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Interacting bound states in the continuum in Fabry-Pérot resonators:
Merging, crossing, and avoided crossing
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We study both analytically and numerically the interaction between bound states in the continuum (BICs) in
2D Fabry-Pérot (FP) resonators in waveguides with waveguide expansions playing the role of the “mirrors.” The
derived analytical model illustratively captures recently proposed twin-BICs (TBICs) stemmed from BICs in
individual mirrors as well as the well-known FP BICs related to an FP resonance. We show that the formation of
TBICs is a universal phenomenon, which occurs in different types of FP resonators, and is related to the sharp
dependence of the phase of mirror reflection coefficient on system parameters near the BIC point in the parameter
space of individual mirror. We also show explicitly that the complicated multimode interference taking place in
the mirrors resulting in the coalescence of two perfect transmission Fano antiresonances can explain the merging
of corresponding FP BICs without invoking topological concepts. Moreover, the coalescence of antiresonances
in an individual mirror can be continuously changed into the crossing or even the avoided crossing (repulsion)
of antiresonances by an infinitesimal change of parameter. The behavior of FP BICs follows the antiresonances
pretty closely and demonstrates a similar transformation (either merging or repulsion, respectively). The results
of the analytical model are confirmed by numerical simulations of quantum-mechanical and optical waveguides.
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I. INTRODUCTION

A novel approach to create high-Q resonances has been
developed in past years [1–4]. This approach is based on
the use of bound states in the continuum (BICs), which
is a widespread wave phenomena studied both theoretically
and experimentally in different branches of optics, quantum
mechanics, atomic physics, electrodynamics, acoustics, and
hydrodynamics (see the reviews [5–10]). BICs are localized
states with the energies (frequencies) lying within the con-
tinuum of propagating states (above the light cone in optics).
They are also known as states embedded in the continuum
[7]. Decoupling of BIC from the continuum can result from
different physical mechanisms [5–10]. Commonly one dis-
tinguishes symmetry protected (SP) BICs—decoupling due
to different symmetries of propagating and localized states,
Friedrich-Wintgen (FW) [11], and Fabry-Pérot (FP) [5,12]
mechanisms. Also, the so-called accidental BICs may appear
in consideration, which, in general, do not fit unambiguously
to one of the aforementioned models [13–15].

FW BIC originates from destructive interference of waves
scattered by two resonant states [11]. Hence it is closely re-
lated to another common wave phenomena—Fano resonance
[16], whose transmission minimum (antiresonance) is also
caused by destructive interference. The formation of FW BIC
is often interpreted as a collapse of the Fano resonance with
its antiresonance width turning to zero [17–19]. On the other
hand, for the same reason, BIC can be considered as a collapse
of the resonance (transparency maximum) with the resonance
width going to zero as well [7,19]. The Fano resonance is also
responsible for FP BIC. There it determines the opaqueness
of the structures, which play the role of a perfect mirrors
forming FP cavity, where a wave is trapped. FP BIC also can
be attributed to a special kind of FW BIC [10] with one of the

two FW resonances being the Fano resonance and the other
the cavity resonance. At the very energy (frequency) of FP
BIC, the transmission coefficient equals zero. However, the
transparency of FW BIC can possess in general any physically
valid value depending on the ratio of the system parame-
ters ensuring the formation of the resonance or antiresonance
[19,20].

A separate type is constituted by BICs representing a loss-
less guided mode above the light cone in infinite periodic
photonic structures: 1D (e.g., chains of dielectric spheres
or disks) [21–23] and 2D (e.g., gratings, metasurfaces, and
photonic crystal slabs) [2,13,24–26]. Such a mode originates
from a leaky resonance and decouples from the continuum
through similar mechanisms as finite size BICs (SP, FW or
accidental parameter tuning) [5,10]. 2D guided mode BIC
manifests itself by the polarization singularity in the Bloch
quasimomentum plane [14,27]. Under the variation of system
parameters, this point moves in the momentum plane but
persists, which highlights its topological nature, and hence,
a topological protection of such BICs [14]. In Ref. [14], it
was shown that BICs in 2D photonic slabs, indeed, possess a
quantized topological charge, defined by the winding number
of electrical field polarization, and behave as topologically
charged quasiparticles: BICs with the same charges repel and
with opposite charges annihilate. In Refs. [23,28], topologi-
cal charges were introduced also for 1D chains of rods and
spheres. These results show that BICs in some cases can
be considered as particlelike objects possessing topological
charges. Recently an analogy between BICs and particlelike
objects was extended to the case of interacting BICs in the
FP structures, where twin-BICs (TBICs) were described [29],
which can be considered as tunneling coupled BICs of indi-
vidual mirrors of the FP resonator. FP BICs exist in a wide
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range of the mirror parameters, which preserves the Fano
antiresonance, and for a discrete set of cavity lengths that
provide a phase matching condition. In contrast, TBICs are
almost independent on the cavity length and exist in a narrow
range of mirror parameters, where BIC in individual mirror
arise. Thus FP BICs and TBICs can be considered comple-
mentary to each other.

The quality factor (Q-factor) is determined by the relation
of stored and radiated (outgoing) energies. It can be mea-
sured as a ratio of central frequency to the resonance width.
Formally, BIC possesses an infinite Q-factor. In the energy-
parameter space, BIC, typically, corresponds to a single point.
Thus BIC formation conditions can hardly be met exactly in
practice. In the nearby vicinity of BIC point, it turns into
an extremely narrow resonance (quasi-BIC). If we denote
by �p the deviation of some parameter p from the exact
value corresponding to BIC formation pBIC, then, in general,
the Q-factor of the quasi-BIC resonance is proportional to
�p−2 [2,11]. Recently, a great interest arose in the discovery
that near some points in the parameter space of 2D guided
mode BIC, Q-factor blows up as �p−n with n > 2 [26,30,31]
(supercavity BIC or super-BIC in Ref. [26]). Such points cor-
respond to merging of topological BICs in momentum space.
In Ref. [26], merging of SP and accidental BICs was ex-
perimentally achieved and performance of ultralow-threshold
laser with a small footprint was demonstrated. Therefore
studying interaction of BICs provides a regular way to con-
structing structures with ultrahigh-Q resonances for a wide
range of applications.

Guided mode BICs in realistic finite structures turn into
quasi-BICs with the large but finite Q-factor [26,32,33].
Another example of finite structures possessing BICs are
resonators within waveguide [34–37]. Recently, the merg-
ing of FW [36] and FP [37] BICs in finite resonators has
been described and interpreted in terms of annihilation of
opposite topological charges. An essential difference between
the BIC topological description in finite (resonators) and
infinite (slabs) systems is that in the latter case, it is for-
mulated in terms of quasimomentum components, which are
directly related to the observable polarization of electromag-
netic field [14,27,30,31]. The closed curve around a given
BIC point describes the evolution of polarization in a given
system, which can be measured in the far zone. Contrary,
analogous contour around the BIC point in the parameter
space of a finite system is formed by an infinite continuous
set of points each corresponding to different system (with
different values of the parameters) that is obviously hardly
observable. Consequently, a natural and important question
arises, whether topological properties of BICs in finite sys-
tems are fundamental or emergent, and interaction of BICs
can be described without involving ideas about their topolog-
ical nature. We partially address this question in our paper
by studying interacting FP BICs in 2D FP waveguide struc-
ture both by analytical consideration and numerical modeling.
The peculiarity of the system is that mirrors comprising FP
resonators exhibit complicated transformations of resonances
and antiresonances in the parameter space thus affecting BIC
formation condition for the whole FP structure. In particular,
we show that Fano resonances in mirrors can coalesce and
destroy FP BICs. Such a behavior is analogous to annihilation

of BICs with opposite topological charges but surely is of
quite different physical origin.

The structure of our paper is as follows. In Sec. II, the
quantum-mechanical eigenvalue problem for finding BICs in
multimode FP resonators is formulated and solved analyti-
cally within the two-mode approximation. The analysis of
the proposed two-mode quantum-mechanical model provides
a comprehensive description of FP BICs, TBICs, and their
mutual interaction. In Sec. III, we describe topological-like
[37] merging of FP BICs due to a nontopological phenomenon
of the antiresonance coalescence in individual mirrors [19,38].
Moreover, the continuous transition in the parameter space
can be observed between merging and repulsion of FP
BICs. Additionally, in Sec. III, we show that the Q-factor
grows in proportion to �p−4 in the avoided crossing region.
Hence, BIC merging is not a necessary condition for such
growth. Section IV is devoted to numerical simulations of
2D quantum-mechanical and optical waveguides that confirm
main results of the analytical consideration. Finally, conclu-
sions are made in Sec. V.

II. ANALYTICAL MODEL OF BOUND STATES IN THE
CONTINUUM IN FABRY-PÉROT RESONATORS

A. Quantum-mechanical multimode model

We consider a two-dimensional waveguide along the x axis
with two identical resonators (confinement regions) of length
L located at a distance D from each other (see Fig. 1). These
resonators play the role of mirrors, which can trap the wave in
the resulting FP cavity between them. In the simplest single-
mode case (without taking into account evanescent modes in
the cavity), the transmission coefficient of an FP resonator
takes the form [39]

TFP = T 2

1 + R2 − 2R cos (2kD + 2ϕ)
, (1)

where kD = 2πD/λ is the phase acquired by the wave trav-
eling between the mirrors, ϕ is the phase of the complex
reflection amplitude of the mirror, R = 1 − T is the reflection
coefficient, and

T = |P|2
|P|2 + |Q|2 (2)

is the transmission coefficient of the mirror [19,35]. Such a
type of structures is known for the formation of Fano reso-
nances with complicated behavior [40–42].

Functions P and Q in Eq. (2) are analytical functions
of energy (frequency), which are determined by the specific
structure of the resonator playing role of a mirror. At the en-
ergy providing P = Q = 0, BIC in a single isolated resonator
is formed [19,35]. Similarly, BIC in the whole FP structure
corresponds to simultaneous turning to zero of the numerator
and denominator in Eq. (1). Thus, from Eqs. (1) and (2), it
follows straightforwardly that conditions

P = 0,

D =
(

n − ϕ

π

)λ

2
, n ∈ N. (3)

provide perfect wave trapping in the FP cavity. The first equa-
tion in (3) is related to the antiresonance of a single mirror
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FIG. 1. (a) Schematic view of 2D waveguide with two equal res-
onators shown by gray and (b) corresponding spatial distribution of
the first two transverse mode thresholds. Resonators are depicted as
waveguide expansions. However, they can be designed in any other
manner, e.g., by additional attractive potential. Notation corresponds
to Sec. II B. (c) Illustration of transverse modes inside the waveguide
and (d) inside the resonator. [(e) and (f)] Schematic view of the
longitudinal wave-function distribution for symmetric (red thick line)
and antisymmetric (blue thin line) FP BICs (e) and TBICs (f).

since it provides T = 0. For P �= 0, the second relation in
(3) describes typical FP resonance with TFP = 1. It can be
shown that together both BIC conditions (3) correspond to
TFP = 0 (incident wave is perfectly reflected from the first
mirror).

In waveguide structures, multimode interference do play a
role (see, e.g., Refs. [17,35,42,43]), resulting in a complicated
behavior of the reflection coefficient R and phase ϕ that gives
rise to a rich variety of different BIC related phenomena. In
the considered two-resonator structure, we assume that the
potential energy U (x, y) is a piecewise constant function of x.
In particular, we set U (x, y) = Uw(y) in waveguides (regions
I, III, and V in Fig. 1) and U (x, y) = Ur (y) in resonators (re-
gions II and IV in Fig. 1). The solution to the two-dimensional
stationary Schröedinger equation

∂2�

∂x2
+ ∂2�

∂y2
+ [E − U (x, y)]� = 0 (4)

for either scattering or eigenvalue problem can be constructed,
e.g., by the transverse modes decomposition method [44–47].

In Eq. (4), we have set the mass of the particle to be a constant
and have chosen the units such that h̄2

2m = 1.
Within each region, one can separate variables and look for

the solution of Eq. (4) in the form � j (x, y) = ∑
n ψ

j
n (x)χ j

n (y)
[44–47], where j is the region number ( j = 1, 3, 5 in the
waveguides and j = 2, 4 in the resonators) and n enumerates
transverse modes derived from the equation

∂2χ
j

n (y)

∂y2
+ [

ξ j
n − Uj (y)

]
χ j

n (y) = 0, (5)

where Uj (y) = Uw(y) for j = 1, 3, 5 and Uj (y) = Ur (y)
for j = 2, 4 [see, e.g., Figs. 1(c) and 1(d)]. Here ξ

j
n is the

separation constant, which is treated as a threshold of the nth
transverse mode in the jth region and plays the role of po-
tential energy in the equation for longitudinal function ψ

j
n (x):

∂2ψ
j

n (x)

∂x2
+ (

E − ξ j
n

)
ψ j

n (x) = 0. (6)

From this equation, one can see that within each region poten-
tial energy for longitudinal wave functions is constant, and
hence ψ

j
n (x) can be written as a superposition of left- and

right-going plane waves with wave vectors k j
n =

√
E − ξ

j
n .

Matching wave functions � j (x, y) and their derivatives,
one can formulate the continuity condition for the longitudinal
components at the border between the jth and the ( j + 1)th
regions as

ψ j+1
n (x j ) =

∑
m

(μ̂ j )mnψ
j

m(x j ),

∂ψ
j+1

n (x j )

∂x
=

∑
m

(
μ̂ j

)
mn

∂ψ
j

m(x j )

∂x
. (7)

Here μ̂ j is a unitary infinite-dimensional transformation ma-
trix between basis sets {χ j

m} and {χ j+1
m }. For the symmetric

structure under consideration, we have μ̂1 = μ̂3 = μ̂ and
μ̂2 = μ̂4 = μ̂† with matrix elements being

μmn =
∫ ∞

−∞
χw

m (y)χ r∗
n (y)dy. (8)

Matrix elements (8) are real for localized transverse eigen-
functions χ r,w

n given by solutions of Eq. (5) with discrete
spectrum.

BIC with energy EBIC in the considered structure must have
a zero amplitude of outgoing waves in all propagating (open)
modes in the first and fifth regions (i.e., for all i providing
EBIC � ξ 1,5

i ). In the present paper, we focus on a case with
a single propagating mode in the waveguide, so we restrict
ourselves to the energy range ξ 1,5

1 < E < ξ 1,5
2 .

B. Two-mode approximation

The exact solution of the Schröedinger equation (4) by the
transverse mode decomposition method requires the infinite
number of modes to be taken into account (including both
discrete and continuous spectrum in the y direction). However,
some features of BICs formation and their behavior can be
captured within finite-mode approximations [35,43]. In this
section, we restrict ourselves to a two-mode approximation
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with the following mode thresholds: ξ 1
1 = ξ 3

1 = ξ 5
1 = 0, ξ 1

2 =
ξ 3

2 = ξ 5
2 = U , ξ 2

1 = ξ 4
1 = V1, and ξ 2

2 = ξ 4
2 = V2 (see Fig. 1).

The mode coupling matrix μ in this case is 2 × 2 orthogonal
matrix:

μ̂ =
(

cos θ sin θ

− sin θ cos θ

)
, (9)

where θ ∈ R defines the mode mixing at a
waveguide/resonator interface. Analytical solution to a
scattering problem through the considered structure is quite
cumbersome and can hardly provide physical insight into
BIC formation mechanism (even within the two-mode
approximation), whereas eigenvalue problem for finding BIC
can be solved and interpreted illustratively.

The structure under consideration is invariant under reflec-
tion x �→ −x. Hence, solutions to the eigenvalue problem (4)
are either symmetric or antisymmetric. Within the two-mode
model, we have the following ansatz for the longitudinal
wave function of BIC in the outer region: ψ1

1 (x) = ψ5
1 (x) ≡ 0.

Then, we have

ψ1
2 (x) = σpψ

5
2 (x) = ap

2e−κ(|x|− D
2 −L), (10)

outside the resonator and

ψ2
1,2(x) = σpψ

4
1,2(x) = cp

1,2 cos
[
q1,2

(|x| − D+L
2

) + α
p
1

]
,

(11)

inside the mirrors, where p ∈ {s, a} indicates the parity of
the state with respect to x �→ −x reflection (s–symmetric,
a–antisymmetric) and σs = −σa = 1. Finally, in the central
region between the mirrors, we set

ψ3
1 (x) = bs

1 cos kx and ψ3
2 (x) = bs

2 cosh κx (12)

in the symmetric case or

ψ3
1 (x) = ba

1 sin kx and ψ3
2 (x) = ba

2 sinh κx (13)

in the antisymmetric case. Here k = √
E , κ = √

U − E , and
q1,2 = √

E − V1,2. Applying matching conditions (7) to these
solutions, one gets a system of eight equations for seven
unknowns as

2, bs
1,2, cs

1,2, and αs
1,2 for symmetric BIC and aa

2,
ba

1,2, ca
1,2, and αa

1,2 for antisymmetric BIC. The consistency
condition of this system of equations provides BIC energy
and required structure parameters. On the other hand, these
equations can be considered as a linear homogeneous system
for five amplitudes. In this case, consistency conditions are
straightforward:

tan

(
q1,2L

2
+ α

p
1,2

)
= κ

q1,2
,

tan

(
q1L

2
− α

p
1

)
= κ ′ − �κ

q1
,

tan

(
q2L

2
− α

p
2

)
= κ ′ + �κ

q2
, (14)

where

κ ′ = κ

[
1 − fp

2
(1 − η cos2 θ − η−1 sin2 θ )

−gp

2
(1 + η cos2 θ + η−1 sin2 θ )

]
(15)

and

�κ = κ

2
[ fp(cos 2θ + η−1 sin2 θ − η cos2 θ )

+ gp(− cos 2θ + η cos2 θ − η−1 sin2 θ )]. (16)

Here we have also introduced fs = 1 + k
κ

tan (kD/2),
fa = 1 − k

κ
cot (kD/2), gs = 1 − tanh (κD/2), ga =

1 − coth (κD/2) and

η = q1

q2
× q2 cos q2L + κ sin q2L

q1 cos q1L + κ sin q1L
. (17)

The first equation (in fact, two equations: with q1, α
p
1 and

q2, α
p
2 ) in the system (14) corresponds to the border at x =

±(D/2 + L) between the mirrors and the outer waveguides,
where the wave function of BIC is present in the second
transverse mode only. For αs

1,2 = 0 and αa
1,2 = π

2 it becomes
similar to the case of a single symmetric potential well with
bottom energy V1,2 and barrier height U [42]. If α

p
1,2 �= 0, π

2 ,
then the first equation corresponds to the asymmetric potential
well (see Appendix A). Considering the border at x = ±D/2
between the mirrors and the inner waveguide, one gets the rest
equations in (14). Neglecting �κ , these equations again give
the case of a single asymmetric potential well (Appendix A).
In the considered system, effective asymmetry of the locally
symmetric mirror arises due to the presence of another mirror,
which makes waveguides to the left and to the right of the
mirror to be nonequivalent. However, this asymmetry is more
complicated compared to the asymmetric potential well dis-
cussed in Appendix A because it differently affects different
modes with �κ �= 0 in general.

Equations (14) define phases α
p
1,2, energies and structure

parameters (e.g., D or L) of BICs. One can eliminate phases
from these equations and get the following nonlinear system
for BIC energy and structural parameters:

P = −σs,akZ+e−κD,

B sin

(
kD

2
+ ϕs,a

)
= 0. (18)

Here P is the numerator of the individual resonator transmis-
sion coefficient (2). In our two-mode model, P is given by [35]

P = 2k(q1S222A222cos2θ + q2S212A212sin2θ ) (19)

with

S2n2 = qn sin

(
qnL

2

)
− κ cos

(
qnL

2

)
,

A2n2 = κ sin

(
qnL

2

)
+ qn cos

(
qnL

2

)
. (20)

Quantities S2n2 and A2n2 (more precisely, the equations S2n2 =
0 and A2n2 = 0) define symmetric (S) and antisymmetric (A)
states 2-n-2 of a single resonator embedded into the waveg-
uide. State 2-n-2 is localized at the nth transverse mode inside
the resonator and decays exponentially at the second (evanes-
cent) mode in waveguide [35,43]. In the second equation in
(18), we have introduced

B =
√

(Z0 − σs,aZ−)2 +
(κ

k

)2σs,a

(Z0 + σs,aZ−)2 (21)
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and

ϕs = ϕ

2
, ϕa = ϕ

2
+ π

2
(22)

with

ϕ = 2 arctan

(
κ

k
× Z− + Z0

Z− − Z0

)
, (23)

being the phase of the reflection coefficient of the individual
resonator under the condition of perfect reflection (P = 0).
The rest quantities in Eqs. (18) and (23) are the following:

Z+ = q1(U − V2) sin q2L cos2 θ

+ q2(U − V1) sin q1L sin2 θ,

Z0 = 2(q1S222A222 − q2S212A212),

Z− = q1(U − V2) sin q2L − q2(U − V1) sin q1L. (24)

BIC formation condition (18) represents the main result of the
analytical consideration within the two-mode approximation.

C. Fabry-Pérot and twin bound states in the continuum
in two-mode model

In the simple δ-functional model proposed in Ref. [29],
FP BICs and TBICs were independent solutions of the corre-
sponding multimode eigenvalue problem. In the present paper,
finite length of the mirrors leads to the hybridization of these
two types of BICs due to evanescent coupling between the
mirrors. Therefore, at first, it is illustrative to interpret the
system (18) for mirrors located far from each other such
that κD � 1 and one can neglect the evanescent coupling
in the energy range of interest. In this case, the first equa-
tion becomes identical to the result of the trivial single-mode
consideration (3), and hence BIC energy EBIC and correspond-
ing length LBIC are directly related to the antiresonances (P =
0) of the individual mirror [19,35]. Under this assumption, the
fulfillment of the second equation in (18) can take place either
for sin (kD/2 + ϕs,a) = 0 or for B = 0 similarly to the model
in Ref. [29]. In the former case, the second equation can be
rewritten as in the single-mode model (3) with ϕ given by
Eq. (23), which describes the buildup of the FP resonance.
Even n in the second equation in system (3) corresponds to
symmetric (with respect to x �→ −x) and odd n—to antisym-
metric solutions. Described BICs are of the Fabry-Pérot type
[Fig. 1(e)] with strictly nonzero wavefunction amplitudes bs,a

1
inside the FP cavity [see Eqs. (12) and (13)]:

bs,a
1 ∝ cs,a

1 [q2(q1 cos q1L + κ sin q1L)

− q1(q2 cos q2L + κ sin q2L)], (25)

where cs,a
1 is the wave-function amplitude at the first mode

inside the mirrors, which we assume to be nonzero.
The case B = 0 corresponds to the recently proposed new

type of BICs [29]. These BICs are related to BICs in indi-
vidual mirrors rather than to the FP resonance between them.
They were called twin-BICs (TBICs) as they appear in pairs—
symmetric and antisymmetric ones [Fig. 1(f)]. According to
Eq. (21), condition B = 0 implies Z0 = 0 and Z− = 0 simul-
taneously. From Eqs. (24), it can be shown that this is fulfilled
by

S222 = 0, S212 = 0, (26)

for symmetric TBIC or by

A222 = 0, A212 = 0 (27)

for antisymmetric TBIC. Conditions (26) and (27) correspond
to symmetric and antisymmetric BICs in isolated mirrors
[35], respectively. Moreover, these conditions also provide
P = 0 [see Eq. (19)], which satisfies the first equation in
(18) under the assumption κD � 1. Thus TBICs are defined
predominantly by individual mirrors and in the limit κD � 1
demonstrate no dependence on the distance between the mir-
rors D. In accordance with the results of Ref. [29], one can
show that the TBIC wavefunction amplitude in the propagat-
ing mode of the waveguide between the mirrors (25) vanishes
under the conditions (26), or (27).

The above discussion of FP BICs and TBICs is rather
straightforward and similar to the δ-functional model in
Ref. [29] only in the limit κD → ∞. In general, finite D pro-
vides inter-mirror interaction through the evanescent waves
resulting in nonzero RHS of the first equation in (18). Con-
sequently, conditions (26) or (27), which provide P = 0 [see
Eq. (19)], are inconsistent with this equation. Thus B in the
second equation in (18) is always nonzero. However, in fact,
this does not ruin the formation of TBICs, but just renormal-
izes their energy and parameters by quantities proportional to
e−κD. Indeed, it can be shown that the conditions (26) or (27)
provide both numerator and denominator of the inverse tan-
gent function argument in Eq. (23) to vanish. Thus, in a small
vicinity (proportional to e−κD) of the energy E and mirror
length L near their values EBIC,1 and LBIC,1 corresponding to a
BIC in isolated mirrors [satisfying (26) or (27)], phase ϕ runs
through almost all its possible values. Figure 2(a) illustrates
the dependence of this phase on energy near BIC in individual
mirror. Parameters are chosen as follows: U = 10, V1 = −2,
V2 = 5, which provide BIC in a single mirror of the lowest
possible length to be at EBIC,1 ≈ 5.7474 and LBIC,1 ≈ 2.7155.
Hence, the fulfillment of the second equation in the system
(18) is achieved for almost any value of D in the vicinity of
EBIC,1 and LBIC,1. Condition bs,a

1 = 0 derived for TBICs in
the case B = 0, is violated for finite D, in general, but the
wavefunction amplitude in the propagating mode between the
mirrors remains small: bs,a

1 ∼ e−κD.
Figures 2(b) and 2(c) depict the numerically calculated il-

lustrative examples of the dependence of the BIC energy EBIC

and resonator length LBIC on the distance between the res-
onators. Values of the parameters are the same as in Fig. 2(a)
with θ = 1.1. Series of periodic in D solutions for EBIC and
LBIC correspond to FP BICs with the different number of
nodes of the wave function between the resonators. The so-
lutions at E ≈ EBIC,1 and L ≈ LBIC,1 are almost independent
on D and related to the symmetric and antisymmetric TBICs.

Due to the finite length of the mirrors (in contrast to
δ-functional model proposed in Ref. [29]), there is a hy-
bridization of TBICs and FP BICs, which takes place near
the point of their seeming degeneracy corresponding to the
simultaneous fulfillment of B = 0 and sin (kD/2 + ϕs,a) = 0.
This hybridization arises because of the coupling between the
mirrors through the evanescent modes, and hence it vanishes
as e−κD for large distances D. It can be shown that there
are continuous transitions between FP BIC and TBIC near
each point of their apparent degeneracy. Depending on the
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FIG. 2. The phase ϕ of a single mirror reflection amplitude vs
energy E (a) for different values of the mirror length L near BIC in
the individual mirror at EBIC,1 ≈ 5.7474 and LBIC,1 ≈ 2.7155 (other
parameters are specified in the text). The vertical thin dashed black
line indicates EBIC,1. (b) Dependence of BIC energy EBIC and (c) cor-
responding resonators length LBIC on a given distance D between the
resonators. The red thick and the blue thin lines describe symmetric
and antisymmetric BICs respectively. TBICs correspond to the part
of these lines, which are almost independent of D and related to the
BIC in single resonator at E ≈ EBIC,1 and L ≈ LBIC,1. Parts of the
lines, which are periodic in D, describe FP BICs. The interactions
between FP BICs and TBICs are shown in the insets in more details.
Merging of antisymmetric BICs with varying D are indicated by dots.

particular system’s parameters this transition can provide ei-
ther repulsion (avoided crossing) or merging of BICs [see
insets in Figs. 2(b) and 2(c)].

III. MERGING AND REPULSION OF FABRY-PÉROT
BOUND STATES IN THE CONTINUUM

Recently, merging of BICs in FP resonator was also studied
numerically and experimentally in acoustic waveguide [37].
The authors described the mechanism of this merging in a
two-level coupled-mode model and suggested a topological
origin for BIC merging. Below we show that similar BIC
merging phenomenon can be explained by the complicated
behavior of Fano antiresonances in the transmission spectrum
of individual mirrors. Moreover, resulting BIC merging can
be continuously turned into BIC repulsion by an infinitesimal
parameter change (as was, in general, proposed in Ref. [48])
making topological nature of this phenomenon questionable.

A. Merging of Fabry-Pérot bound states in the continuum due
to antiresonance coalescence in individual mirrors

The first equation in the system (18) shows that FP BICs
are closely related to the Fano resonances (transmission an-
tiresonances) of the single mirror. Recently it was shown in
Ref. [35] that antiresonances in a resonator (playing the role
of mirror in the FP structure) within a 2D waveguide can
demonstrate complicated behavior. In particular, two distinct
zero transmission antiresonances can coalesce into one dip
with nonzero transmission under variation of the resonator
length L. Correspondingly, at the same point in the parameter
space, one may expect merging of two FP BICs in the FP con-
figuration, which are associated with those two transmission
zeros of individual mirrors.

Figure 3 depicts an example of the dependence of BICs
energy and corresponding FP cavity length on the length of
the individual mirror in the vicinity of a point of antiresonance
coalescence. Parameters of the structure are the following:
U = 10, V1 = −2, V2 = 5, and θ = 1.1. Analyzing function
P(E ) from Eq. (19) for these parameters, one can derive
that there are several possible transmission zero coalescence
regimes in a single mirror for the particular parameters cho-
sen. Antiresonance coalescence for the smallest length L takes
place at E0 ≈ 5.7522 and L0 ≈ 1.4754 (shown by straight
thin dashed black lines in Fig. 3). In the vicinity of L0, there
are two distinct perfect reflection antiresonances of the single
mirror for L < L0 and no perfect reflection of the single mirror
in this energy range for L > L0 [35]. Thus it is expected,
that there will be two distinct BICs for L < L0 related to two
distinct transmission antiresonances of the mirror and no BICs
for L > L0. Indeed, one can see from Fig. 3, that there is a pair
of BICs with energies close to E0 for L � L0, which merge
at E ≈ E0 and L ≈ L0, and no BICs remain present in this
energy range for L � L0. Inset in Fig. 3(a) demonstrates the
change of Q-factor (inverse imaginary part � of the S-matrix
pole) behavior during BIC merging with variation of L.

Merging of symmetric BICs takes place for mirror length
slightly shorter than L0, whereas antisymmetric BICs merge
for mirror length slightly longer than L0. The reason for this
is the coupling between the mirrors through the evanescent
mode of the FP cavity, which provides nonzero RHS of oppo-
site sign for symmetric and antisymmetric cases in the first
equation in Eqs. (18). This coupling decays exponentially
as the distance between the mirrors increases. Hence, the
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FIG. 3. Dependence of BIC energy EBIC (a) and corresponding
distance between the resonators DBIC (b) on a given resonator length
L. The red solid thick and thin lines are related to the symmetric
BICs, and the blue dashed thick and thin lines—to the antisym-
metric BICs. Parameters are specified in the text. Merging of BICs
(shown by red and blue dots) takes place near the coalescence of
antiresonances in a single resonator at E0 ≈ 5.7522 and L0 ≈ 1.4754
(indicated by thin dashed black lines). Inset in part (a): Q-factor
(inverse imaginary part � of the S-matrix pole) vs distance between
the resonators for L = 1.47 (thin solid line), L ≈ 1.4743 (thick solid
line), and L = 1.48 (thin dashed line).

merging point of FP BICs becomes closer and closer to the
point of antiresonance coalescence (L = L0 and E = E0) with
increasing number n of the FP resonances involved in the
BIC formation [increasing D in accordance with Eq. (3)].
Moreover, Fig. 3(b) shows that this phenomenon is (almost)
periodic in D as it is expected for BICs of Fabry-Pérot type.

Coalescence of antiresonances is a common phenomenon
in transmission properties of structures possessing several tun-
neling paths [19,38,49], and, in contrast to the model of BIC
merging proposed in Ref. [37], it does not obligatory require
evanescent mode coupling to take place. Therefore merging
of BICs arising from the coalescence of antiresonances can be
studied in a tight-binding toy-model as well (see Appendix B
for details) that demonstrates the versatility of the effect.

B. Continuous transition between merging and repulsion
of bound states in the continuum

Behavior of antiresonances in the transmission spectrum of
an individual mirror is rather complicated, in general, and the
aforementioned coalescence of antiresonances can be trans-
formed into crossing and avoided crossing of antiresonances
[35,38]. This transition is provided by a continuous change of
a certain parameter. In the considered case of a resonator in
a waveguide, one can tune the coupling matrix elements (8)

to observe such a transition [35]. Figures 4(a)–4(c) depict an
example of the transmission coefficient spectrum dependence
on the resonator length of a single mirror within the two-mode
approximation for different values of parameter θ , which gov-
erns coupling matrix elements in accordance to Eq. (9).

In the FP configuration, we expect that such behavior of
transmission antiresonances of individual mirrors manifests
itself in the corresponding behavior of FP BICs. Figure 4(d)
shows the dependence of the distance between the mirrors
required for the formation of the first four pairs (counting
from D = 0) of symmetric and antisymmetric FP BICs on
the length of the individual mirror. Behavior of energy of
these BICs is illustrated in Figs. 4(e)–4(h). Variation of the
parameter θ in each mirror transforms their individual an-
tiresonances. However, FP BICs do not follow individual
resonators transmission dips exactly due to evanescent modes
coupling between the mirrors resulting in the nonzero RHS of
the first equation in system (18).

For large D, factor e−κD becomes negligible and BICs
do repeat the behavior of antiresonances and, in particular,
demonstrate the transition from merging, which correspond to
the coalescence of antiresonances at θ = 0.73, to their repul-
sion (avoided crossing) at θ = 0.72 [see the second pairs of
symmetric and antisymmetric BICs in Fig. 4(d) and Figs. 4(g)
and 4(h), respectively]. Nevertheless, the very crossing regime
for BICs is slightly shifted in the respect to the crossing of
antiresonances because of still nonzero coupling between the
mirrors. On the other hand, for smaller D, RHS of the first
equation in system (18) is sufficient to prevent the change
of BIC behavior under a small variation of parameters near
the coalescence-avoided-crossing transition of the individual
mirror antiresonances. For instance, the first symmetric FP
BICs merge at θ = 0.72 and 0.73, whereas the first antisym-
metric BICs demonstrate repulsion for both θ = 0.72 and 0.73
[see the first pairs of symmetric and antisymmetric BICs in
Fig. 4(d) and Figs. 4(e) and 4(f), respectively].

Previously, it was proposed in the literature that there is a
strong dependence of the Q-factor on the parameters detuning
from their values corresponding to the very point of BIC
merging [36,37]. However, as we show here, this is not a
specific property of the BIC merging point. Such a behav-
ior of the Q-factor is defined primarily by the path in the
parameters space, along which the evolution of Q-factor is
studied, rather than by the particular chosen point on the BIC
existence curve. For instance, let us consider the repulsion
(not merging!) of the symmetric FP BICs near L ≈ 1.8 and
D ≈ 3 [see Figs. 4(d) and 4(g)] for θ = 0.72. Figure 5(a)
shows the BIC existence curve in the D-L parameter space and
two different paths in this space, along which one can study
the Q-factor (inverse imaginary part � of the S-matrix pole)
asymptotic in the vicinity of BIC at L = LBIC = Lt = 1.78
and D = DBIC ≈ 3.17443. Dependence of the Q-factor on
the detuning �L = L − Lt along the line tangent to the BIC
existence curve is Q ∼ �−1 ∼ �L−4, which is stronger than
along any other intersecting line Q ∼ �L−2 [Fig. 5(b)]. This
is due to the properties of the path in the parameter space, not
the specific BIC point considered (see Appendix C). In the
case of BIC merging point, tangent line is parallel to one of
the parameters axis, just providing a simpler analysis of this
effect. Thus, in fact, merging and repulsion of BICs in finite
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FIG. 4. Energy-vs-resonator-length diagrams of the single mirror transmission coefficient for θ = 0.72 (a), θ ≈ 0.72524 (b), and θ = 0.73
(c), which correspond to antiresonance repulsion (avoided crossing), crossing and coalescence respectively. Zero transmission antiresonances
are shown by white lines. The rest parameters are as follows: U = 10, V1 = −2, V2 = 5. (d) Distance between the mirrors DBIC corresponding
to a few first FP BICs (red lines are denoted to symmetric and blue lines—to antisymmetric states) and [(e)–(h)] respective BICs energy vs
given length L for different values of θ : symmetric FP BICs near DBIC ≈ 1 (e), DBIC ≈ 3 (g) and antisymmetric FP BICs near DBIC ≈ 2 (f),
DBIC ≈ 4 (h).

systems are closely related to each other and differ just by a
corresponding rotation of the parametric space.

Nevertheless, we should admit that BIC merging point in
systems with guided modes is indeed specific in the context of
Q-factor asymptotic behavior. In such systems, in the case of
BIC merging, Q-factor blows up as �k−4 along any direction
in the specified momentum space [23,26,30,31]. It can be

FIG. 5. (a) Dependence of the distance between the resonators,
required for a symmetric BIC formation, on a given resonator length
L (thick red line). Thin solid and dashed black lines correspond
to tangent and intersecting lines to the BIC existence curve D =
DBIC(L) at the point L = Lt = 1.78 and D = DBIC(Lt ) ≈ 3.17443.
(b) Dependence of the Q-factor (inverse imaginary part � of the
S-matrix pole) on the detuning �L = L − Lt along the paths shown
in part (a).

described in the following way. A hyperplane “tangent” to the
BIC existence manifold in the combined space of parameters
and momentum becomes parallel to the momentum subspace.
Thus any detuning in the momentum is a tangent to the BIC
existence hypersurface resulting in corresponding strong be-
havior of the Q-factor.

IV. NUMERICAL CALCULATIONS

A. Two-dimensional quantum-mechanical waveguide
with two expansions

As a quantum-mechanical model structure for numerical
simulations we consider a 2D waveguide of width h with two
identical expansions of width H > h playing role of mirrors
[inset in Fig. 6(a)]. A FP resonator cavity is represented by
a waveguide of width h0 between the expansions. Potential
energy inside the waveguide and resonators is set as the energy
origin and outside the waveguide [gray shaded region in the
inset in Fig. 6(a)] it is U0 = 1 eV. To be specific, the effective
mass of the electron is chosen to be 0.0665m0 (typical value
in GaAs-based materials). We solve the scattering problem
for the Schröedinger equation (4) and identify BICs as Fano
resonances with a vanishing split between a peak and a dip
[19,34].

The full numerical solution of the 2D Schröedinger equa-
tion by the transverse modes decomposition requires infinitely
many eigenstates of Eq. (5) belonging to both discrete and
continuous spectra to be considered. The transverse modes of
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FIG. 6. [(a) and (b)] Numerically calculated dependence of BIC energy EBIC and [(c) and (d)] corresponding resonators length LBIC on a
given distance D between the resonators. The red thick and the blue thin lines describe symmetric and antisymmetric BICs respectively. The
symmetric waveguide structure under study is shown in the inset in part (a), parameters are specified in the text. The black thin solid line
indicates the energy EBIC,1 ≈ 332.398 meV and the corresponding resonator length LBIC,1 ≈ 12.047 nm of the BIC in the isolated resonator.
Away from the BIC of individual resonator, BIC in the whole structure follows the effectively single-mode FP phase matching condition (3)
pretty well [see thin black dashed lines in part (c)]. Points indicate BICs illustrated by probability density distribution in Fig. 7.

the continuous spectrum are simulated numerically by a dense
set of discrete modes formed between artificial infinite po-
tential borders located at some distance � from the structure
[inset in Fig. 6(a)]. The true continuous spectrum corresponds
to � → ∞ and the number N of transverse modes taken into
account being infinite. For the particular parameters, we tune
� and N consistently until simulation results begin to demon-
strate weak dependence on them. In the present paper, it took
place for � � 2.5 nm and N � 10, thus, for convenience of
numerical calculations, we set � = 2.5 nm and N = 10.

1. Fabry-Pérot and twin bound states in the continuum
with locally symmetric mirrors

At first, we consider waveguide between the expansions
to have the same width as outside them (h0 = h) providing
mirrors to be locally symmetric (surrounded by waveguides
of the same width). We begin with the simplest case when
coalescence of antiresonances in the individual mirror is ab-
sent. For low energy antiresonances, this can be guaranteed
either by |μ21| � |μ22| (θ � 1 within two-mode approxi-
mation) or |μ21| � |μ22| (|π/2 − θ | � 1 within two-mode
approximation). The former can hardly be achieved in a re-
alistic structure, so we focus on the case |μ21| � |μ22|, which
requires that h and H do not differ much [34,35]. Specifically,
we take h = 5 nm and H = 7 nm that provides μ22 ≈ 0.753
and μ21 ≈ −0.260. The energy range of interest is restricted
between the thresholds of the second transverse mode in mir-

rors ξ 2,4
2 ≈ 306.3 meV and the second transverse mode in

waveguide ξ 1,3,5
2 ≈ 507.7 meV.

Figure 6 depicts numerically calculated BICs existence
curves in the E -L and D-L coordinate planes. Similar to the
analytical two-mode model, two types of BICs can be clearly
distinguished for large D: periodic in D FP BICs and TBICs
related to the BIC in isolated mirrors at LBIC,1 ≈ 12.047 nm
and EBIC,1 ≈ 332.398 meV, which are almost independent
on D. We admit that precise numerical calculation approves
that FP BICs indeed accurately follow the phase matching
condition (3) [see Fig. 6(c)]. The key difference between FP
BICs and TBICs can be highlighted by their wave functions
(Fig. 7). As expected from the two-model analytical consider-
ation, FP BICs have nonzero probability distribution between
the resonators, whereas TBICs are localized almost within
mirrors with vanishingly small wavefunction amplitude be-
tween them. If the parameters of the FP BIC bring it close
to the TBIC, they interfere, and the continuous transition
between them is observed, as was predicted within the two-
mode model [compare Fig. 2 and Figs. 6(b) and 6(d)]. For
small D, FP BICs and TBICs become strongly hybridized
due to large evanescent mode coupling between the mirrors.
One can check that in the limit D → 0 numerically calculated
BICs also tend to the BICs in a single resonator (mirror) of
double length 2L. These results are similar to the Ref. [29],
where the FP resonator was considered with mirrors formed
by scattering regions with attractive potential (“impurities” or
quantum wells [42]) inside a uniform waveguide. Thus we
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FIG. 7. [(a) and (c)] Probability density distribution in the symmetric and [(b) and (d)] antisymmetric FP BICs and in the symmetric TBIC
(e). FP BICs correspond to LBIC = 4 nm, EBIC ≈ 379.720 meV and DBIC ≈ 0.897 nm [open circle in Fig. 6(a)], EBIC ≈ 418.303 meV and
DBIC ≈ 4.631 nm [filled square in Fig. 6(b)], EBIC ≈ 411.011 meV and DBIC ≈ 9.316 nm [open square in Fig. 6(c)], and EBIC ≈ 411.884 meV
and DBIC ≈ 13.78 nm [filled triangle in Fig. 6(d)]. TBIC corresponds to LBIC ≈ 12.04 nm, DBIC ≈ 8.02 nm, and EBIC ≈ 332.355 meV [filled
star in Fig. 6(e)].

have explicitly demonstrated that the formation of TBICs is
not a model-specific but a universal phenomenon.

2. Merging of Fabry-Pérot bound states in the continuum
due to antiresonance coalescence

As we have shown above, within the two-mode model,
coalescence of antiresonances in individual resonators (mir-
rors of the FP resonator) manifests in merging of FP BICs.
Coalescence of antiresonances in the transmission spectrum
of a single resonator in 2D waveguide, typically, takes place
for |μ22| � |μ12|, |μ21| [35]. Naturally, this can be provided
under the condition h ∼ H/2, so we choose h = 10 nm and
vary H in the vicinity of H ∼ 20 nm.

Figure 8(a) depicts the dependence of a single mirror
(shown in the inset) transmission spectrum on its length L.
There are two regions in the E -L space shown in Fig. 8(a),
where we study coalescence of antiresonances. Coalescence
in the region A is almost independent of the matrix element
μ22 and takes place for a wide range of H values, because
it lies above the threshold of the third mode in resonators
and it is formed due to multimode interference. On the other
hand, coalescence of antiresonances in the region B is of
the two-mode interference nature and is very sensitive to the
value of μ22 matrix element (consequently, to the value of H).
For the particular values of the parameters, crossing of an-
tiresonances, i.e. the very transition regime between avoided
crossing and coalescence, corresponds to H0 ≈ 21.737 nm
[Figs. 8(b)–8(d)].

Merging of FP BICs related to the antiresonance coales-
cence in a single resonator in region A [see Fig. 8(a)] is
illustrated by Fig. 9, where the dependence of the BIC energy
EBIC and the corresponding distance between the mirrors DBIC

on the length L is presented. As expected, BIC merging takes
place almost at the same energy and mirror length that cor-
responds to antiresonance coalescence (shown by thin black
dashed lines). Similar to the predictions of the two-mode
model (Fig. 3), merging of FP BICs provided by coalescence
of antiresonances is almost periodic in D.

As we have noticed above, within the two-mode model,
a continuous transformation of the antiresonance behavior
from avoided crossing to crossing and then – to coalescence
provides similar behavior of FP BICs (see Fig. 4). Similar

phenomenon is confirmed within the full numerical simula-
tion. Figure 10(a) shows the dependence of FP cavity length
D corresponding to BICs in the region B of the E -L space
of an isolated resonator [Fig. 8(a)]. Parameters are chosen

FIG. 8. Numerically calculated energy-vs-resonator-length dia-
grams of the single mirror transmission coefficient for h = 10 nm
and H = 20 nm (a). The structure of the considered single mirror is
shown in the inset. Regions, where antiresonance coalescence is stud-
ied are labeled by A and B. Evolution of the transmission coefficient
spectrum in the region B from the avoided crossing of antiresonances
at H = 21.5 nm (b) to crossing at H = H0 ≈ 21.737 nm (c), and
coalescence of antiresonances at H = 22 nm (d).
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FIG. 9. Numerically calculated dependence of BIC energy EBIC

(a) and corresponding distance between the mirrors DBIC (b) on a
given mirror length L in the region A [see Fig. 8(a)]. The red thick
lines are related to the symmetric BICs, and the blue thin lines – to
the antisymmetric BICs. Parameters are the following: h = 10 nm
and H = 20 nm. ξ 1,3,5

2 ≈ 194.5 meV is the threshold of the second
transverse mode in the waveguides. Merging of BICs (shown by red
and blue dots) takes place near the coalescence of antiresonances at
E0 ≈ 148.0 meV and L0 ≈ 12.68 nm or E0 ≈ 154.2 meV and L0 ≈
11.74 nm (indicated by thin dashed black lines).

to be detuned from the exact antiresonance crossing con-
dition H = H0 ≈ 21.737 nm [Fig. 8(c)] either towards the
avoided crossing of antiresonances (H = 21.5 nm) or to the
coalescence of antiresonances (H = 22 nm). Qualitative dif-
ference in the BIC behavior can be illustrated by studying
the Q-factor (inverse imaginary part � of the S-matrix pole).
Figures 10(b) and 10(c) show the dependence of the Q-factor
on D for different values of L and H near the antisymmetric
FP BICs. In the case of BIC merging (H = 22 nm), Q-factor
has either two, one, or no divergent points in agreement with
the analytical model [see inset in Fig. 3(a)]. On the other
hand, in the case of BIC repulsion (H = 21.5 nm), there are
always two divergent points in the parameters range of inter-
est. We also admit, that transition between BIC merging and
repulsion takes place under infinitesimal parameter change.
Figure 10(d) depicts the dependence of D corresponding to
FP BICs for H0 > H = 22.73 nm and H0 < H = 22.74 nm.
Transition from merging to repulsion is observed only for
antisymmetric BICs for larger D (see the behavior of antisym-
metric BICs near DBIC ∼ 16 nm in Fig. 10), while symmetric
BICs for smaller D demonstrate the same behavior (merging)
for both values of H (symmetric BICs in the case shown in
Fig. 10 at D ∼ 4 nm). The reason for this is that coupling
between the mirrors through the evanescent modes becomes
negligible for large D.

FIG. 10. Numerically calculated dependence of the distance be-
tween the mirrors corresponding to BIC DBIC (a) on a given length
L in the region B [see Fig. 8(a)]. The red solid lines are related to
the symmetric BICs, and the blue dashed lines to the antisymmetric
BICs. Parameters are the following: h = 10 nm and H = 21.5 nm
(thin lines) or H = 22 nm (thick lines). Q-factor (inverse imaginary
part � of the S-matrix pole) of the first pair of antisymmetric BICs
vs. distance between the resonators for H = 22 (b) and 21.5 nm
(c). Thin solid line corresponds to L = 27 nm, thick solid line – to
L = 28.35 nm, and thin dashed line to L = 29 nm [labeled by verti-
cal thin dashed lines in part (a)]. Numerically calculated dependence
of the distance between the mirrors corresponding to BIC DBIC (d) on
a given length L for H = 21.73 nm (thin lines) and H = 21.74 nm
(thick lines).

3. Twin bound states in the continuum in resonator with locally
asymmetric mirrors

Let us allow the interior waveguide of the FP cavity to
have width different to the exterior waveguide width (h0 �=
h). Thus waveguide expansions playing the role of mir-
rors will become locally asymmetric (waveguides to the left
and to the right from the each mirror are different). De-
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FIG. 11. Phase of the reflection amplitude of the individual mir-
ror (shown in the inset) at the energy of its full opaqueness. Black
solid line corresponds to h0 = h = 5 nm, red dashed line – to h >

h0 = 4.8 nm and green dot-dashed line to h < h0 = 5.2 nm. Thin
dashed vertical line indicates the length LBIC,1 ≈ 12.047 nm, corre-
sponding to BIC in an isolated symmetric (h0 = h = 5 nm) mirror.

structive interference providing Fano antiresonances in the
transmission spectrum of individual mirror remains in the
asymmetric case. However, FW mechanism of BIC formation
in asymmetric expansion does not work unless additional
condition of proportionate coupling (A3), (A4) is fulfilled
[34]. Nevertheless, as we show below, this condition is not
obligatory to observe BICs weakly depending of D (TBICs)
in the vicinity of energy E and parameter L near their values
EBIC,1 and LBIC,1 corresponding to BIC in individual locally
symmetric mirror.

The phase ϕ of the reflection amplitude of an individual
locally asymmetric mirror also demonstrates sharp behavior
near the BIC point in the energy-parameter space, which is
similar to the case of locally symmetric mirrors illustrated in
Fig. 2(a). Figure 11 shows the numerically calculated phase
ϕ of the individual mirror (expansion of width H = 7 nm in
a waveguide of width h = 5 nm – see inset in Fig. 11) under
the condition of perfect opaqueness (Fano antiresonance) as
a function of its length. In the symmetric case, where BIC
in the isolated mirror can be formed, phase is smooth and
continuous. As soon as the mirror becomes asymmetric, there
is a sharp ±2π change of the phase near the mirror length
LBIC,1 ≈ 12.047 nm, corresponding to BIC in symmetric case.
Moreover, one can see that this change is of different sign
for h > h0 and h < h0. In particular, the dependence ϕ(L) is
monotonic for h < h0 and nonmonotonic for h > h0.

Such a sharp dependence of the reflection amplitude phase
naturally provides features of the BIC behavior in the FP con-
figuration similar to TBICs in the case of symmetric mirrors.
Indeed, according to Fig. 12, where BIC existence curves in
FP structures with asymmetric mirrors are shown, in both
cases (h > h0 and h < h0) either symmetric and antisymmet-
ric BICs demonstrate a weak dependence on D for mirror
length in the vicinity of LBIC,1 ≈ 12.047 nm, corresponding
to BIC in an isolated symmetric (h0 = h = 5 nm) expansion.
In accordance with the behavior of the reflection amplitude

FIG. 12. Numerically calculated dependence of individual mir-
rors lengths LBIC corresponding to BIC formation on a given distance
D between them. The red thick and the blue thin lines describe
symmetric and antisymmetric BICs respectively. The width h0 of
the central waveguide is h > h0 = 4.8 nm (a) and h < h0 = 5.2 nm
(b). Black dashed lines show the effectively single-mode FP phase
matching condition (3). Merging of symmetric and antisymmetric
BICs are labeled by red and blue dots, respectively.

phase (Fig. 11), dependence D(LBIC) is monotonic for h < h0

and nonmonotonic for h > h0. The main difference between
structures with h0 �= h and with locally symmetric mirrors
(h0 = h) is the following. In the former case, there is a con-
tinuous transition between FP resonances with increase (for
h > h0) or decrease (for h < h0) of its FP resonance number
n by 2 for both symmetric and antisymmetric BICs with
increase of L through the value LBIC,1. Whereas in the case
of symmetric mirrors, there is increase of n for symmetric and
decrease of n for antisymmetric BICs (compare Fig. 12 with
Fig. 6).

One can see that in Fig. 12 there is also a good agree-
ment between the precise numerical simulations and the
approximate single-mode calculations through the FP phase
matching condition (3). Differences take place at small D,
where evanescent coupling between the mirrors is not neg-
ligible. These differences are mainly quantitative, but there
are two main qualitative features. First, the existence of the
symmetric BIC with the lowest L in the limit L → 0 and
D → 0 for h > h0, which is absent within the single-mode
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phase analysis [Fig. 12(a)]. This BIC is the only one, which
survives in the system with h > h0 in the limit L → 0. Second,
merging of antisymmetric (symmetric) BICs with decrease
(increase) of the single mirror length for h > h0 (h < h0).
Mechanism of this merging is different to the proposed above
coalescence of antiresoannces in single mirror, and, as we
have demonstrated, it is of multimode nature. We also admit
that, in contrast to the case h > h0, structures with h < h0

possess BICs in the limit L → 0 and D �= 0, which tend to
corresponding BICs in a single resonator of length D and
width h0 > h [see Fig. 12(b)]. The antisymmetric BIC with
the lowest L and D does not exist in the limit L → 0 in the
particular example considered because corresponding BIC in
the single resonator limit is absent as its energy goes above
the threshold of the second transverse mode in the external
waveguides.

B. Two-dimensional optical Fabry-Pérot resonator

Due to deep connection between Schröedinger and
Helmholtz equations [50], one can expect qualitative agree-
ment between behavior of BICs in quantum-mechanical and
optical systems. To be more specific, we consider Helmholtz
equation for z component of the electric field Ez (TE po-
larization) in the 2D dielectric waveguide with propagation
direction along the x axis. In this case, the Helmholtz equa-
tion is equivalent to Eq. (4) for �̃(x, y) = Ez(x, y) with factor
E − U (x, y) being substituted by q2

0ε(ω, x, y):

∂2�̃

∂x2
+ ∂2�̃

∂y2
+ q2

0ε(ω, x, y)�̃ = 0, (28)

where q0 = ω/c is the wave vector in free space, ω is the fre-
quency, c is the speed of light, and ε(ω, x, y) is the distribution
of the dielectric constant over the system.

The main difference between 2D waveguides, whose
description is based either on Schröedinger or Helmholtz
equations, is that in the latter case there are no bound states
and hence no Fano resonances in infinite single-connected
optical waveguides. Bound states and Fano resonances appear
only after introduction of metal boundaries restricting wave
motion in the direction y perpendicular to the propagation
direction (x). This can be qualitatively explained in the fol-
lowing way.

In dielectric structures, the sign of the term q2
0ε(ω, x, y)

is fixed and positive contrary to quantum mechanics, where
difference E − U (x, y) can acquire both positive and neg-
ative values. Moreover, the degree of freedom related to
independent variation of energy E and potential U (x, y) is
absent in electrodynamics. It is instructive to rewrite the
Helmholtz equation following Ref. [10] in the form similar
to the Schröedinger equation with effective potential energy
Ũ (x, y) = q2

0[1 − ε(ω, x, y)] instead of U (x, y) in Eqs. (4) and
(5), and effective energy Ẽ = q2

0 standing for E in Eqs. (4)
and (6):

q2
0ε(ω, x, y) = Ẽ − Ũ (x, y) = q2

0 − q2
0[1 − ε(ω, x, y)]. (29)

Hence, in electrodynamics, we have an analog of the
Schröedinger equation but with fixed and positive effective
energy.

Consider, as we have done it in quantum-mechanical
numerical calculations above, a structure with a piecewise
constant ε in the x direction. Thus we can divide the sys-
tem into regions along propagation direction, where in the
jth region, we have ε(x, y) = ε j (y). Similarly to the 2D
Schröedinger equation (4), we solve this Helmholtz equa-
tion by the variable separation. However, to get a qualitative
insight, we suppose here that there is a single transverse mode
in each region, contrary to an exact numerical simulation.
Thus, in the jth region, one gets the Helmholtz equation for
the transverse function χ̃ j (y) of the electric field �̃ j (x, y) =
ψ̃ j (x)χ̃ j (y) similar to Eq. (5):

∂2χ̃ j (y)

∂y2
+ [ξ̃ j − Ũj (y)]χ̃ j (y) = 0. (30)

Here ξ̃ j is the separation constant, which determines the
threshold of a mode propagating in y direction, and Ũj (y) =
ω2/c2[1 − ε j (y)] is the effective potential in the jth region.
Inside the waveguide ε j (y) > 1 (Ũj (y) < 0) and outside –
ε j (y) = 1 (Ũj (y) = 0). Therefore, along the y axis perpen-
dicular to the propagation direction, we have a standard 1D
quantum well problem. Localized in the y direction solution
corresponds to eigenenergy ξ̃ j < 0. Propagation along the y
axis is described by ξ̃ j > 0.

Along the x axis in each region, the Helmholtz equa-
tion reads similar to Eq. (6) giving the solution ψ̃ j (x) =
exp (±iβ jx), where we have introduced a waveguide propa-
gation constant β j . From Eq. (6), it immediately follows that

(β j )2 = Ẽ − ξ̃ j = q2
0 − ξ̃ j, (31)

which illustrates the well-known fact that the propagation
constant of waveguide mode (evanescent outside the
waveguide in the y direction with ξ̃ j < 0) should be larger
than the free space wave vector.

BICs require spatial localization along both x and y
axis. Localization along the x axis formally corresponds to
(β j )2 < 0. To study the possibility of such localization, we
assume that functions ψ̃ j (x) are smooth and continuous at
the borders between the regions, and then generalize Eq. (6)
along the whole system. In this case, thresholds ξ̃ j turn
into x-dependent functions ξ̃ j ≡ ξ̃ (x), which play the role
of potential energy in optical analog of 1D Schröedinger
equation Eq. (6):

∂2ψ̃ (x)

∂x2
+ [Ẽ − ξ̃ (x)]ψ (x) = 0. (32)

Equation (32) possesses no bound state solutions for local-
ized in y direction modes [ξ̃ (x) < 0] because Ẽ = q2

0 > 0
by definition. The situation can be changed if we use size
quantization that is provided by confining wave motion in the
y direction by rigid (ideally conducting) walls. As a result,
size-quantized thresholds ξ̃ j and ξ̃ (x) in Eqs. (30), and (32)
can become positive and change the sign of the difference
Ẽ − ξ̃ (x) to form an effective “quantum-mechanical potential
barrier.” Hence, localized solution of (32) do appear.

Herewith, the role of quantum well in the x direction
in Eq. (32) plays the region with waveguide expansion in
the y direction giving smaller ξ̃ (x). After these precautions
(regarding conditions for bound state existence) have been
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FIG. 13. (a) Numerically calculated wavelength-vs-resonator-length diagrams of the single resonator transmission coefficient for H = 3h.
(b) Dependence of the distance between the resonators required for BIC formation DBIC on the length of an individual resonator L. Symmetric
(thick red lines) and antisymmetric (thin blue lines) BICs demonstrate merging near the points of antiresonance coalescence (black thin dashed
lines). Inset in part (b) shows the evolution of the electric field distribution along the 2D structure at BIC during symmetric BIC merging.

taken, practically all qualitative predictions of a quantum-
mechanical model are applicable to the electromagnetic one.
The difference arises due to some peculiarities mainly related
to the explicit dependence of the effective potential Ũ (x, y)
on energy Ẽ and the presence of the energy dependence of
the matrix elements μi j between the regions. Nevertheless,
we believe that it is instructive to illustrate one of the key
results—FP BICs merging due to antiresonance coalescence
in optical waveguide as well. The numerical procedure for
solving the Helmholtz equation (28) is similar to the proce-
dure for solving the Schrödinger equation (transverse modes
decomposition). The key difference is that the parameter �

is introduced in the quantum-mechanical problem to simplify
the calculation scheme and its value is chosen in accordance
with the convergence of the calculation results to the exact
solution (corresponding to � → ∞). In the optical problem,
however, � (distance between the waveguide and ideally
conducting walls) becomes a meaningful physical parameter
that provides the size quantization in the y direction, and the
calculation results are essentially determined by its particular
value. Nevertheless, the qualitative picture of the BIC merging
phenomenon remains, and, for simplicity, below we restrict
ourselves to the simplest case � = 0.

Figure 13(a) depicts the evolution of the transmission spec-
trum of a 2D optical waveguide with a single expansion (i.e.,
resonator) with variation of the resonator length L. One can
see a region of coalescence of antiresonances at λ ∼ 7h −
7.5h and L ∼ 1.1h − 1.3h. The behavior of FP BICs in the
structure with two such resonators as mirrors (FP resonator)
is illustrated in Fig. 13(b). As we expect, BICs demonstrate
merging near the coalescence of antiresonances (indicated
by thin dashed lines). The larger D is the less influence has
evanescent coupling between the resonators, and hence, the
more precisely BICs follow antiresonances. Distribution of
the electric field across the structure at BIC changes continu-
ously as one moves along the BIC existence curve in the D-L
space [Fig. 13(b)] and does not have any abrupt change at the
BIC merging point.

V. CONCLUSION AND DISCUSSION

In our paper, we study interacting bound states in the
continuum (BICs), which appeared to become a new and
perspective platform for the formation of high- and ultrahigh-
Q resonances, which are very desirable for a wide range of
applications. We focus on BICs in a finite Fabry-Pérot (FP)
resonator structure, which demonstrate complicated mutual
interactions and transformations. In particular, such interac-
tion can result in BIC merging and, as we show, repulsion that
increases Q-factor even further.

The FP resonator structure can possesses two different
types of BICs. They are actual FP BICs, formed by trapped
wave in the cavity between the mirrors, and recently pro-
posed twin-BICs (TBICs) originating from BICs in individual
mirrors of the FP resonator. FP BICs and TBICs are com-
plementary phenomena: while the former weakly depend on
mirror parameters and are periodic in FP cavity length the
latter possess a weak dependence on the cavity length and a
strong one on mirror parameters. The characteristic feature of
TBIC is a small wave amplitud inside the cavity, which van-
ishes in the limit of large cavity lengths. Here we have shown
that formation of TBICs is a universal phenomenon related to
the sharp dependence of the mirror reflection coefficient phase
on the system parameters near the BIC point in the parameter
space of an individual mirror. Hence, even if BIC does not
exist in a single mirror, it do manifests itself as TBIC in the
FP structure. TBIC can be considered as a simplest two-state
“BIC molecule.” The study of more complex structures will
be presented elsewhere.

In waveguides, even a single mirror displays a number of
Fano resonances that can interact with each other. Recently,
it has been shown [19,35,38] that two perfect antiresonances
(with a zero transmission coefficient) can coalesce at some
value of the system parameter and transform into one with
nonzero transmission under further variation of this param-
eter. As we show in the present paper, coalescence of the
Fano antiresonances provides FP BIC related to these reso-
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nances to merge (coalesce or annihilate) as well. However,
the interpretation of this physical mechanism of FP BIC
merging does not require the introduction of any topological
charges, which, for instance, have been discussed in Ref. [37]
in the context of experimentally observed FP BICs merging
in acoustic resonators. Topological nature of a physical phe-
nomenon assumes its robustness in respect to any smooth
variation of system parameters. In our study of BIC interaction
in finite resonators, we found out that just the very type of this
interaction can be changed by a small parameter variation,
and one can observe smooth transformation from merging
of BICs over their crossing to avoided crossing (repulsion).
The question of the possible existence of topological charges
of BICs in finite resonators requires further study. However,
taken together the results of our paper indicate that topological
properties of BICs in finite resonators, if they really exist, are
rather of emerging than fundamental nature and the peculiari-
ties of BIC interaction can be explained without invoking the
notion of topological charges.

It is important to note that, in our model, BIC merging
results from intrinsic wave interference in the mirrors and,
hence, it depends very weak on evanescent coupling between
them. This coupling vanishes as the cavity length D increases,
while in our model the merging pattern persists for large D as
well. Moreover, we show that merging is almost periodic in D
with approximate period defined by the FP cavity round-trip
phase shift.

We also have shown that a supersharp increase of the Q-
factor in the vicinity of BIC merging is not specific to the very
point of BIC annihilation in the parameter space. It is rather
a property of the line in the parameter space, along which
evolution of the Q-factor is studied. If this line is tangent to
the BIC existence curve, then the Q-factor blows up sharper
in the vicinity of a BIC. In the case of the BIC merging point,
the tangent line only becomes parallel to one of the parameters
axis making this specific behavior of the Q-factor easier to
observe and analyze.

In our paper, we focus on BICs in FP resonators as they
represent a relatively simple class of systems displaying a rich
variety of BIC-related phenomena involving their interaction
and transformation. However, we believe that our results are
quite general and pave the way for studying new interest-
ing physical objects—complex BIC molecules and arrays of
interacting BICs, which may be promising for a variety of
applications requiring high-Q resonances.
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APPENDIX A: BOUND STATE IN THE CONTINUUM IN AN
ASYMMETRIC RESONATOR WITHIN THE TWO-MODE

APPROXIMATION

Consider a single resonator (e.g., waveguide expansion
playing the role of a mirror in the FP structure) of length L
coupled to two different waveguides (Fig. 14). Within the two-
mode approximation, mode mixing on the interface between
the resonator and the left/right waveguides is described by

FIG. 14. (a) Schematic view of a 2D resonator (confinement
regions) attached to two different waveguides. (b) Thresholds of the
transverse modes in the waveguides and inside the resonator within
the two-mode approximation.

2 × 2 orthogonal matrices μ̂L,R correspondingly. We will look
for the following form of the longitudinal components of the
BIC eigenstate:

ψ1
1 (x) = ψ3

1 (x) ≡ 0,

ψ1
2 (x) = aeκL(x+ L

2 ), ψ3
2 (x) = ce−κR(x− L

2 ),

ψ2
1,2(x) = b1,2 cos

[q1,2

2
x + α1,2

]
. (A1)

Here κL,R = √
UL,R − E are decaying coefficients in the

evanescent modes of the left (L) and right (R) waveguides,
respectively and q1,2 = √

E − V1,2 are the wave numbers in
the first and second transverse modes in the resonator.

Applying matching conditions (7), one gets eight equa-
tions for four amplitudes a, b1,2, and c. Consistency of this
system provides five equations: for phases α1,2, energy and
resonator length corresponding to BIC, and the specific condi-
tion on the coupling matrices μ̂L,R. The first four equations are
as follows:

tan

(
q1,2L

2
− α1,2

)
= κL

q1,2
,

tan

(
q1,2L

2
+ α1,2

)
= κR

q1,2
, (A2)

and the last one can be written as

(μL )12/(μL )11

(μR)21/(μR)11
= c−

1 c+
2

c+
1 c−

2

(A3)

with c±
1,2 = cos ( q1,2L

2 ± α1,2). Equations (A2) describe states
2-1-2 and 2-2-2 (localized in the second modes outesude the
well and in the first or second mode inside the well, respec-
tively) in the asymmetric quantum well with bottom energy
V1,2 and left/tight barriers UL,R. Simultaneous fulfillment of
Eqs. (A2) requires degeneracy of states 2-2-2 and 2-1-2 as it
was shown previously in symmetric resonators [35,42,43,51].
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FIG. 15. (a) Tight-binding toy-model of FP resonator with
nontrivial mirrors. (b) Dependence of BIC energy EBIC and (c) corre-
sponding energy of the site between the resonators ε0,BIC on a given
value of ε1 for ε2 = 0.5τ . Merging of BICs takes place exactly at the
point of antiresonance coalescence in a single resonator at E = ε2

and ε1 = ε2 (shown by thin dashed black lines).

However, in the case of asymmetric system, there is the
additional condition (A3). This requirement can be easily
reformulated to the proportionate coupling condition [34].
Indeed, coupling coefficients γ L,R

1,2 between the states of the
isolated resonator and the propagating modes in the left/right
waveguides are related to matrix elements of (μ̂L )1n and
(μ̂R)n1 [52,53]. Here n = 1 for 2-1-2 states and n = 2 for
2-2-2 states. Using Eqs. (A2) and (A3), one can derive the
exact proportionate coupling condition:

γ L
1

γ L
2

= γ R
1

γ R
2

. (A4)

APPENDIX B: GENERIC TIGHT-BINDING TOY-MODEL
OF BIC MERGING DUE TO ANTIRESONANCE

COALESCENCE

Consider the toy-model shown in Fig. 15(a). The res-
onators playing role of mirrors are modeled by a three-site
block each with the Hamiltonian

Ĥres =
⎛
⎝ε1 τ 0

τ ε2 τ

0 τ ε3

⎞
⎠. (B1)

Three is the least needed number of sites in a single resonator
to describe the possibility of antiresonance coalescence be-

cause the order of the polynomial function P(E ), which is the
numerator of the transmission coefficient, is not greater than
M − 1, where M is the dimensionality of the Hilbert space of
the system [19].

Typically, the coalescence of antiresonances takes place in
the vicinity of states of opposite parity [38]. Therefore we
suppose that individual resonator couples to the left and right
waveguides through the following coupling vector between its
localized states and the propagating mode of the waveguide:

ures
L = (γ ,−γ , γ )�, ures

R = (γ , γ , γ )�. (B2)

Following formalism of Ref. [19], one can derive from
Eqs. (B1) and (B2) the numerator of the single resonator
transmission coefficient:

P(E ) = 2γ 2(E2 − 2Eε2 + ε1ε2). (B3)

Here we have set ε3 as energy origin. Equation (B3) shows
that individual resonator has zero transmission at E = ε2 ±√

ε2(ε2 − ε1) for ε1 < ε2. Coalescence of antiresonances
takes place for ε1 = ε2, and there are no zero transmission
dips for ε1 > ε2.

If one places an N-site chain as an FP cavity between the
mirrors [Fig. 15(a)], then the whole structure will resemble an
FP resonator. For simplicity, here we focus on the case N = 1,
so the Hamiltonian of the whole toy-model structure is

Ĥ =
⎛
⎝Ĥres v 0

v† ε0 v†

0 v Ĥres

⎞
⎠, (B4)

where v = (τ, τ, τ )�. Coupling of this structure to the waveg-
uides is described by the following vectors:

uL = (γ ,−γ , γ , 0, 0, 0, 0)�, uL = (0, 0, 0, 0, γ ,−γ , γ )�.

(B5)

According to the analysis presented above, we expect BIC
merging in the whole structure at ε1 = ε2 with two possible
BICs for ε1 < ε2 and no BICs for ε1 > ε2. Indeed, from
Eqs. (B4) and (B5), one can derive that BIC in the toy-model
structure appears to be for

ε0 = ε2 + τ − |(ε1 − ε2)ε2 + 5τ 2|−τσ ± √
ε2(ε2 − ε1)

(ε1 − ε2)ε2 + τ 2

(B6)
with σ = sign[(ε1 − ε2)ε2 + 5τ 2]. Dependence of BIC en-
ergy and required energy of the site between the resonators
ε0 is exemplified in Fig. 15. Merging of BICs corresponds ex-
actly to the coalescence of antiresonances in a single resonator
at E = ε2 and ε1 = ε2.

APPENDIX C: Q-FACTOR OF RESONANT STATE NEAR
BIC FORMATION CONDITIONS

BIC has an infinite lifetime, i.e., infinite Q-factor. A devi-
ation of any system parameter p from its specific value p0

corresponding to the BIC formation results in the transfor-
mation of BIC into a decaying resonant state with the finite
Q-factor (the inverse imaginary part of the effective Hamilto-
nian eigenvalue) [2,11]

Q ∼ �p−n, (C1)
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where �p = p − p0 and n = 2. The Q-factor of a resonant
state near the point of two BIC merging is known for an extra
sharp dependence of the Q-factor [n = 4 in Eq. (C1)] on the
parameter detuning from the BIC condition [36,37].

However, BIC merging point is not specific for this prop-
erty in finite systems. Indeed, suppose that BIC formation
condition is fulfilled on a certain curve in a 2D space of
some parameters p1 and p2 [e.g., in the example considered
in Appendix B, parameters are ε1/τ and ε0/τ and the BIC
existence curve is shown in Fig. 15(c)]. Let us take some
specific point (p0

1, p0
2) on this curve and consider shift of p1

and p2 along the tangent line to the BIC existence curve at this
point:

(p1, p2) = (
p0

1, p0
2

) + �x(a, b). (C2)

Here coefficients a and b are adjusted to make this line a
tangent with dimensionless �x being its natural parameter.
Being a tangent to the BIC existence curve, line (C2) provides
detuning of the parameters from their values required for BIC
formation �p to be quadratic in �x [see Fig. 16(a)]. There-
fore the Q-factor of the resonant state will follow Eq. (C1)
with n = 4 for parameters shift along the tangent line (C2).
Moreover, if the tangent line is drawn at an inflection point
of the BIC existence curve then we will have �p ∼ �x3 [see
Fig. 16(b)] and consequently Q ∼ �x−6.

For instance, let us consider the example toy-model system
from Appendix B. BIC existence curve in the ε1/τ and ε0/τ

parameter space is presented in Fig. 15(c). In Fig. 16(c), we
reproduce this curve with several different paths of parameter
change. Path 1 is a secant line, path 2 is a tangent line at the
BIC merging point, path 3 is a tangent line at some other point
of the curve, and path 4 is tangent line at the inflection point
of the BIC existence curve. Figure 16(c) depicts dependence
of the Q-factor (inverse imaginary part of the effective Hamil-
tonian eigenvalue) on the natural parameter of these paths. As
expected, the parameters shift along the secant line provides
Q ∼ �x−2, shift along a tangent line results in Q ∼ �x−4

irrespective to a point, where a tangent line is drawn (whether
it is the BIC merging point or not), and finally, the parameters
shift along the tangent line drawn at the inflection point gives
Q ∼ �x−6.

FIG. 16. [(a) and (b)] Schematic view of the BIC existence curve
in the p1-p2 parametric space (thick) with tangent lines drawn at
some point of general position (a) and at an inflection point (b).
(c) BIC existence curve in the space of ε1/τ and ε0/τ parameters
of the toy-model system described in Appendix B with four different
paths: 1 – line intersecting the curve, 2 – tangent line at the BIC
merging point, 3 – tangent line at some point of general position, and
4 – tangent line at an inflection point. (d) Dependence of the Q-factor
(inverse imaginary part of the effective Hamiltonian eigenvalue) on
the natural parameter of the paths in the parameter space shown in
part (c).
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