
PHYSICAL REVIEW B 108, 195413 (2023)

Numerical and theoretical study of eigenenergy braids in two-dimensional photonic crystals
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We consider non-Hermitian energy band theory in two-dimensional systems, and study eigenenergy braids on
slices in the two-dimensional Brillouin zone. We show the consequences of reciprocity and geometric symmetry
on such eigenenergy braids. The point-gap topology of the energy bands can be found from the projection of the
eigenenergy braid onto the complex energy plane. We show that the conjugacy class transition in the eigenenergy
braid results in changes in the number of bands in a complete point-gap loop. This transition occurs at exceptional
points. We numerically demonstrate these concepts using two-dimensional reciprocal and nonreciprocal photonic
crystals.
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I. INTRODUCTION

A distinct feature of non-Hermitian band theory is the
eigenenergy braiding, where the complex eigenenergies form
braids as the momentum varies along a one-dimensional
(1D) loop trajectory [1,2]. For 1D systems, the eigenenergy
topology of separable energy bands is completely classi-
fied by the braid group that describes these braids as the
momentum varies across the 1D Brillouin zone [3–5]. For
two-dimensional (2D) systems, the eigenenergy topology can
also be classified by studying the relationships between the
braids along different 1D loops in the 2D Brillouin zone [6–9].

Eigenenergy braiding is intimately connected to the study
of exceptional points. Exceptional points are points of degen-
eracies where both the eigenenergy and eigenvectors coalesce
[10,11]. They are unique to non-Hermitian systems and have
found potential applications in areas such as sensing [12],
lasing [13], and mode conversion [14]. A 2D band structure
may exhibit exceptional points within the Brillouin zone.
These exceptional points have to appear in pairs, and they are
connected by branch cuts in the energy band structure [11].
A consequence of this branch-cut structure is that encircling
an exceptional point leads to a permutation of eigenenergies
[14]. Therefore, there is a direct connection between the
exceptional points and the braids [15,16] of eigenenergies
as the momentum varies along various loops within the first
Brillouin zone. Other aspects of the connection between
exceptional points and eigenenergy braids have been dis-
cussed in Refs. [4,6–9,17,18].

Eigenenergy braiding also has important connections to
point-gap topology, which is another important topologi-
cal feature of non-Hermitian band structures [1,19,20]. In
a 1D system, point-gap topology refers to the winding of
the energy eigenenergies in the complex energy plane with
respect to a reference energy, as the wave vector varies across
the 1D Brillouin zone [1,20]. A nontrivial winding number
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implies a nontrivial point-gap topology. A key consequence
of a nontrivial point-gap topology in the band structure is the
non-Hermitian skin effect. Both the point-gap topology and
the non-Hermitian skin effect have been extensively discussed
in the literature [1,20–24]. In this paper, we will discuss some
of the connections between the transition in braiding behav-
iors and the changes in the point-gap topology.

Eigenenergy braids in 1D band structures have been exper-
imentally demonstrated using synthetic frequency dimensions
in a system consisting of ring resonators [25]. More gener-
ally, eigenenergy braids formed by varying certain parameters
of the systems other than momentum have been experimen-
tally studied in systems including cavity optomechanics [26],
trapped ions [27], mechanical oscillators [28], and acoustics
[18,29,30]. Most previous work for eigenenergy braids in
energy band structures relies upon the use of tight-binding
models. In this paper, we study the behaviors of eigenen-
ergy braids in the band structure of 2D photonic crystals. A
2D photonic crystal represents an experimentally accessible
and technologically relevant platform for the study of band
theory [31]. Moreover, the photonic crystal system differs
from the experimental platforms as discussed above in that
its band structures are usually not well described by standard
tight-binding models [32]. Our study here of photonic crystals
therefore highlights general aspects of the eigenenergy braids
that depend on the symmetry of the system and the geometry
of the Brillouin zone only. These symmetries are well studied
using photonic crystals [33–36] and do not rely upon some of
the specific features of commonly used tight-binding models,
such as the presence of only a finite number of bands or the
limited spatial range of coupling. We also note that more
complicated, multiband structures with multiple exceptional
points at various energies and momenta naturally arise in
photonic crystal systems [37]. The study of photonic crystal
band structure therefore enriches the understanding of braid-
ing behaviors in the band theory, by providing an experimental
platform to achieve complex symmetry and conjugacy classes
of eigenenergy braiding [38,39] that can only be observed in
multiband models.

2469-9950/2023/108(19)/195413(11) 195413-1 ©2023 American Physical Society

https://orcid.org/0000-0002-2196-4656
https://orcid.org/0000-0002-2154-8417
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.195413&domain=pdf&date_stamp=2023-11-13
https://doi.org/10.1103/PhysRevB.108.195413


ZHONG, WOJCIK, CHENG, AND FAN PHYSICAL REVIEW B 108, 195413 (2023)

While nearly all studies on eigenenergy braiding in 2D
systems focus on contractible loops encircling exceptional
points [6–9], here we focus on the eigenenergy braids on
straight-line slices ky = mkx + ϕ for rational gradient m and
offset ϕ in the first Brillouin zone of a 2D system. Below
we refer to these straight-line slices simply as slices. Note
that these slices are also closed loops due to the periodicity
of the Brillouin zone. Eigenenergy braids on these Brillouin
zone slices may be easier to probe experimentally than those
on contractible loops around exceptional points. Point-gap
topology for bands on these slices is also directly related to
the geometry-dependent skin effect [40,41]. We show that
the conjugacy class of eigenenergy braids on slices can only
undergo a phase transition at exceptional points and we dis-
cuss the connection of such transition to change in features of
the point-gap topology.

The rest of the paper is organized as follows. In Sec. II, we
review the relevant aspects of braid theory and how it applies
to 1D and 2D non-Hermitian band structures. We describe
properties of the eigenenergy braids and the connections to
exceptional points in 2D systems for Brillouin zone slices. We
then show the connection between the eigenenergy braids and
point-gap topology. In Sec. III, we provide examples of the
theory using numerical calculations of band structures for 2D
reciprocal and nonreciprocal photonic crystals. We conclude
in Sec. IV.

II. THEORY

A. Basics of braid theory

We first discuss some basics of braid theory. An N-strand
braid consists of N strands in the three-dimensional (3D)
space (Re(ω), Im(ω), z) ∈ C × [0, 1). The N strands do not
touch, the set of end points at z = 0 and 1 is fixed, and each
strand intersects each plane C × {z} at only one point [42].
Another way to think of braids is as the time history of the
motion of noncolliding particles in 2D space (Re(ω),
Im(ω)) ∈ C where z plays the role of time. Two braids γ and
γ ′ are equivalent if they can be deformed into each other with-
out breaking or intersecting any of the strands while keeping
the end points fixed. The notion of equivalence in braids can
be defined more precisely as an ambient isotopy [16].

A visualization of braids can be obtained by projecting
the 3D braid in C × [0, 1) to the plane R × [0, 1). Typi-
cally, the projections from (Re(ω), Im(ω), z) onto (Re(ω), z)
and (Im(ω), z) are convenient choices. Figure 1(a) depicts
an example of a braid projected to the (Re(ω), z) plane. A
crossing is depicted by the strand underneath having white
spaces just before and after the intersection. For an N braid,
we can introduce a set of generators {σ1, σ2, . . . , σN−1} (called
Artin generators [15]) to describe its projection. Typically, we
number the strands 1 to N chronologically along the R axis.
Here, we define σi to be an overcrossing from the ith to the
(i + 1)th strand, and σ−1

i defines an undercrossing from the
ith to the (i + 1)th strand. σ−1

i is the inverse operation of σi

[16]. A braid can be described by multiplying these generators
to form an Artin braid word. In Fig. 1(a), the braid operations
are read from bottom to top, so this braid is represented by the
braid word γ = σ−1

2 σ4σ
−1
1 where the order of multiplication

FIG. 1. (a) Example of a projection of an eigenenergy braid to the
2D (Re(ω), z) plane. (b) Example of a point-gap loop corresponding
to the eigenenergy braid in (a). (c) Slices in the 2D Brillouin zone.
(d) Three Brillouin zone slices that correspond to inequivalent braids.
The filled and unfilled dots are opposite charged exceptional points
and the magenta and orange lines are branch cuts.

in the braid word is left to right. These generators also have
the following relations:

σiσ j = σ jσi, |i − j| > 1, (1)

σiσ jσi = σ jσiσ j, |i − j| = 1. (2)

B. Braids in 2D non-Hermitian band structures

We now discuss how braid theory can be applied to non-
Hermitian band structures. A single energy band ω(k) in
one dimension can be regarded as a strand of a braid in the
(Re(ω), Im(ω), k) space as the momentum k is restricted to
the first Brillouin zone [0, 2π ). We define two bands to be
separable if their strands do not intersect, i.e., there is no
degeneracy at any k. Moreover, as the momenta at the two
ends of the Brillouin zone are equivalent, the sets of eigenen-
ergies at the start and end points for the braid at k = 0 and 2π

must be the same [3,25]. Thus, one can describe the bands in
terms of knots or links [4]. However, the knot contains less
information than the braid as many different braids may map
to the same knot. In an N-band Hamiltonian if there are n < N
bands that are separable from the rest of the bands, we can
focus on studying only the n strands corresponding to these n
bands.

Braid theory can also be applied to 2D non-Hermitian
band structures. For this purpose, we consider a 1D closed
path in the 2D Brillouin zone. Let us consider a 2D
periodic non-Hermitian system described by an N-band non-
Hermitian Hamiltonian with band structure ω(k) = ω(kx, ky).
The first Brillouin zone is a 2-torus T 2 = {(kx, ky) | kx, ky ∈
[0, 2π )}. Each point k ∈ T 2 maps to N complex numbers
ω1(k), ω2(k), . . . , ωN (k). Let us define � as the exceptional
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locus, which is the set of all wave vectors that map to
degeneracies in ω(k). If we consider a closed loop l in the
Brillouin zone that avoids the exceptional locus [mathemati-
cally, l (z) : [0, 1) → T 2 − �], then eigenenergies on the loop
l , i.e., ω[l (z)], form a well-defined N-strand braid in the 3D
space defined by (Re(ω), Im(ω), z) ∈ C × [0, 1).

For eigenenergy braids in 2D systems, nearly all pa-
pers have focused on loops contractible in T 2 around an
exceptional point [4,6–9,17]. The study of these contractible
loops has led to interesting results on the properties of
the exceptional points such as doubling theorems [3,4,8,43],
non-Abelian properties [6,9,44], and topological stability
[6,8,43].

In contrast to these prior works, in this paper, we focus on
a specific subset of closed loops in the Brillouin zone which
we call slices in the 2D Brillouin zone. These slices follow
the path ky = mkx + ϕ where m is the gradient and ϕ is the
offset [Fig. 1(c)]. Here, we choose m to be rational so that
the slice forms a closed loop due to the periodicity of the
Brillouin zone. These loops are fundamentally different to the
loops encircling an exceptional point described above, as they
are noncontractible loops in T 2. Thus, there is no longer a
notion of the number of exceptional points enclosed by these
slices. Nevertheless, the eigenenergy braids on slices also
contain a lot of information and may be easier to measure than
contractible loops around an exceptional point. For example,
for a photonic crystal one may directly probe certain slices by
measuring the eigenenergies at a constant angle of incidence.
In the next subsections, we will see that the eigenenergy braids
on slices can only transition at exceptional points and are
constrained by symmetry. We will also see that they have
connections to point-gap topology.

C. Symmetry consequences of eigenenergy braids
on slices in the 2D Brillouin zone

The eigenenergies ω(k) traced out by a closed loop l (z) ∈
T 2 − � form a reduced 1D complex band structure ω[l (z)]
when plotted against the loop trajectory parameter z in [0,1).
We call this reduced 1D band structure symmetric if there
exists a particular choice of parameter z such that ω[l (z)] =
ω[l (1 − z)]. An eigenenergy braid that is symmetric in this
way is trivial. If the first half of the braid contains braid
operations defined by a braid word γ , then the second half, by
symmetry, must undo these operations and thus must be γ −1.
The total braid is γ γ −1 = 1, where 1 is the trivial braid. Note
that a trivial eigenenergy braid does not mean that there are no
overcrossings or undercrossings. It has also been shown that
symmetric 1D bands lead to trivial point-gap topology [45].

Let us now consider 2D reciprocal systems, which satisfy
Lorentz reciprocity in electromagnetism [46,47]. The Lorentz
reciprocity applies to systems described by symmetric permit-
tivity and the permeability tensor. For non-Hermitian systems,
it differs from time-reversal symmetry. Reciprocity provides
the constraint that

ω(kx, ky) = ω(−kx,−ky ). (3)

We emphasize that Eq. (3) can be derived using Lorentz
reciprocity alone without the need for either spatial inversion
or time-reversal symmetry. On the other hand, Eq. (3) does

not imply reciprocity. Equation (3) can be satisfied in nonre-
ciprocal systems with either spatial inversion or time-reversal
symmetry [33,48].

Let us plot the Brillouin zone, kx, ky ∈ [0, 2π ), as a square
as in Figs. 1(c) and 1(d). Let us call a vertical slice at a
constant kx (sweeping from ky = 0 to 2π ) a kx slice. For a
kx slice, the loop can be parametrized by ky. Similarly, let
us call a horizontal slice at a constant ky (sweeping from
kx = 0 to 2π ) a ky slice. A ky slice can be parametrized
by kx. Reciprocity implies that certain high-symmetry
slices in the 2D Brillouin zone yield symmetric 1D band
structures. The kx slices for kx = nπ with n being an
integer [light blue lines in Fig. 1(c)] yield symmetric band
structures since from reciprocity and periodicity of the
Brillouin zone ω(nπ, ky) = ω(nπ,−ky) = ω(nπ, 2π − ky).
We can apply a similar argument for ky slices at
ky = nπ [red lines in Fig. 1(c)]. Reciprocity also
implies that ω(kx, ky) = ω(−kx,−ky ) = ω(2π − kx, 2π −
ky). This implies that any reduced 1D band structure on any
diagonal line as defined by ky = mkx [green or purple lines
in Fig. 1(c)] is symmetric. All these slices yield trivial
eigenenergy braids and trivial point-gap topology.

Geometric mirror symmetry can also lead to trivial
eigenenergy braids. For example, if a system has mirror sym-
metry about the ky = 0 axis then ω(kx, ky) = ω(kx,−ky ) =
ω(kx, 2π − ky), which means all eigenenergy braids on kx

slices are trivial. Similarly, if there is mirror symmetry about
the kx = 0 axis, then eigenenergy braids on all ky slices are
symmetrical and hence trivial.

D. Exceptional points are phase transitions for eigenenergy
braids on Brillouin zone slices

We now discuss the connection between eigenenergy
braids on slices with exceptional points in the Brillouin zone.
For simplicity, in this paper we restrict our focus to a 2D
band structure with only order-2 exceptional points, where
the order of an exceptional point indicates how many bands
become degenerate at the exceptional point. We note that
higher-order exceptional points are topologically unstable in
two dimensions [43].

Order-2 exceptional points have been shown to come in
pairs of opposite charges [43]. In 2D momentum space, these
pairs of exceptional points are connected by a branch cut
where the real parts of the eigenenergies become degenerate.
Such a branch cut is called a bulk Fermi arc [49–52], where
the real parts of the eigenenergies become degenerate. This
is not to be confused with Fermi arcs in 3D semimetals,
which are a surface rather than a bulk phenomenon [53]. The
exceptional points are also connected by an imaginary Fermi
arc [1,54–56] where the imaginary parts of the eigenenergies
become degenerate.

On a trajectory in momentum space upon crossing a branch
cut, the corresponding eigenenergies undergo a braid opera-
tion as the crossing results in a permutation of eigenenergies
from one solution branch to another. It can be shown using
based loops and homotopy theory that eigenenergy braids on
two parallel slices are in the same conjugacy class of the braid
group BN if there is no exceptional point between the slices
(see Appendix A). Here, N is the number of bands. Thus,
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we can only get inequivalent conjugacy classes for the braids
of two different but parallel slices if there is one or more
exceptional points between the two Brillouin zone slices. Note
that there is some subtlety in the notion of “between” for two
slices on a torus. If we pick one of the enclosed areas between
the two slices as A, then the complement of A can also be
considered an enclosed area between the two slices.

As an example, in Fig. 1(d) we show two branch cuts
drawn in magenta and orange connecting filled and unfilled
dots which represent exceptional points with opposite charges.
Crossing the magenta and orange branch cuts corresponds to
braid operations of σm and σo, respectively. We also show
three slices in dotted blue lines. Each crosses two, one, and
zero branch cuts, respectively, and the braids on each slice
have different braid words σoσ

−1
m , σo, and1, respectively. The

transitions between inequivalent conjugacy classes of braids
happen when the slice intersects with an exceptional point.

E. Connections between eigenenergy braids
and point-gap topology

In addition to eigenenergy braids, non-Hermitian Hamil-
tonians may also exhibit point-gap topology. A 1D band
structure, or a reduced 1D band structure for a 2D system, may
exhibit nontrivial point-gap topology if the trajectory of the
eigenenergies encloses an area in the complex energy plane.
When a 2D system is truncated in the direction perpendicu-
lar to the slice direction with open boundary conditions, the
system exhibits the non-Hermitian skin effect if the energy
bands on the slice exhibit nontrivial point-gap topology. This
is called the geometry-dependent skin effect [40,41].

We now discuss the relation between point-gap topology
and eigenenergy braiding. We first note that they refer to dif-
ferent topological properties. For example, a one-band model
only has a trivial eigenenergy braid, but can nevertheless
have nontrivial point-gap topology with different point-gap
winding numbers [25,57]. Thus, eigenenergy braid invariants
and point-gap winding numbers describe different physical
concepts.

There are, however, connections between these two con-
cepts. We first illustrate this connection in 1D systems. In
a one-band model, starting from one end of the Brillouin
zone, as the momentum evolves across the Brillouin zone to
reach the other end, the eigenenergy necessarily returns to
the same starting value. Thus, in the complex energy plane,
upon having the momentum going through the first Brillouin
zone once, the eigenenergy forms a closed loop. This loop
can be thought of as the projection of the energy band into the
complex energy plane (Re(ω), Im(ω)). Below, we refer to a
closed loop in the complex energy plane as a point-gap loop.
A nontrivial point-gap loop is one that encloses an area in the
complex energy plane.

In an N-band model in one dimension, suppose we sim-
ilarly start with a set of the eigenenergies at one end of the
first Brillouin zone. As the momentum evolves across the
Brillouin zone to the other end, each individual eigenenergy
may not return to its starting value. But the set of eigenen-
ergies must remain the same at the two ends. Consequently,
the set of eigenenergies may go through a permutation as the
momentum traverses across the first Brillouin zone. Suppose

a nontrivial permutation does occur; for a certain starting
eigenenergy then, it will require multiple traversals of the
momentum across the first Brillouin zone for the eigenenergy
to return to its initial starting point. The number of traversals
required for the eigenenergy to return to its initial starting
value is the number of bands in a complete point-gap loop.
Thus, the number of bands in a point-gap loop is directly
related to the permutation behavior or braids of the band.

Since the permutation behavior is characterized by the
symmetry group SN , one can show that the aspects of the
point-gap loop as discussed above can be determined by ana-
lyzing the conjugacy class of the symmetry group SN [38]. A
conjugacy class in SN can be succinctly denoted as [58]

∏
qnq = 1n1 2n2 . . . NnN . (4)

Here q is the length of a cycle, and nq is the number of such q
cycles in a representative permutation in the conjugacy class.
We also have that

∑
q qnq = N . The product in Eq. (4) is a

formal one, i.e., it is not a numerical product. The conju-
gacy class determines the aspects of the point-gap loop as
mentioned above. For example, a N = 5 band structure as
described by the conjugacy class of 3121 has two point-gap
loops, one consisting of three bands and the other consisting
of two bands.

There is a natural homomorphism from the braid group BN

to the symmetry group SN [16]. Therefore, by analyzing the
braid as formed by the band structure, and by identifying the
conjugacy class in BN that such a braid belongs to, one can
obtain the corresponding conjugacy class in SN , and hence
the information on the aspects of the point-gap loops as well.
An example of an eigenvalue braid and its corresponding
point-gap loop for this conjugacy class is shown in Figs. 1(a)
and 1(b).

In a 2D system with N > 1 bands, the energy bands form
braids along 1D closed paths in the first Brillouin zone such
as the slices discussed above. As noted previously, braids on
different parallel slices may belong to different conjugacy
classes in BN if there are exceptional points between them. As
one varies the locations of the parallel slices, the transitions
between conjugacy classes in BN occur at the exceptional
points. From the discussion above, these transitions in braid
behaviors naturally lead to a transition in the topology of the
point-gap loops as well. Here, the topological property is not
the point-gap winding number, but the number of bands in
point-gap loops. This property is relevant for clarifying the
topological invariants in multiband systems [59].

III. NUMERICAL STUDIES OF BRAIDING IN PHOTONIC
CRYSTAL BAND STRUCTURES

Motivated by the theory as discussed in the previous
section, in this section we undertake a numerical study of
eigenenergy braidings in the band structure of 2D photonic
crystals. Our aims are (1) to show that one can observe
eigenenergy braidings along slices, (2) to numerically demon-
strate the transitions between inequivalent conjugacy classes
of braids on different parallel slices and to connect such tran-
sitions with exceptional points, and (3) to illustrate the change
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FIG. 2. (a) Unit cell of photonic crystal used in numerical
studies. Each unit cell consists of a dielectric circular rod that
has radius 0.2a and is centered at (0.25, 0.3)a [let the bottom
left corner have the coordinates (0,0)]. There is also an irreg-
ular triangular dielectric rod whose vertices are at the points
(0, 2, 0.9)a, (0.8, 0.8)a, (0.7, 0.3)a. The circular and triangular rods
are surrounded by air with refractive index n = 1. (b) Vertical
stripe of N = 20 unit cells which has periodic boundary conditions
along x.

in aspects of point-gap topology as induced by the transition
of the braiding behaviors.

For our aims, we consider a 2D square-lattice photonic
crystal with lattice periodicity a where the unit cell is shown
in Fig. 2(a). We note that such a structure does not possess any
mirror or inversion symmetry, as motivated by the discussion
in Sec. II C.

We assume that the permittivity in the dielectric rods has
the form

ε =
⎡
⎣εd −iεa 0

iεa εd 0
0 0 εd

⎤
⎦. (5)

When εa = 0, the material is a regular dielectric with a per-
mittivity εd and is reciprocal. When εa �= 0, the material is a
magneto-optical material with its magnetization along the z
direction, and it is nonreciprocal. We consider a TM polarized
wave propagating in the xy plane with a magnetic field in the
z direction and an electric field in the xy plane. Throughout
the paper, we use the eiωt convention. Thus, an imaginary
component of εd that is negative means that the material
is lossy and the structure is non-Hermitian. We numerically
determine the 2D photonic band structure ω(kx, ky ) of the
photonic crystal system shown using COMSOL MULTIPHYSICS

[60], which employs finite-element methods to numerically
solve Maxwell’s equations. The eigenenergies of the energy
are in general complex. From the 2D band structure, we then
determine the 1D band structure along various slices. In Fig. 3,
we study a case of a reciprocal system where εd = 3 − 0.6i
and εa = 0. In the top row, we plot eigenenergy braids for
two bands in ω(kx, ky) for this system for kx slices at kx =
π, 1.01π, 1.015π , and 1.03π . In the second row of Fig. 3, we
plot the projection of the energy band to the complex energy
plane for the same slices.

On the kx slice at kx = π (left panels in Fig. 3), the photonic
band exhibits a trivial braid and trivial point-gap topology, as
expected from the discussion in Sec. II C. On the kx slice at

FIG. 3. Example of eigenenergy braid trajectory for a reciprocal photonic crystal as shown in Fig. 2(a) with εd = 3 − 0.6i and εa = 0
at slices of the Brillouin zone along kx = π, 1.01π, 1.015π, 1.03π . In the first row, we plot these braids in the three-dimensional space of
complex ω and ky. In the second row, we plot the projection of each of these braids onto the complex energy plane. Here all frequencies are in
units of 2πc/a. We see that an exceptional point is crossed at approximately kx = 1.015π which corresponds to a conjugacy class transition in
the braids.
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FIG. 4. Example of a one-band trivial eigenenergy braid that
corresponds to a nontrivial point-gap topology for a nonreciprocal
photonic crystal as shown in Fig. 2 with εd = 2 − i and εa = 3.

kx = 1.01π (middle-left panels in Fig. 3), we move away from
the high symmetry line in the Brillouin zone and we see that
the projection on the complex energy plane consists of two
loops with nontrivial point-gap topology. On the kx slice at
kx = 1.015π (middle-right panels in Fig. 3), the two strands
intersect at an exceptional point which is depicted by an arrow
in the second panel in Fig. 3. The eigenenergy braid is not
well defined and two point-gap loops merge at the exceptional
point. On the kx slice at kx = 1.03π (right panels in Fig. 3),
which does not cut through an exceptional point, the two
bands swap eigenenergies as ky changes from 0 to 2π . This is
a nontrivial braid described by braid word σ−1

1 when the band
is projected onto the (Re(ω), ky) plane. The projection on the
complex energy plane is now a joint two-band point-gap loop
in a figure-8 shape.

The results in Fig. 3 represent a conjugacy class transition
in the eigenenergy braids on the kx slices as we vary kx from
1.01 to 1.03π . In order to go from the trivial two-band braid
at kx = 1.01π to a nontrivial two-band braid at kx = 1.03π

via a continuous change of kx, an exceptional point has to be
crossed, as we see in the case of kx = 1.015π . By examining
the projection of the bands to the complex energy plane, as
we do in the bottom panels of Fig. 3, we also see that this
transition of the braiding behavior at the exceptional point
corresponds to the transition on aspects of the point-gap loops.
As the braid transitions, the point-gap loop transitions from
having two separate loops each corresponding to one band to
having a single loop for the two bands.

We next illustrate the difference between point-gap topol-
ogy and eigenenergy braiding in the example of Fig. 4. We use
the same unit-cell geometry in Fig. 2(a) but with εd = 2 − i
and εa = 3. As the permittivity tensor is no longer symmetric,
this system is nonreciprocal. We pick a region in the band
structure where there is a single band that has nontrivial
point-gap topology. In the left panel of Fig. 4, we plot the
eigenenergy braid and its projection onto the complex energy
plane for the kx slice at kx = 1.2π . As it is only a single strand,
the braid is trivial. However, from the projection, we see that
the band forms a loop that encloses nontrivial area. As ky

FIG. 5. Minimum eigenenergy distance �ω (in units of 2πc/a)
in logarithmic scale for a nonreciprocal photonic crystal shown in
Fig. 2(a) where εd = 1 − 0.6i and εa = 2 in the region Re(ω) ∈
[0.6, 1.150]2πc/a and Im(ω) ∈ [0.05, 0.55]2πc/a. We numerically
identify 14 exceptional points which are blue dots where �ω goes to
zero. Three of the exceptional points are labeled and these intersect
with kx slices at kx = 0.51π, 0.57π , and 0.83π . These kx slices have
been plotted in black.

varies from 0 to 2π , the complex energy moves clockwise on
the loop. Thus, the loop has a winding number of W = −1
[20] with respect to any reference energy inside the loop.
As we continuously vary the the locations of the kx slice,
the topology of the point gap loop can change. At kx = 1.5π

(middle panel, Fig. 4), the point-gap loop has a figure-8 shape
with W = −1 with respect to a reference energy inside the top
half of the loop and W = 1 with respect to a reference energy
in the bottom half loop. At kx = 1.8π , the loop becomes a
simple loop with a winding number of W = 1 with respect to
an energy inside the loop. In this example, we see that the
system can exhibit nontrivial point-gap topology, and even
transitions between different point-gap topologies, while the
braid behavior is trivial. The example therefore highlights the
difference between the concepts of point-gap topology and
eigenenergy braiding.

Finally, we show an example with more complex braiding
and braiding transition behaviors involving multiple bands.
For this purpose, we again consider the same geometry as
in Fig. 2(a), but with εd = 1 − 0.6i and εa = 2. As εa �= 0,
the system is again nonreciprocal. In this system, there are
four bands with eigenenergies entirely restricted to the region
Re(ω) ∈ [0.6, 1.150]2πc/a and Im(ω) ∈ [0.05, 0.55]2πc/a.
These four bands are separable from the rest of the bands.
Moreover, we also have a nontrivial boundary braid for these
four bands, which is shown in Appendix B. This means that
as the momentum moves around the boundary of the first
Brillouin zone, the four bands form a nontrivial braid. Having
such a nontrivial boundary braid implies the existence of ex-
ceptional points for these four bands inside the first Brillouin
zone [6].

For these four bands, we numerically identified 14 excep-
tional points using Fig. 5. In this figure we have numerically
calculated the 2D complex band structure for a 120 × 120 grid
of (kx, ky) points for the region containing the four bands. We
plot the minimum eigenenergy distance �ω [61] between all
pair combinations of the four eigenenergies at each (kx, ky )

195413-6



NUMERICAL AND THEORETICAL STUDY OF … PHYSICAL REVIEW B 108, 195413 (2023)

FIG. 6. In the top row, we have the eigenenergy braid for the nonreciprocal photonic crystal setup with εd = 1 − 0.6i and εa = 2 on slices
of the Brillouin zone along kx = 0.47π, 0.51π, 0.53π, 0.57π, 0.6π, 0.63π, 0.8π, 0.9π . In the middle row, we have the projections of the
eigenenergy braid on the complex energy plane for same parameters. In the bottom row, we show the complex eigenenergy projection in black
and the geometry-dependent skin effect for vertical stripe geometry for kx slices in the red-gray-blue color map. Here, blue or red indicates top
or bottom localization of the electric field.

point. The exceptional points appear when the distance
between eigenenergies becomes zero, and are denoted by blue
dots in Fig. 5 (see Supplemental Material [62]). Among the
14 exceptional points in Fig. 5, three are located at kx =
0.51π, 0.57π , and 0.83π . These three exceptional points are
labeled by arrows in Fig. 5.

In the top row of Fig. 6, we show the eigenenergy braids
on slices kx = 0.47π, 0.51π, 0.53π, 0.57π, 0.6π, 0.83π ,
and 0.9π . We see that the exceptional points at
kx = 0.51π, 0.57π , and 0.83π all correspond to conjugacy
class transitions in the eigenvalue braids. In the middle row of
Fig. 6, we show the projection of the eigenenergy braid on the
complex energy plane. At kx = 0.47π , we have a four-band
point-gap loop. On this slice we label the eigenenergies of
the four bands at the starting point ky = 0 as ωa, ωb, ωc, ωd .
As ky evolves from 0 to 2π , these four eigenenergies go
through a permutation as described by a 4-cycle (ωdωbωaωc).
At kx = 0.51π , there is an exceptional point between the

FIG. 7. The braids corresponding to Brillouin zone slices b and
f are conjugate.

bands starting at ωb and ωc. As kx increases from below
to above 0.51π , the presence of this exceptional point
corresponds to a split of the four-point point-gap loop. At
kx = 0.53π , we now have two two-band point-gap loops with
the cycle (ωdωc)(ωaωb). Another exceptional point occurs

FIG. 8. (a) Minimum eigenenergy distance �ω (in units of
2πc/a) in logarithmic scale for a nonreciprocal photonic crys-
tal shown in Fig. 2(a) where εd = 1 − 0.6i and εa = 2 in the
region Re(ω) ∈ [0.6, 1.150]2πc/a and Im(ω) ∈ [0.05, 0.55]2πc/a.
The dark blue dots are exceptional points, where the eigenenergy
distance goes to zero. There are 14 exceptional points and we have
drawn based loops around each, as well as the braids corresponding
to these loops. (b) Nontrivial boundary braids for this setup. The top
panel is for the braids on the trajectory of kx ∈ [0, 2π ) where ky = 0.
The bottom panel is for the braids on the trajectory of ky ∈ [0, 2π )
where kx = 0. z labels the coordinate along the trajectory.
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FIG. 9. Eigenenergy braids for the cases as described in Table I. For all plots, the base point is the origin of the Brillouin zone.

at kx = 0.57π , but this time with the bands starting at ωa

and ωb. As kx increases across kx = 0.57π , in the projection
to the complex energy plane we observe a transition where
the two-band cycle (ωaωb) splits into two single-band loops.
As a result, at kx = 0.6π , the projection consists of one
two-band loop and two single-band loops, corresponding to
the permutation cycle (ωdωc)(ωa)(ωb). Finally, we have an
exceptional point at kx = 0.83π , this time between the bands
starting at ωd and ωc. In the projection, this corresponds
to the splitting of the two-band loop (ωdωc) splitting. As
a result, in the projection at kx = 0.9π , we now have four
single-band loops, which is described by a permutation cycle
(ωd )(ωc)(ωa)(ωb).

In the bottom row of Fig. 6, we plot the complex eigenener-
gies for a system as described by a vertical stripe as shown in
Fig. 2(b) in a red-gray-blue color scale [45]. The vertical stripe
consists of 20 photonic crystal unit cells arranged along the y
axis. Outside the photonic crystal region we have air regions
backed by a perfectly electric conductor boundary condition.
Since the system is periodic along x, we can still plot the
eigenspectra for a particular kx slice. As the y direction now
has open boundary conditions, for each kx value we expect
the geometry-dependent skin effect if the corresponding pro-
jection of the complex energy band (the second row of Fig. 6)
has nontrivial area in the complex energy plane. In our case,
we indeed observe the geometry-dependent skin effect. We
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observe that the complex eigenenergy of the modes in the
finite system lies within the area enclosed by the projection
of the energy bands, as also plotted in the bottom row. For
each complex eigenenergy in this system, the red-gray-blue
color map is given by the mean position ȳ

ȳ =
∫ a

0 dy
∫ Na

0 dx|E (x, y)|y∫ a
0 dy

∫ Na
0 dx|E (x, y)|

(6)

of the electric field amplitude of the corresponding eigenstate.
Blue indicates the electric field amplitude is localized at the
top of the stripe (N = 20) whereas red indicates the electric
field amplitude is localized at the bottom edge of the stripe
(N = 1) as in Fig. 2(b). Gray indicates that either the field is
delocalized or it is localized at both edges. In the bottom row
of Fig. 6, we see that within each point-gap loop there are
localized states on the edges of the stripes. These localized
states are localized at the bottom edge when the winding
number is W = −1 and at the top edge when the winding
number is W = +1.

IV. CONCLUSION

We consider eigenenergy braids on slices in the 2D
Brillouin zone. We discuss the consequences of reciprocity
and geometric symmetry on these slices. We show that
the braids on these slices can only undergo conjugacy
class transitions when the slice intersects an exceptional
point. The conjugacy class transition corresponds to a
change in the number of bands in a complete point-gap
loop, where the point-gap loop is the projection of
the eigenenergy braid onto the complex energy plane.
Thus, this transition corresponds to point-gap loops
merging or splitting. Our theoretical results show the
connection between the conjugacy class of eigenenergy
braids, point-gap topology, and exceptional points. We
numerically demonstrate these concepts using two-
dimensional reciprocal and nonreciprocal photonic crystals,
which represent a technologically relevant platform for the
exploration of non-Hermitian topology.
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APPENDIX A: EIGENENERGY BRAIDS
ON PARALLEL SLICES

In this section, we show that the braids on slices of the
two-dimensional Brillouin zone are conjugate if there are no
exceptional points between them.

Consider eigenenergy braids a and b, on two parallel slices,
as defined by directed line segments A1A2 and B1B2, respec-
tively (Fig. 7). We denote as c the eigenenergy braid on A1B1.
The braid on B2A2 is then c−1 since A1B1 and A2B2 are the
same in the Brillouin zone. Suppose there is no exceptional
point between the two slices; we then have

a = cbc−1. (A1)

Hence a and b are conjugate with each other.

APPENDIX B: NONTRIVIAL BOUNDARY BRAID
AND BASED LOOP ANALYSIS

In the main text, we have focused on braids on slices. In
the literature, there have been several works examining braids
on based loops around exceptional points [6–9]. Our photonic
crystal system can also be used to explicitly check some of
these theoretical results.

We review the connection between eigenenergy braids and
homotopic loops in the space T 2 − �, where � is the set of
k exceptional points. T 2 − � is the k-punctured 2-torus. The
homotopic equivalence class of based loops on T 2 − � forms
a group structure where the group product is concatenation
[44]. This group is the fundamental group π1(T 2 − �) of
T 2 − � [6].

Let us define loops around each exceptional point as
le1, le2 . . . , lek . We assume these loops are contractible in
T 2 − �. We also denote the two fundamental loops of the
torus as lkx and lky . We assume all these loops have the same
base point. Then these loops satisfy the following relation:

le1le2 . . . lek︸ ︷︷ ︸
lEP

= lkx lky l
−1
kx

l−1
ky︸ ︷︷ ︸

lBZ

(B1)

where lEP is the product of the based, contractible loops
around the exceptional points and lBZ is the loop around the
boundary of the first Brillouin zone.

There is a homomorphism from the group of equivalence
classes of based loops to the braid group BN . As a result [6],

γe1γe2 . . . γek︸ ︷︷ ︸
γEP

= γkxγkyγ
−1
kx γ −1

ky︸ ︷︷ ︸
γBZ

(B2)

where γi is the eigenenergy braid on the loop li. By writing
these braids using Artin’s relation, we can also find that

C(γEP) = C(γBZ), (B3)

where the crossing number C(γ ) of a braid γ (also known as
the exponent sum [16] or the writhe number [4]) is the number
of overcrossings subtracted by the number of undercrossings

TABLE I. Various braids in the nonreciprocal photonic crystal
considered in Fig. 9.

Braid Braid word Crossing number

γA σ2 1
γB σ2σ1σ

−1
2 1

γC σ−1
1 −1

γD σ1 1
γE σ3 1
γF σ−1

3 −1
γG σ−1

2 −1
γH σ−1

2 σ−1
1 σ2 −1

γI σ−1
2 σ3σ2 1

γJ σ1σ3σ2σ
−1
1 σ−1

2 σ−1
3 σ−1

1 −1
γK σ−1

2 σ3σ2σ1σ
−1
2 σ−1

3 σ2 1
γL σ−1

2 σ−1
1 σ2σ1σ2 1

γM σ−1
2 −1

γN σ−1
3 −1

γkxγkyγ
−1
kx γ −1

ky σ−1
1 σ−1

2 σ1σ2 0
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in the braid. This statement is equivalent to the non-Hermitian
no go theorem [4] as well as the non-Abelian sum rule [8].
Equation (B3) contains less information than Eq. (B2).

We verify Eq. (B2) using the same nonreciprocal photonic
crystal in Fig. 6 of the main text. Here, we consider the same
four bands as discussed in the main text, which are separable
from all the other bands of the system. We plot γkx and γky

eigenenergy braids in Fig. 8(b). For all our braid projection
plots, we project to the (Re(ω), k) plane. In this projection, we
have γkx = σ−1

2 σ−1
1 and γky = σ2. Hence, we have nontrivial

γBZ = γkxγkyγ
−1
kx γ −1

ky = σ1σ
−1
2 . The existence of a nontrivial

boundary braid implies the presence of an exceptional point
inside the Brillouin zone, in consistency with our numerical
observation here.

We next provide a direct check of Eq. (B2). For this
purpose we first find the eigenenergy braids on based loops
around the 14 exceptional points identified in Fig. 8(a). In

Fig. 8, these exception points are labeled from A to N ,
and the corresponding braids on these loops are labeled γA

to γN . We plot the eigenenergy braids on these loops in
Fig. 9, and record them in Table I. For this system, Eq. (B2)
becomes

γLγKγIγHγGγF γJγEγDγNγCγMγBγA = γkxγkyγ
−1
kx γ −1

ky . (B4)

We can verify that this is true using the results in Table I.
In the algebraic check, note that γBZ = σ−1

1 σ−1
2 σ1σ2 =

σ1σ
−1
2 , γLγkγIγkγGγF γJ = σ1σ

−1
2 σ−1

1 , γEγDγN = σ3σ1σ
−1
3 ,

γCγMγBγA = 1. From this, one can show that γEP = γBZ.
Thus, we have verified Eq. (B2) for a rather complicated
system featuring multiple bands and a large number of
exceptional points. The relation of Eq. (B3) can also be
checked explicitly.

[1] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional
topology of non-Hermitian systems, Rev. Mod. Phys. 93,
015005 (2021).

[2] K. Ding, C. Fang, and G. Ma, Non-Hermitian topology and
exceptional-point geometries, Nat. Rev. Phys. 4, 745 (2022).

[3] C. C. Wojcik, X.-Q. Sun, T. Bzdušek, and S. Fan, Homotopy
characterization of non-Hermitian Hamiltonians, Phys. Rev. B
101, 205417 (2020).

[4] H. Hu and E. Zhao, Knots and non-Hermitian Bloch bands,
Phys. Rev. Lett. 126, 010401 (2021).

[5] Z. Li and R. S. K. Mong, Homotopical characterization of
non-Hermitian band structures, Phys. Rev. B 103, 155129
(2021).

[6] C. C. Wojcik, K. Wang, A. Dutt, J. Zhong, and S. Fan, Eigen-
value topology of non-Hermitian band structures in two and
three dimensions, Phys. Rev. B 106, L161401 (2022).

[7] H. Hu, S. Sun, and S. Chen, Knot topology of exceptional point
and non-Hermitian no-go theorem, Phys. Rev. Res. 4, L022064
(2022).

[8] J. L. K. König, K. Yang, J. C. Budich, and E. J. Bergholtz,
Braid-protected topological band structures with unpaired
exceptional points, Phys. Rev. Res. 5, L042010 (2023).

[9] C.-X. Guo, S. Chen, K. Ding, and H. Hu, Exceptional non-
Abelian topology in multiband non-Hermitian systems, Phys.
Rev. Lett. 130, 157201 (2023).

[10] W. D. Heiss, The physics of exceptional points, J. Phys. A 45,
444016 (2012).

[11] M.-A. Miri and A. Alù, Exceptional points in optics and
photonics, Science 363, eaar7709 (2019).

[12] J. Wiersig, Review of exceptional point-based sensors,
Photonics Res. 8, 1457 (2020).
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