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Pseudo electric field and pumping valley current in graphene nanobubbles
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The extremely high pseudo magnetic field emerging in strained graphene suggests that an oscillating nan-
odeformation will induce a very high current even without electric bias. In this paper, we demonstrate the
subterahertz (THz) dynamics of a valley current and the corresponding charge pumping with a periodically
excited nanobubble. We discuss the amplitude of the pseudo electric field and investigate the dependence of
the pumped valley current on the different parameters of the system. Finally, we report the signature of extra-
harmonics generation in the valley current that might lead to potential modern device development operating in
the nonlinear regime.

DOI: 10.1103/PhysRevB.108.195418

I. INTRODUCTION

An interesting and powerful property of graphene is its
ability to be stretched elastically up to 25%, and to con-
trol the induced strains in different ways [1,2]. In addition,
the unique coupling between mechanical deformation and
electronic structure along with the possibility of deformation
make graphene attract considerable attention [3,4]. This in-
terplay was examined by observing the Landau levels that
can form in graphene due to an induced strain [4]. Indeed,
deformed graphene (Fig. 1) can generate an effective gauge
field �A [4], to which one can associate a pseudo magnetic
field (PMF), �B = �∇ × �A. This stimulated pseudo magnetic
field would allow electrons to behave as if they were subjected
to a strong real magnetic field with strength a few orders of
magnitude higher than the one generated by superconducting
magnets [5].

Currently, there is great interest in generating and con-
trolling the valley degree of freedom of electrons in semi-
conductors. Indeed, the ability to manipulate valley electrons
can potentially enable advanced valley-resolved electronic de-
vices. In particular, this valley controllability opens up the
possibility of using the momentum state of electrons, holes,
or excitons as a completely new paradigm in information pro-
cessing [6]. Moreover, pure valley currents are interestingly
nondissipative currents with no accompanying net charge
flow, akin to pure spin currents [7]. This property is very use-
ful in seeking ultralow-power devices. Different routes have
been proposed for generating valley currents such as using
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quantum pumps with a Dirac gap [8], and using an electrically
induced Berry curvature in bilayer graphene [7].

In the quantum pumping technique, a cyclic change of the
ac voltage of the gates leads to the variation in the scattering
matrix of the device and the generation of a dc current [8].
This method of generating a charge dc current without bias
voltage between two electrodes [8,9] can be generalized to
account for the spin or even the valley degree of freedom. In
this paper, a time-dependent nanobubble in graphene, that can
be created by a time-dependent voltage of an atomic force
microscopy (AFM) tip, capacitively coupled to the device
[10], will be utilized as a quantum pumping device to examine
the possibilities of generating a nonzero valley current with a
zero net charge current. The deformation itself can be initially
created by different techniques such as corrugated substrate
engineering [11,12] or gas inflation [13].

The pseudo magnetic field associated with the deforma-
tion in graphene is valley dependent and changes its sign
between the two valley points K and K ′. This feature allows
the PMF to preserve time-reversal symmetry unlike a real
external magnetic field. Consequently, a time manipulation
of the PMF will induce different behavior for the K and K ′
electrons and thus a valley-resolved study of the current is
necessary [14]. It is worth mentioning that different studies
have looked at the effect of other dynamical strains on the
electronic transport. Reference [15], for example, considered
in-plane strain in a gapped graphene to induce a topologi-
cal current, Ref. [16] looked at the symmetry requirements
for pumping valley current, while Ref. [17] investigated the
pseudo quantum Hall regime due to strain. Other shapes or
mechanisms to get the valley filtering were also investigated
[18,19].
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FIG. 1. A mechanical deformation of a graphene sheet. The
bump which can have different shapes (spherical, Gaussian, etc.)
induces an out-of-plane stretching of the hoppings between neigh-
boring atoms.

II. MODEL

Graphene consists of carbon atoms, that are arranged in
a hexagonal honeycomb structure. This arrangement is a
triangular lattice with a basis of two atoms per unit cell
where the lattice vectors for this structure are a1 = a

2 (3,
√

3)
and a2 = a

2 (3,−√
3) (Fig. 2) and the constant a is the

carbon-carbon distance with value d0 ∼ 1.42 Å [21]. The
electronic structure of strained graphene is studied by utilizing
a first nearest-neighbor tight-binding model approximation,
H = −∑

〈i j〉 ti jc
†
i c j , where the sum runs over the nearest-

neighboring atoms. Figure 2 shows the semi-infinite graphene
system, where the plane waves are coming along the zigzag
direction from the left and right leads. Experimentally, the
deformation can be created in a graphene sheet by using an

FIG. 2. Tight-binding model for a quasi-one-dimensional (1D)
graphene system with zigzag edges. (a) shows the local deformation
as a local bump in the center of the graphene sheet, altering the
translational invariance of the quasi-1D waveguide. (b) shows a face
side of the Gaussian strain bump which is centered in the middle of
the system. The green links in the zoom of (c) represent the interface
through which the pumped current is calculated. The red parts in
(c) are the leads (reservoirs) that indicate that the system is infinite
in that direction. An animation sketching the system can be found in
the Supplemental Material [20].

FIG. 3. The color map indicates the threefold symmetric pseudo
magnetic field caused by the circularly symmetric Gaussian defor-
mation. The vector field illustrates the stimulated electric field by the
time-dependent pseudo-magnetic field. a is the lattice constant.

atomic force microscope’s tip [10,22,23]. In the presence of
a nanobubble the nearest-neighbor hopping parameters all be-
come different. Thus, the strain can be included in the system
by altering the hopping parameter to the strained bond length.
The adjustment of the hopping in the presence of the strain
can be described by

ti j = t0e−β(
di j
d0

−1)
, (1)

where t0 = 2.7 eV, and β = 3.37 for the graphene structure
[24]. di j represents the length of the strained lattice bonds
whereas d0 is the lattice constant in the absence of strain.

III. RESULTS

A. Pseudo magnetic field

In our model, the graphene out-of-plane deformation is
local with a characteristic width σ = 5 nm, a maximum height
h0 = 3.5 nm [3,4,25], and an overall Gaussian shape mod-

eled by z = h0e− x2+y2

2σ2 . In the limit of low-energy carriers,
the deformation is equivalent to an induced effective vector
potential given by [1] �A = − h̄β

2ea0
[(εxx − εyy)x − 2εxyy], where

the stress tensors εi j can be calculated by εi j = 1
2 [(∂iz)(∂ jz)].

A straightforward calculation leads to the following form of
the vector potential,

�A0 = −h̄β

ea0σ 4
z2[(x2 − y2)x̂ − 2xyŷ]. (2)

The corresponding pseudo magnetic field can be obtained by
�B0 = �∇ × �A0:

�B0 = 4h̄β

ea0σ 6
z2(y3 − 3x2y)z. (3)

The pseudo magnetic field shows alternating positive and neg-
ative regions in the deformation position as shown in Fig. 3.
This magnetic field is valley dependent and changes its sign
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between the high-symmetry points K and K ′ and is responsi-
ble for the valley filtering in graphene nanobubbles [3].

Using Eq. (1), we can demonstrate that the maximum
relative change in the hopping parameter is proportional to
βh2

0/σ
2. This implies that for a small deformation width σ ,

it becomes necessary to reduce the maximum height to re-
main within the constraints of stretchable graphene [1,2]. In
our particular case, a numerical examination of max(�ti j/ti j )
confirms that we are indeed within this specified limit.

B. Induced pseudo electric field

The dynamics of the charge carriers in graphene under a
dynamical external mechanical strain is a challenging prob-
lem. The generated frequencies of the perturbation project
into the sub-THz domain with reported frequencies up to
200 GHz [26]. We note in passing that such frequencies are
much smaller than the bandwidth of graphene. Therefore,
standard techniques such as Floquet theory [27–33] are hard
to apply, which makes a full numerical treatment necessary
and which will be the subject of our work. More interesting
is when the strain is a nanobubble exhibiting a few hundred
teslas pseudo magnetic field. Indeed, an oscillating bump
with a height h = h0 + δh(t ) will change the vector potential
to a new form �A = (1 + δh(t )

h0
)2 �A0. In the Weyl gauge, the

Maxwell equations show an induced pseudo electric field in
the limit δh(t )

h0
	 1, to the lowest order,

�E (x, y) = −2
δḣ(t )

h0

�A0, (4)

where the dot represents the time derivative. This result ac-
counts for the small perturbations due to a small amplitude in
the out-of-plane vibration of the nanobubble which allows us
to keep our interpretation within the linear response theory.
It is worth noting that although the pseudo magnetic field is
strong (hundreds of teslas), the induced electric field is only
a few kV/cm. This is mainly explained by the fact that these
large values of B0 are rather due to the large gradient of �A0

(variation on very short scales) than to its magnitude. The
pseudo electric field map is depicted in Fig. 3 where a three-
fold symmetry emerges and the system alternates between an
inward and outward pseudo electric field for the K and K ′
valleys.

C. Charge and valley currents

As in the case of charge pumping by the dynamics
of a skyrmion deformation [9,34] and spin pumping by
the precession of magnetic textures [35,36], an oscillating
nanobubble is expected to alter the charge density and in-
duce a charge/valley current through the interface between
the system and the lead [37]. To investigate this property,
we adopt a nanobubble oscillating at hundreds GHz with
δh(t ) = δh0 sin(ω0t + φ) with a height modulation strength
h0 = 3.5 nm, a characteristic width σ = 5 nm, and a pertur-
bation magnitude δh0 = 0.35 nm. The way to generate these
oscillations is unimportant at this stage but can be initiated
by a capacitively coupled atomic force microscope’s tip or a
laser on top of the strained part. The first step towards the cal-
culation of the charge current is to solve the time-dependent

FIG. 4. The generated currents through the interface shown in
Fig. 2. The two types of currents at K and K ′ are in phase and average
to zero. The charge current is obtained for h0 = 3.5 nm and δh =
0.35 nm. EF = 0.28t0. T is the period of oscillation of the bubble.

Schrödinger equation to obtain the wave functions at different
times and then calculate the different currents in the system
in one-body formalism [38,39]. It is important to mention
that a more accurate procedure involves an integration over
the different contributions from all energies in the Fermi sea.
This was safely avoided due to the small driving frequencies
(compared to the Fermi level EF = 270 meV) and the small
excitations considered in this study (h̄ω/EF 	 1). This re-
duces the needed numerical resources and keeps the problem
at the Fermi surface (similar to the case of the spin-pumping
theory). Figure 4 shows the result of the pumped charge cur-
rent Icharge = IK + IK ′ , which expectedly averages to zero as
explained by the scattering approach to parametric pumping.
Indeed, varying one parameter is not enough to generate a
sustainable charge current [9].

The frequency of the signal is the same as that of the
oscillating nanobubble. So far, these results look the same
as for the spin pumping of Ix, Iy, and Icharge in ferromagnets
(precessing around the z axis): zero average and the same
frequency as the driving perturbation. Since the pseudo elec-
tric field is valley dependent, the contribution coming from
each K point to the charge current is investigated and plotted
in Fig. 4. The two currents, IK and IK ′ , have amplitudes of
the same order of magnitude and both oscillate at the same
angular frequency ω0. The two currents are not exactly the
same, because for a Fermi energy slightly higher than zero, the
modes in the two different valleys are nonsymmetric and have
slightly different wave numbers. The valley current, which is
defined as Ivalley = IK − IK ′ , is of huge interest in low-energy
consumption devices. The reason behind it is that the net
charge transferred can be zero whereas at the same time the
valley current is not vanishing. This eliminates the dissipation
of energy as heat while transporting information through the
valleys’ degrees of freedom. The valley current is well de-
fined in the interface region (away from the bubble), because
the lead is uniform and the conducting modes (incoming
wave functions from the lead) do not mix. One has to compute
the time-dependent wave function for each mode, using the
TKWANT package [38,39], and identify the different modes
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FIG. 5. The valley current (a) and the charge current (b) pumped through an interface with the lead (see Fig. 2). The average of each of
them is zero. The charge oscillates at the same frequency as the nanobubble, whereas the pumped valley current shows higher-order harmonics.
The blue dots here represent the times at which the current maps were plotted in Fig. 7. T is the period of oscillation of the nanobubble.

in each valley. The contribution of each mode to the current
between sites a and b reads

Iab = i[ψ†
b(Hab)†ψa − ψ†

aHabψb], (5)

where ψa(b) is the wave function of a given mode at site
a(b). Hab is the matrix element between sites a and b (in our
case, it represents the hopping parameter between a and b in
graphene). The contributions of modes of a given valley are
summed together to finally express Ivalley. Inside the scattering
region, this procedure can still be used, but the current is not
exactly a pure valley current. Indeed, the scattering between
the valleys is possible, yet it remains small (the points K and
K ′ are far apart in the Brillouin zone) [14]. For this reason, the
approximation of the local current in the scattering region is
still valid [14]. Another approach is to project the wave func-
tions on the valley-resolved ones of pristine graphene [24].

Figure 5 shows the result for the valley current pumped
through the same interface. The average is again zero and the
amplitude is much smaller than that of the charge current. It
is most important to notice that the frequency of the Ivalley is
not exactly the same as that of the nanobubble. As we can see
in Fig. 6, the valley current exhibits a main frequency of 3ω0

with small contributions from ω0, 2ω0, and 5ω0. The appear-
ance of higher-order harmonics was recently reported for spin
pumping in the presence of a spin-orbit interaction [40] or in
the presence of a noncollinear magnetic structure [41]. In our
case, none of the discussed causes in Refs. [40,41] are present
in our system. The charge and valley pumping depend on the
parameters of the system. As we can see from the expression
of the pseudo electric field, the latter is proportional to the
perturbation δh0

h0
. Naturally, this is expected to be the same

for the charge and valley currents. Figure 6(b) shows the
amplitudes of the Icharge and Ivalley which are clearly linearly
varying with the change δh0

h0
. For stronger perturbations, higher

nonlinear effects are expected to manifest. Another way to
increase the different pumped currents is to play with the
frequency and use a THz spectrum. This is a challenging
task, but very promising results suggest that this projection is
reachable [26]. The zero average of the valley current makes
it very difficult to exploit in devices since no accumulation
can be obtained and only oscillating current redistribution of
the valleys is achieved. With proper engineering, we still can
think of it as the basis for a potentially different field-effect
transistor [42].

FIG. 6. (a) The Fourier transform of the calley current. The signal exhibits higher-order frequencies (multiple of ω0). (b) The blue curve
shows the amplitude of the pumped electric current vs the amplitude of the bump oscillation. The green curve shows the amplitude of the valley
current vs the amplitude of the bump oscillation. h0 = 3.5 nm, σ = 5 nm, and the Fermi energy is EF = 270 meV. The width of the system is
W = 50 nm.
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FIG. 7. The current map of the pumped charge current (top) and the valley pumped current at different times for six modes with EF =
0.07t0. The nanobubble size is σ = 5 nm and the height δh0 = 0.1h0. The position is expressed in nm. The times at which the maps are plotted
are inside one period of oscillation and increase from left to right (the four different phases of an oscillation). The blue dots in Fig. 5 show the
time where the maps are plotted. (For these figures, the time increases from left to right.)

D. Local currents

Since the pseudo electric field is local and mainly appears
in the central system, investigating the current at different
regions than the interface with the lead might be of great
interest. The plot of the current map will show how the regions
of the maximum pseudo magnetic field influence the current
direction and generation. The wave functions are calculated at
all sites of the systems which allows us to express the local
currents. Figure 7 illustrates the map obtained at different
times during one period. The current lines for the charge
and the valley are symmetric, which is just the reflection
of the symmetry of the Gaussian bump considered in this
work. This will be different if a triaxial strain was adopted.
In fact, it is known that a Gaussian deformation filters the
valleys whereas the triaxial one splits them [3]. The Fermi
energy is chosen low to reduce the number of modes due
to the limited computing resources in this kind of 2D maps
(current is calculated between each of two links, at each time)
and this does not change the general conclusions. The maps
for the valley current and the charge current are intrinsically
different: For the charge current, it is hard to see the positions
of the valley-dependent maxima of the pseudo magnetic field.
The situation is different for the valley current. We clearly
notice loops of different orientations showing the dependence
of the pseudo magnetic field on the valley of the carriers. The
size of the current’s loops can be changed via the parameter
σ , i.e., creating very peaked bumps or smoothly varying ones
over a larger region. The number of modes for the chosen
Fermi energy is very small. In order to increase the current,
one needs to increase it either by changing the width of the
system or by increasing the Fermi energy.

It is worth mentioning that we did investigate deformations
with elliptical symmetry, deliberately tilting them to disrupt
left-right symmetry. Unfortunately, this approach did not lead
to a sustained average valley current.

IV. CONCLUSION

The pseudo magnetic field generated by a strained
graphene sheet was analyzed. In the presence of a time-
dependent oscillating strain, a corresponding pseudo electric
field is stimulated, giving rise to a redistribution of the quan-
tum states in momentum space, leading to charge and valley
pumping. We demonstrated that the valley current exhibits
extra harmonics and that, on average, the pseudo electric field
did not sustain a direct current, but rather a zero average was
obtained. This work opens the door to further interesting stud-
ies such as a pseudo electric field generated by the propagation
of mechanical waves in graphene or the distribution of local
electric currents due to phonons and temperature effects on
graphene.
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