuum gap, these bodies can exchange energy through the
tunneling of different carriers. Here we are going to focus on
electron tunneling, and take photon tunneling, i.e., radiative
heat transfer, as a quantitative reference for comparison.

Even in the case of large work functions, electrons may
escape the surface of a metal as a result of a temperature
difference (thermionic emission) or in the presence of an
externally applied electric field (field emission). The latter
scenario is possible due to quantum tunneling, allowing for
a nonzero transmission probability for electrons with classi-
cally insufficient energy to overcome the potential barrier in
the region between the two substrates. More specifically, in
the so-called extreme-near-field regime, i.e., when the barrier
width is in the nanometer range and below, it is possible to
induce a significant electron tunneling already for a small
temperature difference and in the absence of a bias field.
The tunneling current density in this configuration can be
expressed as [27]

J = − em

2π2h̄3

∫ ∞

0
dEz

∫ ∞

0
dE⊥

× �nFD(E , T1, T2, EF)T (el)(Ez ), (1)

where −e is the electron electric charge, m its mass, E =
E⊥ + Ez its total kinetic energy decomposed in contributions
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stemming from velocities perpendicular and parallel to the
surface, and

�nFD(E , T1, T2, EF) = nFD(E , T1, EF) − nFD(E , T2, EF),
(2)

nFD(E , Ti, EF) = 1/{exp([E − EF]/kBTi ) + 1} being the
Fermi-Dirac distribution that depends on both temperature
Ti and Fermi energy EF associated with each medium. The
key physical quantity appearing in Eq. (1) is the electronic
transmission probability T (el)(Ez ) for the electron to cross
the gap, which due to the symmetry of the problem depends
only on its kinetic energy Ez perpendicular to the surface. The
transmission probability has to be calculated by determining
the transmission amplitude of a given electron crossing the
gap in the presence of an electronic barrier U (z) produced
by image forces. The methods to calculate T (el)(Ez ) are
described in Sec. IV.

The net transfer of electrons between the two substrates is
also at the origin of an energy flux (heat flow) �(el) which,
as discussed in detail in [16], can in some configurations
compete with and go beyond the photonic (radiative) heat flux
�(rad). The total heat flux between the substrates is thus given
by

� = �(el) + �(rad). (3)

We remark that in the extreme-near-field regime, namely for
gaps smaller than 1 nm, one can also consider the possibility
of phonon tunneling due to van der Waals and electrostatic
forces [17–20], but this mechanism turns out to be a smaller
contribution than the electronic one in the absence of bias [16]
and will be neglected here. For the electronic contribution, the
heat flux takes the form [16,25]

�(el)(T1, T2, d ) = m

2π2h̄3

∫ ∞

0
dEz

∫ ∞

0
dE⊥

× (E − EF)�nFD(E , T1, T2, EF)T (el)(Ez ),
(4)

where (E − EF) represents the energy contribution associated
with each electron. Note that in the absence of bias voltage
we make no distinction between the heat flow in the two
directions (to and from cold and hot bodies), as in this case
heat flows reciprocally in the usual thermodynamic way. This
reciprocity does not always hold due to the Nottingham effect
[16,25], which can lead for example to heating of both bodies
in the presence of an applied bias voltage.

As stated above, radiative heat flux will be taken as a ref-
erence for comparison to electronic flux, since in the distance
range considered here we can expect to find the transition sep-
aration distance below which electronic heat flux overcomes
electromagnetic radiation [16]. The near-field radiative heat
flux between the two bodies can be expressed as [1,36,37]

�(rad)(T1, T2, d ) =
∫ ∞

0

dω

2π
h̄ω�nBE(ω, T1, T2)

×
∫ ∞

0

dk

2π
k

∑
α=s,p

T (rad)
α (k, ω, d ), (5)

where

�nBE(ω, T1, T2) = nBE(ω, T1) − nBE(ω, T2), (6)

nBE(ω, Ti ) = 1/[exp(h̄ω/kBTi ) − 1] being the Bose-Einstein
distribution, k the parallel component of the wave vector, ω

the angular frequency of each mode, and

T (rad)
α (k, ω, d )

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 − |rα|2)2

|1 − r2
α exp(2ikzd )|2 , k < ω/c,

4 (Im rα )2 exp(−2 Im kzd )

|1 − r2
α exp(−2 Im kzd )|2 , k � ω/c,

(7)

the radiative transmission probability. The transmission prob-
ability is separated in terms of the two polarizations, given
by the transverse electric (α = s) and transverse magnetic
(α = p) contributions, where kz =

√
(ω/c)2 − k2. The inte-

gral in Eq. (5) is carried out over all values of k, including
the contribution of propagative (k < ω/c) and evanescent
(k > ω/c) waves. The latter dominate for distances below
the thermal wavelength, in the micrometer range at ambient
temperature. The reflection coefficients in (5) are given by
Fresnel’s formulas,

rs(k, ω) = kz − km,z

kz + km,z
, rp(k, ω) = ε(ω)kz − km,z

ε(ω)kz + km,z
, (8)

where km,z =
√

(ω/c)2ε(ω) − k2 is the z component of the
wave vector inside the media. In this paper, we employ a local
description of the dielectric susceptibility given by Drude’s
model, as

ε(ω) = ε∞ − ω2
pl

ω(ω + i�)
, (9)

where ωpl is the plasma frequency of the metal, � is the
damping coefficient, and ε∞ is the high-frequency value [38].
Here we neglect the nonlocal radiative effects that appear in
the extreme-near-field regime [8–10], as this modification is
negligible when compared to electronic tunneling [16].

III. THE STANDARD MODELING
OF ELECTRON TUNNELING

The evaluation of the electronic transmission probability in
Eq. (1) and Eq. (4) depends on the calculation of the electronic
barrier potential. For a charge between two metallic plates,
this potential is classically calculated using the image method
[27], given by the classical image potential,

Ucl(z) = W0 + EF + e2

16πε0d
[	(z/d ) + 	(1 − z/d ) + 2γ ],

(10)

only defined between z = 0 and z = d , where W0 is a vertical
shift, ε0 is the vacuum permittivity, 	(z) is the digamma
function, and γ is the Euler-Mascheroni constant. The last
term to the right of Eq. (10) is known as the image potential
or image force and has the effect of rounding the edges of a
square barrier of height EF + W0. The height of the barrier is
reduced by the image potential, so W0 is not the true work
function. The image potential also reduces with the gap d .
However, this expression (10) can be unphysical. Due to its
divergences at the boundaries, the potential should be impen-
etrable [39] and semiclassical calculations of the transmission,
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which require smooth potentials, may not be valid. The pres-
ence of electronic interactions leads to a barrier that is actually
smooth and penetrates into the metal. To avoid this issue, it is
often suggested to redefine the image planes and translate the
potential inside the metal by a few angstroms.

In order to compare with different barriers, we are inter-
ested in studying carefully the influence of height and shape of
the barrier in a more general scenario. Thereby, we introduce
a parametrized barrier described by a symmetric generalized
Gaussian (GG) distribution [40], defined as

U (GG)(α, β, u0; z) = u0EF exp

⎛
⎝−

∣∣∣∣∣
z
d − 1

2

α

∣∣∣∣∣
β
⎞
⎠, (11)

where the barrier is centered at d/2 and has three main
parameters: the normalized scale parameter α quantifying the
penetration of the potential inside the metal, the shape param-
eter β which controls its peakedness, and the barrier height u0

(in units of the Fermi energy EF). The latter is connected to the
work function W by the simple relation W = EF(u0 − 1). This
function also allows for long-tail distributions, but in order to
ensure that U (GG)(α, β, u0; z) → 0 as z → ±∞, we add the
restriction β � 1. Equation (11) describes a standard Gaus-
sian distribution for β = 2 and approaches the square barrier
as β → ∞. The GG barrier allows us to obtain results for
general barrier shapes and heights. The generalized Gaussian
potential has the advantage that it is also defined inside the
metal.

In Fig. 2(a), we illustrate the image potential (black solid
line) and two GG parametrizations corresponding to two dif-
ferent barriers with the same height and different shape that
penetrate inside the metal (z/d < 0 and z/d > 1).

For a given parametrization of U (GG)(α, β, u0; z), we can
now solve for the transmission of an electron with energy Ez

inside the metal. However the transmission probability has
only a few analytical solutions tied to specific electronic bar-
rier shapes. In practical applications, the barrier height is often
estimated qualitatively by using semiclassical approximations
like that of the one-dimensional Wentzel-Kramers-Brillouin
(WKB) method [41], where the transmission is given by

T (el)
WKB(Ez ) = exp

(
−2

√
2m

h̄

∫ z2

z1

dz
√

U (z,Vb) − Ez

)
, (12)

where the integration is usually carried out between the zeros
of the integrand, z1 and z2, in the region where the electronic
barrier height U (z) is larger than the energy Ez. However
the WKB approximation is drastic and should be avoided for
extremely small gaps. Even if it is often the preferred
technique for the calculation of the transmission of one-
dimensional barriers, this approximation is not valid in the
presence of abrupt potentials and in principle should be
avoided when using the classical image potential (10), which
can be proved to be impenetrable [39].

In Fig. 2(b) we show the current density (1) for a gap
of d = 1 nm calculated using the WKB approximation, for
the potentials defined in Fig. 2(a), where the integration in
Eq. (12) is carried between z1 = 0 and z2 = d . As expected
the current density can decrease by various orders of mag-
nitude as a function of the height of the barrier. However

FIG. 2. (a) Shape of three electronic potential barriers of height
of 1.5EF: image potential (black solid line), GG barrier with (α, β ) =
(0.7, 3) (red dashed line), GG barrier with (α, β ) = (0.45, 10)
(blue dash-dotted line). (b) Current density calculated within WKB
approximation for the same potential barriers as (a) as a function of
the barrier height for a gap of d = 1 nm. Inset: Current density as
a function of the shape factor β for a GG barrier of α = 0.45 and
height u0 = 1.5.

it is also interesting to observe the sensitivity to the shape
of the potential. For the broadest GG barrier (α = 0.7, red
dashed line) the difference with the current density of the
image potential can reach more than an order of magnitude
depending on the height. For the thinner GG barrier (α =
0.45, blue dash-dotted line), the barrier is more similar to
the image potential, but its relative difference with current
density of the image potential can vary nonmonotonically. For
a given GG barrier, increasing the shape factor β of the barrier
from a peaked distribution to a square potential can induce a
reduction of one order of magnitude or more of the current
density even if the barrier height is kept at the same value [see
inset of Fig. 2(b)].

It is clear that just estimating the height of the barrier does
not suffice to provide a quantitative calculation that would
match experimental results. A given experimental data point
of the tunneling current can be reproduced by any series of
slightly similar potentials. It is possible to fit the data by
adjusting the height W and images planes of the classi-
cal image potential (10) or by choosing a smooth potential
by changing the height, shape, and penetration depth. Also
by postulating variable parameters one is able to fit any
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dependence of the current density with distance. This arbitrary
choice makes it hard to understand what would be the next
correction to the standard theory of electronic tunneling, as
any divergence from experimental values can be identified
as an unusual work function if one does not account for the
changes in barrier shape or lack of sensitivity due to the use
of the WKB approximation. These problems motivate the
inquiry to understand how much discrepancy there can be
between less arbitrary theoretical models. When driven by a
bias voltage, the classical image potential along with WKB
approximation can be enough to broadly estimate the current
density for gaps of a few nm [27] but would remain a very
rough approximations for smaller gaps where the shape of
the barrier changes and WKB is not sensitive at all to the
penetration of the potential inside the barrier. The fact that in
some experiments the work function of metals is mysteriously
low [6,22] might depend on these approximations.

IV. BEYOND THE STANDARD APPROACH

In the this section, we describe two different models that
go beyond the classical image potential (10), one based on
a many-body calculation using density functional theory and
another based on a nonlocal electrostatic solution of Poisson
equation. With the goal of obtaining quantitative results for
the heat flux from these models, we will also drop the WKB
approximation altogether and replace it with a more precise
numerical calculation of the transmission coefficient based on
S matrices.

A. Local-density approximation for jellium

Due to the unphysical nature of the classical images
potential (10), a realistic calculation of the electronic barrier
for a metal requires a many-body treatment of electronic inter-
actions. In this approach, we model the electron gas inside the
metallic bodies as a jellium (interacting electron cloud over a
positive ionic background) and the effective potential that the
electronic cloud exerts on a single probe electron is recovered.
The jellium model has the advantage that it only depends on
a single parameter, the Wignez-Seitz radius, which makes it
very practical for the study of metals. It also allows us to
clearly keep defined edges of the metal gap using a sharp ionic
background. According to the Hohenberg-Kohn theorem [42],
the total many-body energy can be written uniquely in terms
of the electronic density n as

E[n] = K[n] +
∫

d3r Uext (r)n(r) (13)

+ e2

8πε0

∫
d3r

∫
d3r′ n(r)n(r′)

|r − r′| + Exc[n], (14)

where K[n] is the kinetic energy of a noninteracting elec-
tron gas, the second term represents the interaction with an
external potential Uext (r), the third term is the electron-
electron interaction, and Exc represents the exchange-
correlation contribution [43]. For the problem at hand, we are
interested in the effective potential

U (r) = Uext (r) + e2

4πε0

∫
d3r′ n(r′)

|r − r′| + ∂Exc[n]

∂n(r)
, (15)

acting on single electron and due to the surrounding
electrons.

By choosing a form of Exc[n], we can then solve the Kohn-
Sham equations,[

− h̄2

2m
∇2 + U (r)

]
ψ j (r) = Ejψ j (r) (16)

for j = 1, 2, . . . , N , for a system of N electrons in a
given volume, to obtain back the electronic density n(r) =∑N

j=1 |ψ j (r)|2. By iterating over this self-consistent system
of equations, Eqs. (13) and (16), one can obtain a realis-
tic approximation of the electronic density and the effective
potential in the gap and inside the metal.

The exchange-correlation term is not known and requires
being treated under certain approximations. For this paper,
we will restrict our calculations to the local-density approx-
imation (LDA) [44], which assumes an exchange-correlation
function of the form E (LDA)

xc = ∫
d3r n(r)εxc[n(r)] where

εxc = εx + εc is the exchange-correlation energy per electron
for jellium. This term can be divided into two terms: a Fock
exchange term εx that can be written analytically for a homo-
geneous electron gas, and a correlation term εc that is often
obtained by quantum Monte Carlo methods. In the present
work, we implement the exchange-correlation potential using
the Perdew and Yang approach [45]. For two semi-infinite
jellium slabs with perfectly flat surfaces separated by a vac-
uum gap, this construction leads to an effective LDA barrier
U (LDA)(r) = U (LDA)(z) that we calculate numerically using
the GPAW toolkit [46,47] (see Appendix A for technical
details).

B. Thomas-Fermi approximation for the nonlocal
Poisson equation

The LDA approximation for jellium neglects the crystal
structure of the material making it inadequate for the descrip-
tion of surface effects in metals. Moreover, it can provide
low values for the work function of metals [33]. For that
reason, we propose another model that would be closer to
the semiclassical calculation, but where the work function is
not an input of the model like in the classical image potential
(10). Inspired by previous results [16,38], we reintroduce here
an additional barrier based on the analytical solution to the
nonlocal Poisson equation [16,34,35], given by(

∂2

∂z2
− k2

)
G(k; z, z′) −

∫
dz′′�(k; , z, z′)G(q; z′′, z′)

= δ(z − z′), (17)

where δ(z) is the Dirac delta distribution, G(k; z, z′) is the
Green function, and �(k; z, z′) is the polarization operator.
Using the specular reflection approximation, we can write the
polarization operator as

�(k; z, z′) =

⎧⎪⎨
⎪⎩
�1(k; z − z′) + �1(k; z + z′), z, z′ � 0,

�2(k; z − z′) + �2(k; z + z′), z, z′ � d,

�gap(k; z − z′) + �gap(k; z + z′), 0<z, z′ <d,

(18)
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FIG. 3. Effective electronic barrier potential between two semi-infinite slabs of the same metal as a function of the horizontal coordinate
z, for three different distances d , calculated using LDA and TFA methods (described in the text), along with the fits of the LDA barrier using a
parametrized generalized Gaussian (GG) function with parameters α, β, u0 (see text for details).

where

�b(k; z ∓ z′) =
∫ ∞

−∞

dqz

2π
K2[εb(K ) − 1] exp(iqz[z ∓ z′]),

(19)

K2 = k2 + q2
z , and εb(K ) is the dielectric function of each

region b = 1, 2, gap. For simplicity, we would use the long-
wavelength Thomas-Fermi approximation (TFA) for the
dielectric function [48] inside the metal, given by

εTF(K ) = ε1,2(K ) = 1 + k2
TF

K2
, (20)

where kTF =
√

e2mekF/π2h̄2ε0 is the inverse of the Thomas-
Fermi screening length [38,48] and it is the only input
parameter for the calculation. By solving for G(k; z, z′) in
Eq. (17) [16,35] we can recover the electronic potential for
a single electron by calculating

U (TFA)(z) = e2

4πε0

{
kTF

2
−

∫ ∞

0
dk k

[
G(k; z) + 1

2k

]}
, (21)

where the constant e2kTF/8πε0 is introduced to set the bottom
of the band equal to 0. The Thomas-Fermi approximation
considered the first valid approximation beyond the clas-
sical image potential used to reproduce screening effects,
but does not reproduce other quantum phenomena like the
Friedel oscillations of the electronic density. The TFA bar-
rier reproduces the classical potential (10) for ideal metals
[ε1,2(K ) → ∞].

C. Comparison

To go beyond the classical image potential (10), we have
introduced two different models that go beyond the classical
assumptions, the TFA potential of Sec. IV B, which introduces
screening effects, and the LDA approach of Sec. IV A, which
treats the quantum many-body problem and adds the effects
of exchange and correlation potentials. On the one hand, the
effective TFA barrier U (TFA)(z) is simpler to implement, but
is known to overestimate the size of the barrier. On the other
hand, U (LDA)(z) for jellium is a more complete treatment but
requires numerical effort and it is well known to underesti-
mate the work function of metals [33]. For these reasons, the
LDA and the nonlocal TFA barrier serve to set two limits for
the height and shape of the effective barrier.

Additionally, the parametrized GG barrier from Eq. (11) is
simple enough to allow us to fit both TFA and LDA barriers,
and to compare the heat flux and current related to these
models. The LDA and TFA effective electronic barriers are
shown in Fig. 3 for three distances d = 0.3, 0.6, and 2 nm. We
remark that, as anticipated, the LDA curve (in red) is always
smaller than the TFA curve (in black) coming from nonlocal
Poisson equation. Contrary to the predictions of the classical
image potential, the LDA and TFA barriers are not divergent
and penetrate into the metal. In order to fit the LDA curves
using the GG function from Eq. (11), we can either fit with
respect to the three parameters α, β, and u0, or fix the value of
u0 as equal to the barrier maximum divided by EF and then fit
with respect to α and β. As shown in Fig. 3, the former (latter)
choice results in an underestimated (overestimated) function.
This procedure allows us to define an average value for α, β,
and u0 (reported in Fig. 3 for each distance) along with an
error bar for the three parameters.

For large d , both the LDA and TFA barriers tend to a
square step potential (corresponding to a large β). For d < 1
nm, the barrier maxima of LDA and TFA potentials decrease
with distance. The LDA barrier can take some negative values,
but this effect is not as pronounced as in the Friedel oscilla-
tions of the electronic density due to the exchange-correlation
contribution [43].

The dependence of the GG fitting parameters with respect
to the distance is shown in Fig. 4. Close to contact, the LDA
barrier gets significantly more Gaussian β � 3 or even close
to a Laplace distribution 1 < β < 2. The LDA value for the
barrier height u0 (in relative units with respect to EF) is below
the Fermi level for gap distances smaller than about 3 Å,
which could be interpreted as contact since most electrons are
no longer tunneling and are actually delocalized between the
two bodies, meaning that in this case the work function is not
properly defined. We have verified that the value of u0 for the
LDA barrier for gaps larger than 1 nm already coincides with
the expected theoretical value for the jellium work function
for gold [33] for a single surface, which is lower than the
experimental value by 3 to 4 eV. Conversely, the asymptotic
value of u0 for the TFA barrier overestimates the barrier height
by the same amount and shows a much slower convergence
(see the inset of Fig. 4). In this scenario an estimate for the
work function can be obtained by employing again the relation
discussed above W = EF(u0 − 1). The sharp decrease in the
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FIG. 4. (a) Scale parameter α, (b) shape parameter β, and (c) rel-
ative barrier height u0 of GG potential as a function of the gap size
d , when fitted to the TFA (black) and LDA (red) effective potentials.
Error bars indicate fit errors. Inset: TFA u0 as a function of distance
(nm) for larger distances.

height of the TFA barrier close to contact is comparable to the
apparent barrier height that is found in experiments, where
the height remains constant when reducing the distance up to
a couple of Å [33]. The scale factor α does not vary much but
close to contact diverges indicating delocalization and larger
penetration of the effective potential into the metal.

D. Transmission probability using the S-matrix method

As we want to quantitatively account for the barrier shape,
we work with a quantum mechanical description of the barrier
alongside a more accurate algorithm based on the scattering
S-matrix algorithm from multilayered optics [49] to calculate
the electronic transmission probability. This method accounts

FIG. 5. Electronic transmission probability as a function of
kinetic energy EZ (in units of EF) for a gap of d = 5 Å. Two bar-
riers are presented TFA and LDA, under two different calculation
methods: S-matrix algorithm and WKB method.

for oscillations of the transmission at large energies and the
shape of the barrier inside the metal. The S-matrix algorithm
provides the same results as the transfer-matrix method [50],
which consists of dividing the barrier in differential slices and
multiplying the transfer matrices of each slab.

Instead of using transfer matrices we calculate the scat-
tering matrix of the ith slice and multiply them together in
sequence using the Redheffer star product [51]. In the end,
we recover the total S matrix of the barrier for a given elec-
tron energy from which the transmission probability can be
extracted. The S matrices are preferred here over the transfer
matrix method for their numerical stability for large gaps [49].

The electronic transmission probability, used in the equa-
tions of the current density (1) and of the heat flux (4), is
plotted in Fig. 5 for an intermediate gap distance d of 5 Å. It
can be seen that the two methods barely agree qualitatively,
as the WKB method of Eq. (12) is well known to neglect
the oscillation of the transmission for electrons with energy
higher than the barrier height as seen in the case of the TFA
potential, whereas for the LDA barrier the oscillations of the
transmission are less drastic due to the smoothness of the
potential (small β). The WKB transmission rises much more
rapidly than in the S-matrix calculation which will lead to
an overestimate of both current and flux. This rapid increase
is less drastic for the TFA case, which is expected as the
WKB approximation will approach the one calculated with
the S-matrix algorithm for larger distances and barrier heights.
We clarify that aside from the figures where it is labeled as
such, we do not employ the WKB method in the reported
calculations anywhere else in this paper.

V. RESULTS

A. Plane-plane configuration

In this section, we discuss electronic tunneling in the case
of the plane-plane configuration as illustrated in Fig. 1(a). For
all figures, we consider temperatures T1 = 400 K and T2 =
300 K. The current density and electronic heat flux (color
axis) as a function of the shape factor β and relative barrier
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FIG. 6. Density plot of the the current density J (color axis, upper panels) and electronic heat flux (color axis, lower panels) between two
semi-infinite metals with temperatures T1 = 400 K and T2 = 300 K, described by GG barrier and for gap distances of 0.6 (left panels) and 1 nm
(right panels), as a function of shape factor β and u0 (for α = 0.48). Dashed line indicates the value of the near-field radiative heat flux for the
given distance. The corresponding mean β and u0 to fit the TFA and LDA barriers are indicated by points in the figure, along with associated
error bars.

height u0 are shown in Fig. 6, calculated using Eqs. (1) and
(4) for a GG barrier for two different distances. Both current
and heat flux are presented in logarithmic scale in order to
show the strong discrepancies that can be obtained by slight
changes in the height but also in the shape β of the barrier.
The specific cases of LDA and TFA are marked by points in
Fig. 6, with associated error bars. Not only do the positions
of these points show the extreme sensitivity of both current
and heat flux to the choice of the barrier shape, but in the
configuration of Fig. 6(d) (d = 1 nm) LDA and TFA even lead
to opposite conclusions on the comparison between electronic
and photonic flux. Note that our calculations do not include
the surface roughness which is considered to reduce the height
of the barrier [52]. These results highlight the importance of
understanding the realistic shape of the barrier as it can lead
to difference in the order of magnitude of the current and
electronic heat flux. We also confirm that the electronic heat
flux can overcome the radiative heat flux at least for distances
smaller than 1 nm, independently of the model.

After discussing the impact of the barrier shape, we focus
on the method employed to calculate the tunneling proba-
bility. To this aim we compare in Fig. 7 the electronic flux
calculated with the S-matrix algorithm and the WKB method.
The figure clearly shows that the difference in the calcula-
tion method can lead to disagreements of several orders of
magnitude depending on both the barrier height u0 and shape
β. In experiments, one could be able to correct the WKB
estimation of the barrier by comparing it with a more precise

transmission calculations. However if the shape of the barrier
is not properly taken into account one still risks underesti-
mating the barrier height. Both precise numerical and WKB
methods would seem only to agree in extreme cases where
the barrier is shallow or very peaked (low β).

FIG. 7. Density plot of the ratio between the electronic heat flux
�(el) calculated using the S-matrix algorithm and �

(el)
WKB from the

WKB method (color scale) as a function of the relative height u0

and the shape β for a 1 nm GG barrier. The corresponding mean β

and u0 to fit the TFA and LDA barriers are indicated by points with
associated error bars.
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FIG. 8. Current density as a function of the gap distance d . The
current density for the TFA barrier (black dashed line) is compared to
the LDA calculations (red ×) and two possible fits using GG barrier
(red dashed lines).

The current-density dependence with respect to the dis-
tance is shown in Fig. 8(a). The current for both TFA and
LDA shows an exponential behavior with respect to d . Nev-
ertheless, the difference between the two results is of about
3 order of magnitude. Two different fits for the LDA barrier
are shown (red dashed lines) depending on the fit of the three
parameters u0, β, and α with a GG function, or just two (fixing
u0 to the height of the LDA barrier).

Similarly, in Fig. 8(b) we represent the electronic heat
flux for the TFA (black) and LDA barrier (in red, with two
possible GG fits). The electronic heat fluxes (dashed lines) are
compared with the total contribution (solid lines) that include
the radiative heat transfer. Interestingly, this curve leads to
rather different conclusions in terms of the distance below
which electronic heat flux goes above the radiative one (more
than 1 nm for LDA, around 7 Å for TFA).

B. Tip-plane configuration

As explained above, while the experimental challenges
associated with parallelism make the plane-plane scenario
rather complicated to implement, the tip-plane configuration
is much more convenient and widely used. In order to esti-
mate the impact of barrier height and shape in this geometry,
we exploit the Derjaguin or proximity force approximation
(PFA) [53], typically employed in different contexts (includ-
ing but not limited to near-field radiative heat transfer) to deal
with complex geometries by exploiting the results from the

FIG. 9. Heat power emitted by a tip of radius R = 50 nm, as a
function of the distance d for temperatures T1 = 400 K and T2 =
300 K. Two electronic contributions are shown based on the model
of the TFA barrier (black dashed) and LDA one fitted with a GG dis-
tribution (red dashed). Solid lines include the radiative contribution
(blue dash-dotted).

plane-plane configuration. Other geometry-dependent meth-
ods exist, but they are challenging to implement for small
gap sizes due to slow numerical convergence [54]. For a
spherically shaped tip of radius R, the net power exchanged
between the tip and the sample, in the absence of applied bias,
can be written as

P = P(rad) + P(el), (22a)

in agreement with the net flux defined in Eq. (3), where each
term is defined as

P(Q) = 2π

∫ R

0
ds s �(Q) (d + R −

√
R2 − s2

)
, (22b)

where Q ∈ {rad, el}. The PFA calculation uses the results from
the plane-plane configuration and considers the tip as a collec-
tion of rings at different distances from the plane, as illustrated
in Fig. 1(b). For electrons, almost all the tunneling heat comes
from the tip apex as quantitatively shown in Appendix B. As
in Eq. (3), we also neglect the phonon tunneling contribution
in these equations and consider rigid electrodes. The phononic
contribution has been shown to be up to 10% of the electronic
flux for angstrom gaps when using a fluctuational approach
and in the absence of bias [16] and at contact electrons are the
main carrier attributed to the thermal conductivity of metals
[48]. However the suitability of the PFA and the influence of
geometry for phonons remains unexplored.

In Fig. 9, we compare the different contributions to the heat
emitted by a tip of radius R = 50 nm. Due to numerical inte-
gration, the distance where the electronic contribution (black
and red dashed) dominates over the radiative contribution
(blue dot-dashed) is slightly shorter than in the plane-plane
configuration (cf. Fig. 8). As the electronic flux is almost
exponential, most of the contribution is being emitted from
a small percentage of the tip apex, as expected. However to
account for the radiative contribution to the emitted power,
one must consider a circular region with a radius larger than
half of the tip radius. We obtain that the difference between the
TFA barrier (black dashed) and the LDA barrier (red dashed)
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can make this distance vary by up to half a nanometer, for the
radius considered here.

As of current experiments, this increase in the heat flux
in the extreme-near-field regime due to the electronic con-
tribution is either not detectable as in Ref. [6] or larger
contributions appear at larger distances as in Ref. [7]. For the
latter case, the presence of contamination has sometimes been
suggested [15] and the presence of a bias voltage could have
an additional influence [16].

The magnitude of the exchanged power P obtained with the
LDA approach at 4 Å of separation distance (see Fig. 9), cor-
responding to the lattice constant of gold, is comparable with
the one measured experimentally in Kittel’s scanning thermal
microscopy experiment [7] (although a problem related to the
definition of physical contact still remains in this experiment
where an unexpected increase of the heat flux is observed at
nanometric separation distances). This power corresponds to
an effective conductivity κeff = P/(T2 − T1)d 
 10 W/m/K,
which remains smaller than the thermal conductivity of metals
(κAu = 318 W/m/K at T = 300 K), a value which can be
considered as an unsurpassable limit. On the contrary, using
the TFA approach, the thermal conductivity is two orders of
magnitude smaller. This tends to demonstrate that the use of
the LDA leads to a transfer which is overestimated near the
contact, since the presence of an external bias voltage will
further increase the transfer.

VI. CONCLUSIONS

In this work, we have investigated the electronic current
and associated heat flux between two parallel metallic slabs
separated by a vacuum gap in the nanometer and subnanome-
ter range of distances (extreme near field). We have first shown
that both quantities strongly depend on the description of
the electronic barrier in the gap. More specifically, we have
compared an approach based on the solution to the nonlo-
cal Poisson equation in the Thomas-Fermi approximation to
the numerical solution of the Kohn-Sham equations in the
local-density approximation for jellium. We have shown that
these approaches lead to quite different effective electronic
barrier potentials (both in shape and height), and that the
resulting electronic current and heat flux may differ by several
orders of magnitude. Besides, by employing a generalized
Gaussian shape for the barrier, we have confirmed the extreme
sensitivity of both quantities with respect to the distribution
parameters, describing barrier shape, height, and degree of
penetration inside the metallic slabs. Also, our results based
on an accurate S-matrix scheme have confirmed the limits of
the widely employed semiclassical WKB approach to deal
with the transmission probability of electrons through an
arbitrary potential barrier.

Moreover we have seen that while the LDA leads to an
overestimated transfer near the contact, the TFA seems to
be a more realistic approach since it allows reproducing the
magnitude of heat flux measured in the recent experiments.
However, the presence of an external bias voltage has not

been considered in the present study. It will require specific
attention in a future work.

Our results show how quantitatively relevant is the choice
of both the electronic barrier shape and the transmission-
probability calculation scheme to obtain a reliable value of
both current and heat flux. Apart from its fundamental interest,
we have shown that in the context of extreme-near-field heat
transfer this discrepancy can have an impact on the threshold
distance at which electronic flux competes and goes beyond
the radiative one. More generally, our results could be relevant
for a more realistic modeling of experimental setups involving
scanning thermal microscopy.
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APPENDIX A: COMPUTATIONAL DETAILS OF LDA
EFFECTIVE POTENTIAL CALCULATION

For all LDA barrier calculations we use the grid-based pro-
jected augmented wave (GPAW) open source toolkit [46,47].
Each cell is composed of two jellium slabs of thickness equal
to 4 times the lattice constant separated by a vacuum gap as
in Fig. 1. For all the calculations we consider a 4 × 4 × 4
supercell with periodic boundary conditions, with a plane-
wave cutoff energy of 400 eV. The grid spacing starts at 0.2
Å and is reduced until finding a convergent barrier shape. The
number of electronic bands in the calculation is set equal to the
number of electrons in each cell, proportional to the volume
of metal on each side.

For gold we use a lattice constant of 4.078 Å and a Wigner-
Seitz radius of 3.02 bohrs.

FIG. 10. Ratio between the partial power P(Q)(r) over the total
power P(Q) per carrier Q = el, rad, calculated using proximity force
approximation, of the electronic (TFA black and LDA red) and
radiative (blue) contributions as a function of tip depth r. The tip
radius is R = 100 nm and a gap of d = 5 Å.
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APPENDIX B: TIP DEPTH CONTRIBUTING
TO THE EMITTED PFA POWER

It is often considered in STM experiments that only the
last atom at the tip apex is responsible for the tunneling
[33]. We can confirm that this behavior is also reproduced
under the PFA. Due to the different power laws of the
heat flux as a function of distance for the different carriers,
their behavior is different under PFA. We define the partial
power as

P(r) = P(rad)(r) + P(el)(r), (B1a)

in agreement with the net flux of Eq. (3), where each term is
defined as

P(Q)(r) = 2π

∫ r

0
ds s �(Q)(d + R −

√
R2 − s2), (B1b)

where the equations are analogous to Eq. (22) but the
integration goes from the tip apex up to a distance r < R. In
Fig. 10, we show the electronic and radiative contributions
to P(r) divided by the total power P, as a function of the tip
depth r.
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