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On-chip ac driving for dual Shapiro steps
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A single Josephson junction in the phase-slip regime exhibits Bloch oscillations in the voltage when biased
with a dc current Idc. The frequency of the oscillation is given by π Idc/e, with e the elementary charge, linking
the current to the frequency via fundamental constants of nature. If an additional ac drive is applied, the Bloch
oscillations may synchronize with the external drive. This leads to the emergence of dual Shapiro steps at fixed
current in the IV characteristics of the device. For applications as a current standard, frequencies of the order of
10 GHz are required. These are challenging to implement experimentally without detrimental effects due to stray
capacitances. Here, we propose to employ an additional Josephson junction with a dc voltage bias as an on-chip
ac source due to the ac Josephson effect. We study the back action of the Bloch oscillations on the Josephson
oscillations and identify a parameter regime in which it is minimized. Furthermore, we find that the back action
can even be utilized to further enhance the driving signal, which can lead to increased widths of the resulting
dual Shapiro steps. Finally, we show dual Shapiro steps for a set of realistic experimental parameters at finite
temperatures.
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I. INTRODUCTION

A small Josephson junction in the phase-slip regime [1–5]
exhibits Bloch oscillations that relate current to frequency
with Idc = eωB/π [6,7]. When synchronized to an external ac
drive, Bloch oscillations can be used to create dual Shapiro
steps in the IV characteristics at constant current. These steps
are of interest in the field of quantum metrology as they
provide a current standard only based on frequency and fun-
damental constants. In this way, they have the potential of
closing the last missing link in the quantum metrology triangle
[8]. The voltage standard [9] is dual to this as it employs the
voltage oscillations created by the ac Josephson effect [10] to
create Shapiro steps [11].

Compared to Josephson oscillations, Bloch oscillations are
more demanding to realize experimentally as they suffer from
a loss of coherence due to Landau-Zener tunneling [12,13]
and as they need a high-impedance environment [14,15]. The
latter can be understood as a consequence of the circuit duality
transforming the regime of localized fluxes to a regime of
localized charge [16]. Note that an external ac drive required
for dual Shapiro steps is difficult to combine with the need of
a high-impedance environment as the biasing lines introduce
stray capacitances that shunt the phase-slip junction, reducing
the impedance of the environment [17,18].

Attempts to mitigate this problem rely on on-chip
impedances, which can be realized either by a large resis-
tance [7] or a superinductance [5,18–21]. While the former
approach introduces additional heating and strong thermal
fluctuations, the latter has proven to be viable and enabled first
experimental demonstrations of dual Shapiro steps [22,23].

In this paper, we present an approach to produce dual
Shapiro steps that does not rely on an external ac drive. We
propose a circuit, first analyzed in Ref. [24], which is able to
generate the required ac driving voltage on chip by using the

ac Josephson effect. The approach is similar to the synchro-
nization of Bloch oscillations [25]. However, an important
difference is the fact that the coherence of Josephson oscilla-
tions is not limited by Landau-Zener tunneling. This allows
us to use the Josephson oscillations as a more rigid drive
signal instead of relying on a mutual synchronization with a
small dc bias on both junctions. We study the effect the back
action of the Bloch oscillations on the Josephson oscillations
and identify the parameter regime where the back action is
negligible. We investigate the effects of a finite back action
numerically. We show that the back action can increase the
width of the dual Shapiro steps. We identify realistic circuit
parameters for the observation of dual Shapiro steps and show
their robustness towards thermal noise.

II. CIRCUIT SETUP

The simplest circuit to realize Bloch oscillations is a phase-
slip junction connected in series with a resistance R and a dc
bias voltage V0, see Fig. 1. In the quasiclassical regime, with
R � RQ = h/4e2 = 6.45 k�, the quantum fluctuations of the
charge operator Q̂ in the loop are below the charge 2e of a
Cooper pair. Therefore, the Heisenberg equation of the charge
is well approximated by the equation of motion

V0 = RQ̇ + Vc sin(πQ/e) (1)

of the expectation value Q = 〈Q̂〉, where Vc is the critical
voltage of the phase-slip junction [18]. The characteristic rate
ωR = πVc/eR of the equation corresponds the RC time of the
linearized capacitance of the phase-slip junction. For a given
dc bias V0, the frequency of the Bloch oscillations ωB is given
by

ωB = ωR

√
(V0/Vc)2 − 1. (2)

2469-9950/2023/108(19)/195416(6) 195416-1 ©2023 American Physical Society

https://orcid.org/0000-0002-8903-3903
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.195416&domain=pdf&date_stamp=2023-11-13
https://doi.org/10.1103/PhysRevB.108.195416


DAVID SCHEER AND FABIAN HASSLER PHYSICAL REVIEW B 108, 195416 (2023)

FIG. 1. Circuit consisting of an overdamped phase-slip junction
(gray box in the upper branch) and an overdamped Josephson junc-
tion (gray box in the lower branch). These elements are connected
by an LC resonator acting as a transconductance. Note that both the
current I0 and the voltage V0 are solely dc biased.

The dual circuit that realizes Josephson oscillations is also
shown in Fig. 1. For a given bias current I0, its equation of
motion for the node flux �

I0 = G�̇ + Ic sin(π�/eRQ), (3)

is dual to Eq. (1) with a critical current Ic and a conductance
G � R−1

Q . The relevant rate ωG = 2eIc/h̄G corresponds to an
RL time for a linearized Josephson junction. The frequency
of the dual Josephson oscillations is determined by the bias
current I0 according to

ωJ = ωG

√
(I0/Ic)2 − 1. (4)

We are interested in the synchronization of these oscillations
that appears when their frequencies match with ωB = ωJ . The
ratio ωR/ωG thus determines the required biases V0, I0. The
regime where a rigid Josephson oscillation in the lower branch
drives the Bloch oscillations in the upper branch demands
ωR � ωG such that I0 � Ic while V0 � Vc. For a Josephson
junction in the phase-slip regime, the latter condition assures
that Landau-Zener tunneling into higher-energy bands is sup-
pressed [12,18].

The two elementary circuits are coupled via an LC res-
onator that acts as a transconductance, see Fig. 1. This circuit
has been analyzed in the context of the mutual synchro-
nization of two conjugate quantum variables [24]. Here, we
investigate the regime where the Josephson oscillations take
the role of a rigid ac driving signal. The coupled circuits in
the overdamped regime obey a set of equations of motion

I0 = G�̇ + Ic sin(π�/eRQ) + CV̇C, Q̇ = IL + CV̇C,

V0 = RQ̇ + Vc sin(πQ/e) + LİL, �̇ = VC − LİL, (5)

where IL is the current through the inductance L and VC is
the voltage across the capacitance C. Note that even though it
connects two circuits that are dual to each other by a self-dual
element, the circuit is not self-dual, which is reflected in the
negative sign in the last equation of Eqs. (5).

The relevant scales for current and voltage are set by the
critical voltage Vc and the critical current Ic, which give rise to
a natural resistance scale Rc = Vc/Ic. We describe the effect of
the LC oscillator by the characteristic impedance Z0 = √

L/C
and the resonance frequency ω0 = 1/

√
LC. In addition to

the resonance frequency, the LC resonator introduces new

relaxation timescales for the Bloch oscillation: an RL time
τL = L/R in the upper branch and an RC time τC = C/G from
the connection to the lower branch.

In order to produce dual Shapiro steps, the ac Josephson
oscillations should function as a rigid drive signal. For this
the displacement current � CV̇C that is coupled out of the
lower branch should be small compared to bias current I0,
i.e., CV̇C � I0. In this regime, the dominant contribution of
the phase ϕ = π�/eRQ increases linearly in time with ϕ =
(I0/Ic)ωGt + ϕ1, where ϕ1 is a small correction ϕ̇1 � ωGI0/Ic.
As a result, the equation for the Josephson circuit simplifies to

sin ωJt + ϕ̇1

ωG
+ CV̇C

Ic
= 0, (6)

with ωJ ≈ ωGI0/Ic.
Using the Fourier-transformed equations of motion, we are

able to integrate the other degrees of freedom of the circuit to
derive an effective equation of motion for the dimensionless
charge q = πQ/e on the phase-slip junction. If the frequency
of the Josephson oscillations matches the resonance frequency
of the LC resonator ωJ = ω0, the effective equation of motion
is given by

V0

Vc
− Z0

Rc
cos ω0t = q̇

ωR
+ sin q + F (q, t ) (7)

with a term

F (q, t ) = τL

ωR

∫
dω

2π

1 − iωτC

1 − iωτC − ω2/ω2
0

(q̈)ωe−iωt (8)

that describes the modification of the drive by the back action
from the Bloch oscillations onto the Josephson oscillations
with (q̈)ω = ∫

q̈(t )eiωt dt . Up to the back-action term, the
resulting equation corresponds to that of an overdamped
phase-slip junction with a dc bias and an ac driving voltage
of strength Z0/Rc. Note that the resonance condition is only
used to obtain the maximal driving strength and has no effect
on the form of the back-action term.

As shown in Appendix, the back action F (q, t ) is sup-
pressed in the regime ω0τL � 1 and τL � τC . The first
condition, equivalent to Z0 � R, can be understood by think-
ing about the current divider in the upper branch; it ensures
that the current propagating from the Josephson part of the cir-
cuit mainly goes through the inductance realizing an effective
ac voltage in the upper loop. The second condition τL � τC

compares the relaxation timescales of currents remaining in
the upper branch and currents going into the lower branch. If
the upper branch is much faster to adapt to changes than the
lower branch, the dynamics of the Josephson oscillations es-
sentially decouple from the dynamics of the Bloch oscillations
rendering them a stable ac voltage source.

In the regime of large driving frequencies ωJ = ω0 � ωR

and small effective driving strengths Z0/Rc � 1 the dual
Shapiro steps with suppressed back action have a width �V
of

�V

Vc
= ωRZ0

ω0Rc
+ O

(
ω2

R/ω2
0

)
, (9)

as we derive in Appendix. This result is in agreement with the
result for a rigid external drive of strength Z0/Rc [26].
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FIG. 2. Width of the dual Shapiro steps for the full model (solid)
and for the reduced model without back action (dashed) for ω0/ω̄ =
10, ωR/ωG = 100, and ω0τC = 10. We show the numerical results
for the first dual Shapiro step for Z0/Rc = 5 with ω0τL = 0.01 in
(a) and ω0τL = 2 in (b). For ω0τL = 0.01 no effect of the back
action is visible whereas the back action is important for ω0τL = 2.
We investigate the effect of the back action (ω0τL = 2) further in
(c), where we provide the width of the first dual Shapiro step for
different effective driving strengths Z0/Rc. We see that the back
action increases the width for Z0/Rc between 3 and 8. Moreover, in
particular around Z0/Rc = 4, the back action leads to multiple kinks
that originate from a competing synchronization step at half the target
frequency.

III. SIMULATION OF DUAL SHAPIRO STEPS

Due to the nonlinearities in Eqs. (5), it is difficult to gain
analytical insights into the width of the dual Shapiro steps
that go beyond perturbation theory for small driving strengths
given above. Since we expect the largest steps outside this
regime, it is crucial to perform a numerical analysis of the
problem to find optimal parameters for an experimental im-
plementation of our proposal.

Measuring the currents (voltages) in units of Ic (Vc),
our circuit in the quasiclassical regime is described by the
five dimensionless parameters Z0/Rc, ω0/ω̄, ω0τL, ω0τC , and
ωR/ωG, where we introduced the rate ω̄ = √

ωRωG, given
by the geometric mean of the characteristic rates in the two
subcircuits. In order to simulate the IV characteristic of
the upper branch, we set the bias current (producing an ef-
fective ac drive) in the lower branch to I0 = Icω0/ωG. This
choice of bias current assures that the Josephson oscillations
are on resonance with ωJ ≈ (I0/Ic)ωG = ω0. We record the dc
current Idc = ∫ τ

0 Q̇dt/τ , τ → ∞, across the upper branch for
a sweep of the bias voltage V0. We integrate the equations of
motion Eqs. (5) using the forward Euler method with discrete
time steps of size δ = 5 × 10−4/ω̄ in order to resolve all the
relevant timescales of the circuit.

In Fig. 2, we compare the dual Shapiro steps arising in the
full circuit with steps resulting from the effective model in
Eq. (7) without the back-action term, i.e., with F ≡ 0, for

FIG. 3. Dual Shapiro steps at ω0/ω̄ = 4, ω0τC = 0.04, and
ω0τL = 0.004 for varying Z0/Rc and ωR/ωG. For increasing ωR/ωG,
the position of the step is moved closer to the region of the Coulomb
blockade. This increases the sensitivity of the steps to the effective
driving strength Z0/Rc and decreases the bias voltage required to
create the steps.

the parameters ω0/ω̄ = 10, ωR/ωG = 100, and ω0τC = 10.
The IV characteristic for Z0/Rc = 5 with ω0τL = 0.01 is de-
picted in Fig. 2(a) where the effect of back action is small.
In Fig. 2(b), we show that for ω0τL = 2 the back action is
relevant. In particular, with the back action, the dual Shapiro
step is wider and pronounced subharmonic steps occur that
are discussed in detail in Ref. [24]. In order to investigate the
effect of the back action in more detail, Fig. 2(c) shows the
comparison of the step width �V with and without the back
action for varying Z0/Rc. In particular, we see that for Z0/Rc

between 3 and 8, the back action is favorable and increases
the width of the first dual Shapiro step. Note, however, that
presently it appears experimentally rather difficult to realize
circuits with ω0τL � 1 that feature an appreciable effect due
to the back action while still remaining in the quasiclassical
regime. The reason is that quasiclassics demands that R � RQ

while ω0τL � 1 corresponds to Z0 � R. Presently, Z0 is at
most of order k� such that the regime with enhanced back
action cannot be realized for any R.

To understand the effects of the effective driving strength
Z0/Rc and the ratio of the characteristic rates ωR/ωG, we
investigate the behavior of the circuit for parameters ω0/ωR =
4, ω0τC = 0.04, and ω0τL = 0.004. In Fig. 3, the IV charac-
teristics for different values of Z0/Rc and ωR/ωG are depicted.
The curves exhibit an increased step width at a lower voltage
bias with increasing Z0/Rc and ωR/ωG. In Fig. 4, we show
the resulting step widths as a function of Z0/Rc and ωR/ωG.
At a fixed ratio ωR/ωG, the step widths exhibit oscillations
in the effective driving strength Z0/Rc similar to Fig. 2(c).
Note that the period of oscillation decreases for increasing
ωR/ωG. The reason for this is that at ωR � ωG, the dual
Shapiro steps are more sensitive to the amplitude of the ef-
fective driving as they appear closer to the Coulomb blockade
region of the phase-slip junction where the nonlinearity is
important.
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FIG. 4. Width of the first dual Shapiro step for varying Z0/Rc

and ωR/ωG with the parameters of Fig. 3. At constant ωR/ωG, the
step width oscillates in the effective driving strength Z0/Rc with
faster oscillations for increasing ωR/ωG. While the slow oscillations
at small ωR/ωG allow for more stable steps with regard to an im-
precise impedance, the impedance required for a visible step is also
increased.

IV. DISCUSSION OF REALISTIC
EXPERIMENTAL PARAMETERS

When trying to observe dual Shapiro steps in an ex-
perimental setup, there are two major effects that lead to
incoherent Bloch oscillations and therefore impair their ability
for synchronization. The first is the occurrence of Landau-
Zener tunneling into higher bands of the Josephson junction
in the phase-slip regime that invalidates the model of adiabatic
ground-state transport used for the description as a circuit
element. When the current through the junction becomes too
large, these processes can no longer be neglected. For a typ-
ical junction with Vc = 50μV, Landau-Zener tunneling can
be neglected at a current much smaller than 20 nA [12].
Therefore, the resonance frequency of the oscillator should
fulfill eω0/π � 20 nA. The second effect is the thermal fluc-
tuations that lead to Nyquist-Johnson noise originating from
the biasing resistors, which limits the stability of the voltage
and current bias. In our simulations, we implement the ther-
mal fluctuations at a temperature T as Gaussian white noise
increments with strength 2RkBT/

√
δ (2GkBT/

√
δ) added to

the bias voltage (current).
Figure 5 shows dual Shapiro steps at varying temper-

atures for experimentally realistic circuit parameters given
by L = 0.01 μH, C = 100 fF, R = 50 k�, G = 0.1 S, Ic =
0.1 μA, and Vc = 50μV [27]. These circuit parameters cor-
respond to Z0/Rc ≈ 0.6, ω0/ω̄ ≈ 4, ω0τC ≈ 0.04, ω0τL ≈
0.004, and ωR/ωG ≈ 6.5, cf. Fig. 3. In this regime, the effect
of back action is small and the step height is approximately
given by �V/Vc ≈ ωRZ0/ω0Rc ≈ 0.4, see Eq. (9). The sim-
ulation shows a clearly visible first dual Shapiro step that
gets smeared out at finite temperature. The resulting on-step

FIG. 5. First dual Shapiro step for realistic circuit parameters
given by L = 0.01 μH, C = 100 fF, R = 50 k�, G = 0.1 S, Ic =
0.1 μA, and Vc = 50 μV with a resulting on-step current of 1.6 nA.
The dimensionless parameters are the same as in Fig. 3 with
ωR/ωG = 6.5 and Z0/Rc = 0.6 (corresponding to the dashed orange
line in the center panel). Note that even though the back action is
small it renders the dual Shapiro step is more robust against thermal
noise compared to the case without back action (inset).

current is given by 1.6 nA, which indicates that Landau-Zener
tunneling is not yet a relevant factor.

V. CONCLUSION

In conclusion, we have analyzed the emergence of dual
Shapiro steps in a circuit that uses Josephson oscillations to
drive a phase-slip junction via a transconductance build by an
LC resonator. Our setup only requires dc wiring to produce
dual Shapiro steps. We described the system by a set of cou-
pled equations of motion neglecting the influence of the higher
bands of the Josephson junction in the phase-slip regime. In
the regime of a large current bias I0 � Ic, we derived an
effective model for the charge dynamics of the phase-slip
junction. Up to a back-action term, this model is equivalent to
an overdamped phase-slip junction with an external ac drive
of strength Z0/Rc. In the experimentally relevant regime of
Z0 � R and τL � τC , the back action is suppressed. As a
result, our setup realizes a rigid ac drive without the need
for external ac biasing lines. A numerical analysis of the first
dual Shapiro step outside this regime shows that a finite back
action can lead to enhanced step widths as well additional sub-
harmonic synchronization steps. Finally, we presented a set
of realistic experimental parameters that yield a dual Shapiro
step at 1.6 nA, which is robust to thermal Nyquist-Johnson
noise at temperatures up to 75 mK. Note that for metro-
logical applications, the Josephson oscillations do not offer
the required long-term phase stability. This problem can be
remedied using the well-known voltage standard, which relies
on the use of regular Shapiro steps in the lower circuit [9]. The
phase-stable external drive can then be applied to the low-
impedance Josephson part of the circuit circumventing the
problem of impedance matching and parasitic capacitances
for the Bloch circuit. Throughout this work, we have neglected
the effects of Landau-Zener tunneling, which is valid for small
currents. A detailed analysis of these effects, which become
important for elevated currents, is an important question for
future research.
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APPENDIX: REALIZING AN EFFECTIVE AC DRIVE

In this Appendix, we examine the dynamics of the charge
in the phase-slip junction described by Eq. (7). We consider
the regime of large driving frequencies ωJ = ω0 � ωR, where
we analyze the emergence of dual Shapiro steps with the
added effects of back action on the driver described by Eq. (8).
We solve the equation of motion by making an ansatz q(t ) =
q0(t ) + q1(t ) based around Bloch oscillations at the frequency
ω0 without back action or ac drive [26]

q0(t ) = 2 arctan

{
ω0√

ω2
0 + ω2

R − ωR

tan

[
1

2
(ω0t + θ0)

]}
.

(A1)
We allow θ0 to be time dependent but assume that it is slow
on the scale of ω0. We add a small perturbation

q1(t ) = A1 Re [e−i(ω0t+θ1 )], (A2)

with amplitude A1 > 0 and phase θ1 as a linear response to the
driver with A1 � 1. This ansatz allows us to separate Eq. (7)
into a couple of equations

Ṽ0

Vc
= 1

ωR
q̇0 + sin q0, (A3)

�Ṽ0

Vc
= 1

ωR

(
θ̇0

ω0
q̇0 + q̇1

)
+ q1 cos q0 + Z0

Rc
cos ω0t

+ F (q0, t ), (A4)

where we split the bias voltage V0 into two parts, V0 = Ṽ0 +
�Ṽ0. The main part Ṽ0 = Vc

√
ω2

0/ω
2
R + 1 leads to Bloch os-

cillations at frequency ω0 as the solution to Eq. (A3). The
deviation �Ṽ0 from this dc bias must be compensated by
the remaining terms collected in Eq. (A4), which are small
enough to still preserve the Bloch oscillations. In the case of
slow θ0, the main dc contribution originates from the term
q1 cos q0, which allows a down conversion of the linear re-
sponse to a dc voltage.

In order for the charge dynamics in the circuit to match
the dynamics of an overdamped phase-slip junction with a
rigid ac drive, the back-action term F (q0, t ) must only give
a small contribution. The back-action term can only contain

frequencies that are already present in q̈0, which are the
integer multiples of ω0, where the connecting LC resonator
suppresses the off-resonant higher-order contributions. In the
regime ω0 � ωR, the contributions at kω0 are further sup-
pressed by (ωR/ω0)k in q̈0 itself. The resulting back action
is given by

F (q0, t ) = − τL

τC
{Re[(ω0τC − i)e−i(ω0t+θ0 )] + O(ωR/ω0)},

(A5)
which is a small contribution in the regime of ω0τL � 1 and
τL � τC . The back action modifies the ac drive on the system
with the dominant correction in phase with the driving term.
This yields a modified driving amplitude of

Ṽ (θ0)

Vc
= Z0

Rc
− τL

τC
(ω0τC cos θ0 + sin θ0), (A6)

that is dependent on the phase of the Bloch oscillations.
Next, we average Eq. (A4) for frequencies close to 0 and

ω0. We obtain the conditions

�Ṽ0

Vc
= θ̇0

ωR
+ A1

2
cos(θ0 − θ1),

A1e−i(θ1−π/2) = ωR

ω0

[
Z0

Rc
− τL

τC
(ω0τC cos θ0 + sin θ0)

]
,

(A7)

up to terms of O(ω2
R/ω2

0 ). To calculate the width of the first
dual Shapiro step, we set θ̇0 = 0, which corresponds to a
synchronization with the drive. The step corresponds to the
region

− ωR

2ω0

(
Z0

Rc
+ τL

τC

)
� �Ṽ0

Vc
� ωR

2ω0

(
Z0

Rc
− τL

τC

)
, (A8)

where the change in the dc bias can be compensated by a
phase locking between the drive and the Bloch oscillations,
which yields a step of width

�V

Vc
= ωRZ0

ω0Rc
+ O

(
ω2

R/ω2
0

)
, (A9)

as in the case of a rigid ac drive [26]. While the step width
remains unchanged by the back action, the position of the step
is shifted by

δV

Vc
= − ωRτL

2ω0τC
+ O

(
ω2

R/ω2
0

)
. (A10)

Overall, the circuit realizes the model of a rigid ac drive with
a small correction to the position of the first dual Shapiro
step in the regime of large driving frequencies and a short RL
timescale τL in the upper branch of the circuit.
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