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Cavity-induced switching between Bell-state textures in a quantum dot
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Nanoscale quantum dots in microwave cavities can be used as a laboratory for exploring electron-electron
interactions and their spin in the presence of quantized light and a magnetic field. We show how a simple
theoretical model of this interplay at resonance predicts complex but measurable effects. New polariton states
emerge that combine spin, relative modes, and radiation. These states have intricate spin-space correlations and
undergo polariton transitions controlled by the microwave cavity field. We uncover novel topological effects
involving highly correlated spin and charge density that display singlet-triplet and inhomogeneous Bell-state
distributions. Signatures of these transitions are imprinted in the photon distribution, which will allow for optical
read-out protocols in future experiments and nanoscale quantum technologies.
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I. INTRODUCTION

The optical control of structural, vibrational, and transport
properties in nanostructure systems has led to new research
areas at the intersection of quantum optics and condensed mat-
ter [1,2]. It has been shown that ultra-strong coupling (USC)
between light and matter is crucial for exploring quantum
states of matter [2,3], quantum phase transitions, manipulat-
ing crystal structures and symmetry breaking [4], obtaining
tunable light-matter entangled states [5], including Floquet-
Bloch states [6]. Quantum electrodynamic microcavities in
solid-state systems are widely utilized to entangle photon
modes and condensed matter states, leading to the creation
of emergent phases with enhanced nonlocal correlations and
the development of complex quantum materials [1,2]. This
interplay between cavities and atoms enables the control of
spin states using resonant optical fields [7]. Additionally, the
introduction of a magnetic field or quantized polarized light
can trigger chiral and topological effects [8], which have
promising applications for magnetic data storage technologies
[9].

Nanostructures such as semiconductor quantum dots
(QDs) represent promising solid-state platforms in a wide
range of contexts, including the fundamental study of strongly
correlated many-body systems [10] and applications as ideal
solid-state sources of highly coherent light [11,12]. QDs inte-
grated into cavity systems have attracted a lot of attention as
candidate quantum emitters. Extensive research has also been
conducted on the effects of magnetic fields on nanostructures,
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with a specific focus on spin-dependent interactions [13,14].
Zeeman-spin-orbit-coupling (SOC) competition, which is in-
fluenced by magnetic fields, is a key factor in controlling
electronic behavior [15–17]. Additionally, topological insula-
tor states in quantum matter have emerged as a result of SOC
effects in few-particle systems [18].

Recent theoretical calculations have shown that the optical
and transport properties of QDs can be modified by external
magnetic fields [19,20], and the SOC’s strengths can be tuned
by gate electric fields and in-plane magnetic fields [21,22]. In
particular, the manipulation of single- and two-spin electron
qubits can benefit from the generation and quantification of
individual electron correlations [23,24]. The potential trans-
formation of semiconductor structures into bits of quantum
information processing depends on the ability to trap electrons
in QDs and regulate their quantum states [25]. Studies in opti-
cal spectroscopy have shed light on related processes [26,27]
leading to the presence of stable topological properties such as
spin vortices [16,17]. However, a microscopic knowledge of
the spatially inhomogeneous QD electronic spin state, which
is essential for regulating their mesoscopic behavior, is still
lacking.

Experiments have demonstrated the successful coupling
of charge and spin degrees of freedom in semiconductor
QDs with visible and microwave photon cavities [26,27].
In particular, the polarization (linear or circular) of con-
fined light can be controlled in an efficient way by means
of semiconductor-superconductor cavities [27–29], demon-
strating anticorrelation electron effects. The main focus is
to understand electron spin textures in semiconductor nanos-
tructures [30], as well as achieving high-sensitivity spin
sensing using tip-based technologies such as scanning tun-
neling microscopy (STM) [31,32]. In particular, double-tip
STM [33] and spin-polarized STM (SP-STM) are powerful
techniques that can explore the correlation between electrical
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and magnetic properties with atomic resolution and provide
measurements to probe nonlocal spatial spin electron cor-
relations [34]. As a result, the nonlocal spin-photon optical
properties in a hybrid QD-cavity system effectively open the
way to studying quantum gates for quantum information.

In this paper we analyze the interplay between the electron
SOC, the magnetic field, and the cavity coupling in a QD sys-
tem comprising two interacting electrons. Though obviously
simplified in terms of real material complications, our purpose
is precisely to focus in on the interplay of these terms—and
just these terms—in the system’s Hamiltonian and hence its
quantum properties. In the presence of dominant Dresselhaus
SOC and mixed Dresselhaus-Rashba SOC, our main interest
is on the quantum correlations between matter and light states.
We show that SOC causes the development of new polariton
modes as a result of the decoupling between the cavity and
the two-electron center-of-mass (CM) mode. By adjusting
the magnetic field and the cavity coupling, we tune the spin
states into resonance and demonstrate the entanglement of
the relative modes with the cavity. We also demonstrate how
tuning the cavity coupling controls the distribution of the Bell
spatial states and the spin correlation for the two electrons.

We show that (1) highly spin-topological properties can be
tailored by the microwave cavity field, (2) the violation of
the Kohn theorem (KT) [35] is more pronounced in the USC
regime and can be adjusted by the microwave cavity field, and
(3) besides their fundamental interest, measurements of the
ground-state (GS) transitions enable tuning of correlated spins
and the generation of spatially inhomogeneous Bell states.

The paper is organized as follows. First, in Sec. II the basic
theoretical background is provided for incorporating hybrid
SOC-cavity effects in an interacting two-electron QD, focus-
ing on the central quantities of interest: the charge density
and the spin correlations. Subsequently, in Sec. III we present
the results for two cases: (Sec. III A) Dresselhaus SOC alone
and (Sec. III B) mixed Dresselhaus-Rashba SOC. Finally, in
Sec. IV we discuss the numerical resolved spin Bell-state
distribution in a QD. Our main conclusions are summarized
in Sec. V, and the appendixes contain particular details of our
calculations.

II. THEORETICAL FRAMEWORK: QED-SOC
HAMILTONIAN

The hybrid QD-cavity system is schematically shown in
Fig. 1(a). Two electrons are confined in a parabolic two-
dimensional QD embedded in a single-mode cavity in the
presence of a perpendicular magnetic field Bẑ. The Hamilto-
nian of the total system (with c = h̄ = 1) is

H =
2∑

j=1

{
H( j)

o + H( j)
soc

} + ωca†a + Ve−e(|�r1 − �r2|), (1a)

H( j)
o = | �� j |2

2m∗ + m∗

2
ω2

or2
j + �Z

2
σ ( j)

z , (1b)

H( j)
soc = λD

(
σ ( j)

y � j,y − σ ( j)
x � j,x

) + λR
(
σ ( j)

x � j,y − σ ( j)
y � j,x

)
,

(1c)

where σ
( j)
k with k = {x, y, z} refers to a Pauli matrix for parti-

cle j.

FIG. 1. (a) Schematic of a quantum dot (QD) with two inter-
acting electrons (inset) inside a superconducting microwave cavity
with circularly polarized light (CPL) [28,29]. Perpendicular external
magnetic and electric fields modify the strength of the spin-orbit
coupling (SOC). Energy spectrum as a function of the cyclotron fre-
quency at λD = 0.04 (b) without cavity coupling and (c) with cavity
coupling g = 0.07. Dashed curves represent the noninteracting case
(λD = λR = 0). The relative mode SOC splitting (or the photonic
SOC splitting) is indicated by more blue colors (or more red colors).
A curve with a more purple color (or more maroon color) means the
state is more mixed.

The harmonic QD is characterized by energy ωo and length
�o = [1/(m∗ωo)]1/2. The electron-electron interaction, usually
taken as the Coulomb repulsion, is here incorporated through
an effective potential Ve−e(|�r|) = α

r2 (where �r = �r1 − �r2 is the
two-electron relative coordinate and α is an adjustable param-
eter to reproduce the Coulomb results), whose higher-order
power mimics the presence of mirror charges in the semicon-
ductor QD. This effective dipole-like interacting two-electron
model has attracted significant interest in the literature since,
despite its simplicity, it yields nontrivial results which are
comparable with the bare Coulomb interaction results. With-
out including SOC and cavity effects, an analytical solution
in the presence of an external magnetic field is obtained [13],
which depends on Landau levels ncm (nr) and angular mo-
mentum quantum number mcm (mr) of CM (relative) space
and yields analytic matrix elements, improving the efficiency
of numerical results and allowing the use of numerical exact
diagonalization. Moreover, this model has been extended to
explore new physical results in multi-electron QDs [36,37]
and quantum Hall systems [38,39] as well as nuclear-electron
quantum logic gates [40].

The external magnetic and cavity fields are included
through the vector potentials, which determine the ki-
netic momentum �� j = �p j + e �A(c)

j + e �A(q). Here we choose

the symmetric gauge vector potential �A(c)
j = B

2 (−y j, x j, 0).
The single-mode cavity radiation which couples to matter
through the electric dipolar approximation is represented by
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�A(q) = A(a†�ε∗ + a�ε) and is independent from the particle la-
bel j, and a(a†) is the annihilation (creation) operator of
a single-mode photon with energy ωc. We consider a right
circularly polarized light (CPL) field as specified by �ε =

1√
2
(1, i, 0). In addition, the magnetic field causes Zeeman

splitting, which is given by �Z = gLμBB, where gL is the
Landé factor and Sz = 1

2 (σ (1)
z + σ (2)

z ).
Equation (1c) describes the interaction between kinetic

momentum and spin for both electrons, encompassing the
primary linear Dresselhaus and Rashba interactions with pa-
rameters λD and λR, respectively. As outlined in Appendix A,
a bosonic representation of these interactions is provided by

Hrel
soc = −i

λD

2
(c−αL + c+α

†
R)
+

+ λR

2
(c−α

†
L + c+αR)
+ + H.c., (2a)

Hcm
soc = −i

λD

2
(c−aL + c+a†

R)S+

+ λR

2
(c−a†

L + c+aR)S+ + H.c., (2b)

Hph
soc = −η(g)(λDa†S+ − iλRaS+) + H.c., (2c)

where c± =
√

ω̄ωo
2 ( ωb

2ω̄
± 1), taking the renormalized fre-

quency ω̄ = 1
2

√
ω2

b + 4ω2
o and cyclotron frequency ωb = eB

m∗ ,
and H.c. is the Hermitian conjugate. The bosonic operators
αR and αL correspond to the annihilation operators for right
and left relative oscillators, respectively, while aR and aL

do the same for the correspondent CM oscillators. Specifi-
cally, αR and α

†
L (aR and a†

L) annihilate relative (CM) angular
momentum states, as described in Appendix A, thereby eluci-
dating their coupling with spin. The cavity coupling constant
is η(g) = 1√

2
m∗g�o, with g = eA

√
ωo
m∗ . Ladder spin operators

S± = σ±1 + σ±2 and 
± = σ±1 − σ±2 define transitions in
which the eigenvalue s of total spin projection Sz is modified
by one. In particular, S± affect exclusively triplet spin states
transitions. The interplay between CM and light states, along
with spin, leads to a decrease in energy for the GS with a
higher contribution from triplet states. Conversely, 
± is the
responsible for transitions between singlet and triplet states
such as |↑↑〉 or |↓↓〉 with simultaneous changes in the relative
states.

Only the CM degrees of freedom are connected to the
cavity due to dipolar interactions (see Appendix A). How-
ever, nonzero SOC violates this idea since it introduces a
link between relative modes and light. Resonance between
photon modes and the spin Zeeman splitting is required (ωc =
|�z|), which makes this violation stronger. In the presence
of electron-electron interactions, the relative energy levels of
the noninteracting case (g = λD = λR = 0) exhibit crossings
due to the conservation of total angular momentum Lz. Small
energy differences between relative states thus resonate with
spin and radiation (indirectly). Additionally, cavity-mediated
SOC introduces interactions between the resonant spaces and
motivates our investigation of the relatively unexplored opti-
cal properties, where the allowable transitions are determined
by the SOC type and the type of CPL.

The noninteracting crossings, depicted by the dashed
curves in Figs. 1(b) and 1(c), experience splittings due
to cavity-mediated SOC among states sharing the same
conserved quantity (see Appendix A 1). Specifically, when
considering only the Dresselhaus SOC, the first terms in
Eq. (2) result in the conserved quantity JD = N + Lz − Sz,
where N represents the photon number operator. Equation (2a)
gives rise to the two splittings [shown by more blue colors
in Fig. 1(b)]. The Fock light states |0〉 and |1〉 have weights
in the ground and excited states that are involved in the
anticrossings, respectively. Moreover, interactions with CM
states produce asymmetries in the splittings with respect to
the noninteracting crossings (dashed curves). When states in-
tersect along the blue curves at ωb = 1.78 in Fig. 1(b), the
cavity [through Eq. (2c)] introduces an anticrossing depicted
in more red colors and shifts the existing splittings. Conse-
quently, relative-spin-photon polaritons with JD = −1 result
from Dresselhaus SOC anticrossings in resonance. Larger
state transitions are allowed by considering both SOCs, lead-
ing to splitting processes between states with different JD

values.
In order to assess spin textures, we resort to the calculation

of the spatial variation of total spin projections at two diamet-
rically opposite positions around the QD origin. This means
that the CM position is fixed at �R = 1

2 (�r1 + �r2) = 0, while �r is
varied. This way of detection allows us to observe changes in
relative coordinates due to the cavity. Specifically, the relative
density and spin field of the ground state |GS〉 are defined,
respectively, as

ρ(�r) := Trph,s(|GS〉〈GS|)| �R=0, (3a)

Sk (�r) := Trph,s(|GS〉〈GS|Sk )| �R=0, (3b)

where the traces run over the spin and photon spaces and
total spin in the k direction: Sk = 1

2 (σ (1)
k + σ

(2)
k ). The pho-

ton density ρph = ∑
i, j Ci j |ni〉〈n j | is obtained by tracing over

matter states. Bell-state densities consider the spin states:
singlet |φ−〉 = |A〉 = 1√

2
(|↑↓〉 − |↓↑〉), the symmetric state

of the triplet |φ+〉 = |S〉 = 1√
2
(|↑↓〉 + |↓↑〉), and the linear

combinations of triplet states |ψ±〉 = 1√
2
(|↑↑〉 ± |↓↓〉).

III. SPIN FIELD CONTROLLED BY SOC CAVITY

As a concrete example, we consider a two-electron GaAs
QD, with relatively small Zeeman interaction but strong SOC,
immersed in a microwave cavity. The values of the QD param-
eters are as follows: m∗ = 0.067me is the electron effective
mass, gL = −0.44 is the Landé g factor [41], and �o = 50
nm (ωo = 0.45 meV) is the confinement length. Cyclotron
frequency ωb = 1.9 is chosen, and SOC strength is changed
from zero to λ = 0.3 [41]. Cavity coupling is tuned up to
g = 0.3, which corresponds to the USC regime with g/� ∼
1. � = ωc + 2 g2

ωo
is the effective radiation frequency asso-

ciated with the diamagnetic term | �A(q)|2. SOC effects from
Dresselhaus interaction (λD 
= 0), which is characterized by a
conserved quantity, and the Dresselhaus-Rashba combination
(λD = λR 
= 0) are discussed separately using a numerically
exact diagonalization.
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FIG. 2. (a) 〈C〉, 〈Sz〉 and (b) 〈N〉, 〈Lzr 〉, and 〈JD〉 as function of λD at α = 3 and fixed g = 0.28 and g = 0.00 (dashed). (c) Relative density
ρ(�r) with pastel colors, and spin field illustrated by arrows for its in plane components (Sx (�r), Sy(�r)) and by colors for Sz(�r) at (I) λD = 0.15,
(II) λD = 0.21, and (III) λD = 0.25. (d) The associated photon density matrix ρph according to those coupling values, where the bar height
represents Ci, j .

Energy level convergence was ensured through a two-step
process. First, a basis of uncoupled oscillators was formu-
lated for the Hamiltonian, taking into account the dipolar
interaction with the CM coordinates through a Bogoliubov
transformation, which is explained in Appendix A 2, and
the maximum quantum numbers were specified. Second, the
Hamiltonian matrix was reorganized into blocks based on con-
served quantities, which provided us with both computational
and analytical advantages. In fact, the ground state’s optoelec-
tronic properties exhibit distinct trends due to the presence of
symmetries.

A. Dresselhaus SOC

The presence of a conserved quantity and the coupling
variation result in transitions in the ground state characterized
by integer values of JD [see Fig. 2(b)]. These transitions are
associated with simultaneous changes in 〈N〉, 〈Sz〉, and 〈Lzr 〉,
as shown in Figs. 2(a) and 2(b). The control of spin transitions
is achieved through the strength of Dresselhaus SOC (λD) and
cavity coupling (g), and their detection is linked to changes
in the light states. In Fig. 2(a) significant spin transitions
are observed at low interactions and are detected through
discontinuities in 〈Sz〉 and spin correlations 〈C〉, in which
C = ∑

s1,s2
s1s2|ς1, ς2〉〈ς1, ς2| for ς =↑ (↓) and s1 = 1(−1).

Subsequent transitions become less prominent in spin but
significant in 〈N〉, resulting in a staircase-like behavior of
〈C〉 caused by the presence of JD. These correlations move
toward uncorrelated spins with particular average values of
〈Sz〉 ∼ −0.40 and 〈C〉 ∼ 0.18, indicating an enhancement of
spin entanglement with matter and radiation.

In Fig. 2(c) (I) to (II), a 90◦ rotation in the spin field
is observed, accompanied by a change in the z component
from zero to negative values, represented by a change in the
color of the arrows from red to blue. This transition occurs
simultaneously with an increase in the weight of the projector

|1〉〈1| in the photon occupation matrix weights, as depicted in
Fig. 2(d). The next transition in the spin field between (II)
and (III) happens only in its z component, due to a small
discontinuous variation in 〈Sz〉 and 〈C〉. These discontinuities
are detected by 〈N〉, where an increase in the weight of the
projector |2〉〈2| is observed when comparing Figs. 2(d) (II)
and (III). Therefore, transitions are observed in charge and
spin densities, which retain Dresselhaus-like spin fields [16]
and demonstrate a Gaussian electronic density centered on a
radius with a reduction in the probability of finding the QD
electrons at �R = 0, which is due to the couplings with CM
states.

The transition from the singlet state |mr = −2, φ−〉 (an-
ticorrelated) to uncorrelated spins is made possible by the
cavity-SOC coupling. The interactions described by Eqs. (2a)
and (2c) enhance the probabilistic weight of triplet states as
the role of transitions involving light states increases. In fact,
a polariton state characterized by a higher contribution from
states |mr = −1, φ+〉 and |mr = −1,↓↓〉 is formed, accompa-
nied by an increase in photon occupation and 〈Lzr 〉 transition.
When the coupling between CM modes and photon states
increases, mediated by spin, this state becomes the new GS
(see Appendix B 1).

In the absence of electron-electron interactions, the system
exhibits a vacuum light state with no ground state crossings
because there is no distinction in terms of energy between CM
and relative states. However, when the electron-electron inter-
action and a magnetic field are present, the energy spectrum is
modified, which affects the required couplings for light-matter
transitions. With the Coulomb potential turned on, in Fig 2(c),
a mixed light state with diagonal photon matrix emerges, due
to the resonance condition. These discoveries provide tangible
evidence for violating the KT, since variations in the relative
parameters directly impact the light states, which in turn en-
ables their detection through methods like state tomography
or Wigner function measurements.
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FIG. 3. (a) 〈C〉, 〈Sz〉 and (b) 〈N〉, 〈Lzr 〉, and 〈JD〉 as function of λD = λR = λ at α = 3 and fixed g = 0.18 and g = 0.00 (dashed). (b) Relative
density ρ(�r) with pastel colors, and spin field illustrated by arrows for its in plane components (Sx (�r),Sy(�r)) and by colors for Sz(�r) at (I)
λ = 0.08, (II) λ = 0.15, and (III) λ = 0.19. (c) The associated photon density matrix ρph according to those coupling values, where the bar
height represents |Ci, j | and bar color refers to Arg(Ci j ).

B. Rashba-Dresselhaus SOC

The coexistence of Rashba and Dresselhaus SOCs gives
rise to new counter-rotating terms connecting light and spin
states, as indicated by the second term in Eq. (2c). Similarly,
all the interactions between the CM and relative coordi-
nates of matter with spin must be evaluated, as described
by Eqs. (2b) and (2a). In the presence of strong couplings,
the splitting effects are amplified, resulting in increased en-
tanglement between matter and radiation spin states. This
entanglement is evident in the higher photon number 〈N〉
observed at lower couplings (0.15 < λ < 0.20 and g = 0.18)
in Fig. 3(b) compared to Fig. 2(b) at g = 0.28. Addition-
ally, the photon densities in Fig. 3(d) exhibit off-diagonal
terms and higher Fock states, indicating a greater possibil-
ity of transitions with light states and providing empirical
evidence for spin-radiation virtual transitions. Figures 3(a)
and 3(b) exhibit smooth variations in the expected values
as a consequence of the absence of a conserved quantity
[16,17]. A detailed examination of the changes in cavity
coupling (see Appendix B) further reveals a trend towards
uncorrelated spins and 〈Sz〉 ∼ 0, accompanied by an increase
in 〈N〉. Moving from Fig. 3(c) (I) to (II) results in a reori-
entation of spin densities, with their vortex points shifting
from ±(2.4, 2.4) to ±(2.7, 2.7), and notable alterations in the
associated photon densities, characterized by variations in the
matrix weights. Subsequently, transitioning from Fig. 3(c) (II)
to (III) amplifies the divergent tendencies in the spin texture
along the y = 0.5x axis, accompanied by the emergence of
divergent vortical points at ±(1.3,−1.3). These modifications
also augment the contribution of higher Fock light states
in Fig. 3(d).

Under the same couplings, the electron-electron interaction
once again leads to different light states as compared to the
vacuum state, which is observed when the radiation is off-

resonance at α = 0. Due to the smooth shift from 〈Lzr 〉 ∼ −2
to −1 in Fig. 3(b), the charge density also exhibits a reduction
in the most probable relative radius of locating the electrons,
from r = 1.6 to r = 1.4. This transition is caused by SOC in
the present case, but the cavity is also able to induce it as
demonstrated in Appendix C. In fact, as a result of the KT
violation, light can affect the repulsive effects that depend on
relative coordinates.

IV. SPIN BELL-STATE TEXTURES

The transitions in the QD’s total spin field described in
the previous sections provide evidence of the localization of
spin Bell states. The possibility of observing spin-entangled
states is controlled by tuning SOC strengths, due to resonance
between spin and relative states. However, the presence of the
cavity is crucial for shaping these spin states since it facilitates
new transitions through jumps between Fock states. These
transitions exhibit a staircase-like pattern of correlations (see
Appendix B) which depends on g and leads to modifications
in the densities of the Bell states.

The cavity successfully maintains the trend of 〈Sz〉 < 0 due
to the Dresselhaus SOC, enabling transitions at lower values
of λD [see Fig. 2(a)]. Figures 4(a) illustrates how the singlet
state begins to transition into a state with a higher weight
of |↓↓〉. Then in Fig. 4(b) the densities of the |ψ−〉 (|φ+〉)
exhibit an asymmetric emergence, with radial localization at
r = 2 and maximum values at angles of 0◦ (90◦) caused by
the mixture with relative modes. The cavity-mediated SOC
also introduces contributions from other triplet spin states,
resulting in uncorrelated spins and an increased probabil-
ity density of finding the state |φ+〉 in Fig. 4(c). While it
possesses a clear azimuthal symmetry, local spin transfor-
mations [24] could enhance its strength and facilitate its
detection.

195409-5



S. S. BELTRÁN-ROMERO et al. PHYSICAL REVIEW B 108, 195409 (2023)

FIG. 4. Spin Bell-state distribution ρBell (�r) = NTrph,s(|GS〉〈GS||B〉〈B|)| �R=0, normalized at �R = 0, with respect to the relative coordinates
at λD = 0.22 and α = 3, and (a) g = 0.08, (b) g = 0.16, and (c) g = 0.30. Bell states (|B〉) shown are |φ−〉 (upper left plot), |φ+〉 (upper right
plot), |ψ−〉 (lower left plot), and |ψ+〉 (lower right plot).

Due to the lack of a conserved quantity in the pres-
ence of both SOCs, the Bell-state densities show azimuthal
asymmetry while spin correlations are smoothed and tend
to zero as the couplings increase. Transitions to the |↓↓〉
and |↑↑〉 (caused by Rashba SOC) are facilitated by the
cavity at lower λ despite the SOC’s competition. As seen
in Fig. 5(b), the singlet state is concentrated at coordinates
±(1.75,−1.75), and with increased g coupling, the probabil-
ity to get |ψ±〉 states improves considerably. In Fig. 5(b) the
nonhomogeneous localization of these states is concentrated
in distinct peaks ±(1,−1.6) for |ψ−〉 and ±(1.6,−1) for
|ψ+〉. The different localization within the QD is attributed
to the exclusive combination of each |ψ±〉 states with light
and relative states, demonstrating spatial spin correlations in
microcavities. In Fig. 3(c) the probability of finding the |φ+〉
state increases, exhibiting an azimuthally symmetric density
concentrated at r = 1.5. The presence of triplet states at large
g is explained by the direct coupling of light with these states
in Eq. (2c), and it is consistent with the trend towards un-
correlated spins. Additionally, densities demonstrate a loss of
asymmetry effect, as illustrated also in Appendix C, revealing
an increasing of confinement as a result of strong couplings
with the cavity and mixture with a greater number of light
states.

V. SUMMARY AND DISCUSSION

The interaction of a two-electron QD with cavity coupling,
magnetic fields, and spin-orbit coupling has been investi-
gated in order to understand how these factors contribute to
the formation of polariton states and complex spin-spatial
correlation inhomogeneities. The cavity-mediated spin-orbit
coupling enables interactions between the center-of-mass and
relative modes of the cavity, resulting in mixed light-matter
states. These states provide measurable evidence of KT vi-
olation, where the Coulomb hole is modified by the cavity
and electron-electron interactions alter the light states. Fur-
thermore, the control of spin correlations can be attributed to
the mediation in the radiation-matter coupling.

Dresselhaus spin-orbit-coupling, on one hand, gives rise
to staircase-like spin correlations due to its connection with
transitions involving the conserved quantity JD. On the other
hand, the inclusion of Rashba spin-orbit-coupling leads to the
smoothing of correlations and a tendency towards uncorre-
lated spins, caused by the inclusion of virtual spin-radiation
transitions and subsequent interactions with matter. The
change in correlations is linked to Bell-state generation with
inhomogeneous spatial distributions. In this way, quantum
dots in microwave cavities can potentially be used as an ex-
perimental platform for full solid-state Bell tests [42], where

FIG. 5. Spin Bell-state distribution ρBell (�r) with respect to the relative coordinates at λ = λD = λR = 0.18 and α = 3, and (a) g = 0.12,
(b) g = 0.16, and (c) g = 0.18. The same Bell-state distribution is shown as in Fig. 4.
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the detection of light states reflects the spin properties. Addi-
tionally, the flexible control and measurement of spin states
contribute to the development of protocols for quantum infor-
mation processing with few-particle systems, the generation
of entangled systems, and applications in spintronics [15].
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APPENDIX A: QED-SOC HAMILTONIAN:
CM AND RELATIVE COORDINATES

The introduction of CM and relative coordinates is moti-
vated by the direct coupling of light in the cavity with the
CM states and the analytical solution to the relative part in
the presence of an external magnetic field and a potential
α/r2 [13]. In addition, the bosonic version of our Hamil-
tonian requires the definition of operators that describe the
interaction between Bẑ and two electrons in the QD, without
electron-electron interaction, as

ah = βcm

2

[
(Rx + iηRy) + i

β2
cm

(pcmx + iηpcmy )

]
, (A1a)

αh = βr

2

[
(rx + iηry) + i

β2
r

(
prx + iηpry

)]
, (A1b)

where the right (left) oscillator corresponds to h = R(L) and
η = −1(1). r j and Rj are the relative and CM positions,
and its respective conjugate momentum are prj and pcm j .
In this case �r = �r1 − �r2, �R = 1

2 ( �r1 + �r2), �pcm = �p1 + �p2, and

�pr = 1
2 ( �p1 − �p2). In addition, we fix the variables βcm =

2βr = √
2m∗ω̄. These operators define the creation of parti-

cles whose momentum and position variables follow either
a clockwise or counterclockwise rotation. In their creation
operator form, a†

R (α†
R) defines counterclockwise rotations in

the CM (relative) phase space, while a†
L (α†

L) defines clockwise
rotations in their respective spaces. This will be consistent
with the creation of states that increase their angular momen-
tum by h̄ for a†

R or α
†
R and decrease it by h̄ for a†

L or α
†
L, as will

be described later.
In essence, our Hamiltonian is rearranged as follows:

H =Hcm
o + Hrel

o + H f + �ZSz + Hdip

+ Hcm
soc + Hrel

soc + Hph
soc. (A2)

The unperturbed Hamiltonian is composed by the Zeeman
interaction, along with the harmonic oscillator Hamiltonians
described by

Hcm
o = ωRa†

RaR + ωLa†
LaL + ω̄, (A3a)

Hr
o = ωRα

†
RαR + ωLα

†
LαL + ω̄ + α

r2
, (A3b)

Hph = �

(
a†a + 1

2

)
, (A3c)

where ωR = ω̄ + 1
2ωb, ωL = ω̄ − 1

2ωb. nR, nL (ñR, ñL) are the
associated CM (relative) quantum numbers. In fact, Landau
levels and angular momentum quantum numbers are given by
ncm = nR and mcm = nR − nL (nr = ñR and mr = ñR − ñL).
Due to the analytical solution in relative coordinates [13] a
renormalization in mr worked with the α

r2 potential. Due to
the wave function antisymmetry, the following spin states
are determined: the singlet state [|A〉 = 1√

2
(|↑↓〉 − |↓↑〉)] and

the triplet states [|↑↑〉, |S〉 = 1√
2
(|↑↓〉 + |↓↑〉), |↓↓〉]. These

states must satisfy the condition that even (odd) values of
mr only permit singlet (triplet) spin states. Equation (A3c)
refers to the photonic part with the renormalized frequency
� = 2 g2

ωo
+ ωc due to the diamagnetic term | �A(q)|2.

Regarding interactions, SOC defines a coupling between
spin and angular momentum, through which possible transi-
tions between spin states and independent states of relative,
CM motion, and light are defined. These interactions become
evident when expressed as

Hrel
soc = −i

λDβr

2

[( ωb

2ω̄
− 1

)
αL +

(
1 + ωb

2ω̄

)
α

†
R

]

+

+ λRβr

2

[( ωb

2ω̄
− 1

)
α

†
L +

(
1 + ωb

2ω̄

)
αR

]

+ + H.c.,

(A4a)

Hcm
soc = −i

λDβcm

4

[( ωb

2ω̄
− 1

)
aL +

(
1 + ωb

2ω̄

)
a†

R

]
S+

+ λRβcm

4

[( ωb

2ω̄
− 1

)
a†

L +
(

1 + ωb

2ω̄

)
aR

]
S+ + H.c.,

(A4b)

Hph
SOC = g

√
m∗

2ωo
(−λDa† + iλRa)S+ + H.c., (A4c)

where in this case λD and λR have ωo�o units. The lad-
der operators αR and αL represent the annihilation of right
and left relative oscillators, while aR and aL perform the
same role for the respective CM oscillators. In particular,
the increment in relative angular momentum mr is accom-
plished through operators α

†
R and αL because they cause

(ñR, ñL ) → (ñR + 1, ñL ) = (mr + 1, nr + 1) and (ñR, ñL ) →
(ñR, ñL − 1) = (mr + 1, nr ), respectively. Equivalency hap-
pens with a†

R and aL with the increment in the CM angular
momentum mcm. Additionally, the spin ladder operators
are defined as S± = σ±1 + σ±2 and 
± = σ±1 − σ±2 , which
modifies by one the total spin quantum number. These
operators allow for transitions between spin states, such
as S+ = √

2(|↑↑〉〈S| + |S〉〈↓↓|) and 
+ = √
2(−|↑↑〉〈A| +

|A〉〈↓↓|). Thus, we observe that transitions in triplet states are
related to transitions in CM or photon states, while the ones
that affect the singlet state are combined with relative state
transitions.

Dresselhaus and Rashba SOC define the way in which
matter and radiation couple to the spin. Relative and CM
states exhibit a similar coupling in terms of the creation or
annihilation of spin states, allowing us to define the permitted
transitions and rearrangement of energy levels. In particular,
with cavity-mediated SOC, the light states also induce transi-
tions between spin states, which depend on the simultaneous
presence of SOC strength and the coupling with the cavity

195409-7



S. S. BELTRÁN-ROMERO et al. PHYSICAL REVIEW B 108, 195409 (2023)

field g. This coupling is characterized as rotating (counter-
rotating) between various Fock states and the spin triplet
levels when Dresselhaus (Rashba) SOC is considered. For this
reason, working with Rashba SOC provides insights into the
effects of virtual transitions in light.

On the other hand, the dipolar interaction for right CPL in
the cavity takes the following form:

Hdip = ig

√
ω̄

ωo

[(
1 + ωb

2ω̄

)
a†

Ra +
(

1 − ωb

2ω̄

)
a†

La†
]

+ H.c.

(A5)

In contrast, when working with left CPL, the possible tran-
sitions between matter and radiation are modified, as they
involve the transformation a → a†. Hence, photonic SOC can
also alter the interaction between light states and spin. The
combination of SOC and dipolar interaction is responsible
for the complex entanglement between matter and radiation
states. Furthermore, the enhancement of one or the other
strongly depends on the resonance conditions that are estab-
lished. In particular, our interest in interconnecting relative
states and light states requires overcoming the effects of dipo-
lar interaction. This is possible, as shown in the main text,
through the simultaneous resonance among the relative, spin,
and radiation states.

1. Symmetries and conserved quantities

We focus on only right CPL because the left CPL is equiv-
alent and linear polarization can be written as combination of
CPLs. In fact, whatever combination of Rashba and Dressel-
haus SOC is considered a Hamiltonian with left CPL can be
transformed with parity P (B) = −B, a rotation in spin space

σ+ → i cos(θ )σ+ + sin(θ )σ− with tan(θ ) = λ2
D−λ2

R
2λDλR

and a gL

renormalization into a Hamiltonian with right CPL and the
same SOCs. Similarly, the equivalence between a pure Rashba
and a pure Dresselhaus Hamiltonian has been demonstrated
before through a spin rotation (σx ↔ σy and σz ↔ −σz) and
P (gL ) = −gL [14,16].

The cavity also allows for a conserved quantity when con-
sidering only one CPL and only one SOC. This conserved
quantity is given in general by J = N ± (Lz ± Sz ), which
combines the number of photon operator N , the total an-
gular momentum Lz, and Sz. In parentheses, we present the
conserved quantity for pure Rashba (Dresselhaus) SOC with
+(−) sign, while the sign outside the parentheses depends on
the circular polarization. If the radiation has right (left) CPL,
the sign is +(−). These quantities indicate the appearance of
mixed states between light, matter, and spin.

Working with the interaction α/r2 facilitates the inter-
pretation of SOC-induced interactions. When considering a
conserved quantity J , a matrix block is created by projecting
onto states that share the same J . Considering α/r2 inter-
action, the off-diagonal interaction terms arise solely from
the SOC, whereas with the conventional Coulomb poten-
tial, interactions between relative Landau levels are typically
present. In fact, both the physical interpretation of allowed
transitions and the convergence of energy levels are favored
when employing the inverse square potential. This latter effect
is attributed to the fact that the convergence of Landau levels

occurs at lower values when it depends solely on the SOC, as
the absence of SOC would already guarantee diagonalization
through its analytical solution [13], which is not the case with
the Coulomb potential.

2. Center of mass-photon polaritons:
Bogoliubov transformation

Another aspect to highlight regarding our Hamiltonian is
that in the absence of SOC, the interaction between light and
matter is limited to how radiation couples with the CM. In
fact, this reduced Hamiltonian, given by H = Hcm

o + Hph +
Hdip for right CPL, takes the following form:

H = ωRa†
RaR + ωLa†

LaL + �a†a + ω+(a†
Ra + aRa†)

+ iω−(a†
La† − aLa) + ω̄ + 1

2 (� − ωc), (A6)

where we define ω± = g
√

ω̄
ωc

(1 ± ωb
2ω̄

). The quadratic form

in bosonic operators allows for a Bogoliubov transformation
that decouples the oscillators. Therefore, a unitary transfor-
mation on bosonic operators is defined, where �a = U �b, with
�aT = (aR, aL, a, a†

R, a†
L, a†) and �bT = (b1, b2, b3, b†

1, b†
2, b†

3).
Consequently,

H =
3∑

j=1

ω jb
†
jb j − ωc

2
(A7)

for the three decoupled oscillators, i.e., the center-of-mass-
photon polaritons, which are created and annihilated by b†

j and
b j , respectively, and have corresponding quantum numbers nj .

Similarly, the Bogoliubov transformation modifies the way
in which the spin couples to the CM and photon oscillators.
Then

Hcm−ph
soc :=Hcm

soc + Hph
soc,

= 1√
2
�a† · �λS+ + H.c., (A8)

where �λT = [λRμ+,−iλDμ−, igμ f ,−iλDμ+, λRμ−,−λDμ f ],

with μ± =
√

m∗
4ω̄

(ωb ± 2ω̄) and μ f = g
√

m∗
ωo

, takes the follow-

ing form:

Hcm−ph
soc = 1√

2
�b† · U �λS+ + H.c. (A9)

Therefore, the new coupling parameters are given by �̃λ = U �λ.
Despite being an analytical calculation, the expression for the

coefficients �̃λ is extensive. However, numerically, it is found
that only the frequency of one of the decoupled oscillators,
which we will fix as n3, maintains resonance with the spin.
This oscillator, in turn, has coefficients λ̃3 and λ̃6 that increase
with the cavity coupling, in contrast to what happens with λ̃ j

and λ̃ j+3 for j = {1, 2}.
In summary, with this Bogoliubov transformation in han-

dling the dipolar interaction, only the spin couples to one of
the decoupled oscillators with an interaction that increases
with the cavity coupling g. Consequently, the following max-
imum quantum numbers ensure a small deviation in the lower
energy levels when g = 0.30 (its maximum analyzed value):
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FIG. 6. 〈C〉, 〈Sz〉, 〈N〉, 〈Lzr 〉, 〈JD〉 as function of cavity coupling g at α = 3 (a) with only Dresselhaus λD = 0.22 and (b) with both SOCs
λD = λR = 0.18.

nmax
1 = nmax

2 = 3 for oscillators whose interaction with the
spin does not grow with g, and nmax

3 = 8 because its coupling
depends on g. As for the relative quantum numbers, nmax

r was
set to 2, and mr ranged from −6 to nr . We assess energy con-
vergence by observing that when we increment our maximum
quantum numbers by one, the variation in the three lowest
energy levels is less than 0.001 for the most higher coupling
scenario examined in this study.

APPENDIX B: CAVITY DEPENDENCE
EXPECTED VALUES

Despite the experimental challenges in modifying the
cavity-matter coupling strength, the results obtained by vary-
ing the SOC strength in Fig. 6 demonstrate an increase in g.
Specifically, only Dresselhaus SOC in Fig. 6(a) exhibits the
conserved quantity JD, evident in the staircase-like behavior
(black curve) observed in the energy spectrum of the GS.
Transitions observed correspond to crossings in the GS energy
spectrum, accompanied by simultaneous transitions in other
observables. Notably, changes are observed in 〈Sz〉 and 〈Lz〉,
while a distinct transition occurs in 〈N〉. These radiation mea-
surements allow for the identification of changes in matter.
Furthermore, the cavity is responsible for the transition from
Lzr ∼ −2 to −1 (green curve), indicating a shift in relative
density due to the properties of light. The behavior of spin,
described by a less pronounced staircase pattern compared
to λD, still exhibits transitions in density and a trend towards
negative values of 〈Sz〉 that tend towards zero (red curve) and
uncorrelated spins (purple curve).

In the presence of both SOCs, the absence of a conserved
quantity is evident in the smooth behavior of the expected
values in Fig. 6(b). However, the change from its value at
g = 0 occurs almost simultaneously. In particular, the photon
number exhibits an increasing trend as g enhances the contri-
bution of counter-rotating terms between spin and radiation, in
contrast to the absence of such contribution in the blue curve
of Fig. 6(a). In this case, the Rashba SOC contribution leads to
positive values of 〈Sz〉, but as the cavity introduces interactions
with the triplet, a tendency towards cancellation in 〈Sz〉 and
〈C〉 is observed. The strong entanglement with light states

resulting from the increase in g leads to the loss of corre-
lations, making the contribution of triplet states equivalent.
Indeed, in the energy spectrum, the onset of variations in
different observables is associated with the appearance of
degeneracy in the GS due to a greater contribution of light-
matter states. Finally, the transition observed in 〈Lzr 〉 is
smoothed out, and this smoothing will have consequences on
the charge density, as described elsewhere in this appendix.

1. Second-order perturbation theory for JD crossings

The observed transitions in the presence of only
Dresselhaus SOC, between states with different JD

values, can be analytically explained through second-
order perturbation calculations. At ωb = 1.9, there
is no degeneracy in the levels under study. In the
absence of any coupling (λD = λR = g = 0), the GS is
|A0〉 = |n = 0, ncm = 0, mcm = 0, nr = 0, mr = −2, s = 0〉.
However, due to interactions, the GS becomes a linear
combination of states with JD = −2, with the mentioned
state having a higher weight. Conversely, the lowest
energy polariton with JD = −1, which is composed of
|B0〉 = |n = 1, ncm = 0, mcm = 0, nr = 0, mr = −1, s = 1〉,
tends to decrease its energy and become the GS as the
couplings increase.

Indeed, perturbative calculations reveal this change in
the GS polariton and justify the association between pho-
ton number transitions and those observed in spin and
angular momentum. This analytical approach takes into ac-
count the nearest energy levels, considering that a relatively
large energy difference leads to an insignificant contribution.
The first mentioned state interacts with the states |A1〉 =
|1, 0,−1, 0,−2, 0〉 due to dipolar interaction and |A2〉 =
|0, 0, 0, 0,−1, 1〉 due to the relative part SOC. Meanwhile,
the second state with n = 1 interacts with the states |B1〉 =
|1, 0,−1, 0,−1, 0〉 due to CM SOC, |B2〉 = |0, 1, 1, 0,−1, 1〉
due to dipolar interaction, |B3〉 = |0, 0, 0, 0,−1, 0〉 due to
photonic SOC, and |B4〉 = |1, 0, 0, 0,−2, 0〉 due to relative
SOC. In fact, entanglement with states having different quan-
tum numbers of spin and angular momentum contributes to
the detection of these quantities through light states.
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FIG. 7. (a) Relative radial density ρr (r) := ∫ 2π

0
dφ

2π
Trph,cm,s

(|GS〉〈GS|) (tracing over φr , CM, photon, and spin space) as func-
tion of relative radius at fixed λ = λD = λR = 0, 18, and α = 3 for
different cavity couplings g. Respective relative densities ρrel (�r) :=
Trph,cm,s(|GS〉〈GS|) for (b) g = 0.12, (c) g = 0.16, (d) g = 0.20,
where color indicates its spatial probability magnitude.

The expression for the energy correction of the first state
corresponds to

δEAo =
∣∣ξdip

(
Emat

A1
− Emat

A0

)∣∣2

(
E total

A0
− E total

A1

) +
∣∣1.72ξ rel

soc

(
Emat

A2
− Emat

A0

)∣∣2

(
E total

A0
− E total

A2

) ,

(B1)
where Emat

Aj
= ω̄(ncm + 1

2 − 1
2 (1 − ωb

ω̄
)mcm ) + 1

2ωbmr +
1
2 ω̄(

√
m2

r + α + 1) [13] and E total
Aj

= Emat
Aj

+ �Zs + �n for
the corresponding quantum numbers of |Aj〉 and nr = 0.
On the other hand, the interaction terms are ξ rel

soc = ξ cm
soc =√

2m∗λD(ω2
b + 4ω2

o )−
1
4 and ξdip =

√
2
ωo

g(ω2
b + 4ω2

o )−
1
4 .

Additionally, the factor of 1.72 arises from the matrix element
〈nr = 0, mr = −1|reiφr |nr = 0, mr = −2〉 = 1.72�o due to
the SOC and was calculated using the analytical solution for
the relative degrees of freedom with the 1/r2 potential [13].

For the second state, we have

δEBo =
∣∣ξ cm

soc

(
Emat

B1
− Emat

B0

)∣∣2

(
E total

B0
− E total

B2

) +
∣∣ξdip

(
Emat

B2
− Emat

B0

)∣∣2

(
E total

B0
− E total

B2

)

+ |λDg|2(
E total

B0
− E total

B3

) +
∣∣1.72ξ rel

soc

(
Emat

B4
− Emat

B0

)∣∣2

(
E total

B0
− E total

B4

) .

(B2)

When calculating the energy difference between the corrected
energies, �EAB = E total

Ao
− E total

Bo
+ δEAo − δEBo , we observe

that λD increases this difference, while on the other hand, g
through dipolar interaction and photonic SOC reduces �EAB.
The influence of higher-energy states must be taken into
consideration in these calculations in order to accurately di-
agonalize the Hamiltonian, even though they show evidence
for transitions between states with JD = −2 and JD = −1 as
the couplings grow. Additionally, the explanation for further
polariton transitions in the GS is analogous, as demonstrated
previously and in the main text.

APPENDIX C: CAVITY-EFFECTIVE
ELECTRON-ELECTRON INTERACTION

In the presence of both SOCs and electron-electron interac-
tion, Luo et al. [16,17] demonstrated that at certain magnetic
fields with noninteger expected values, azimuthally asymmet-
ric charge densities are observed. Such densities are shown in
Fig. 7(b), where the density is maximum near (−1.5, 1.5) and
(1.5,−1.5), and this pattern is replicated for couplings less
than or equal to g = 0.12. However, as the coupling strength
increases along the values where 〈Lzr 〉 smoothly transitions
from −2 to −1, a smooth transition of the charge density
occurs as well, as shown in Fig. 7(a). In this transition, as
also evident in Figs. 7(c) and 7(d), the Coulomb hole reduces
smoothly from r = 1.6 to r = 1.4. Moreover, the previously
observed asymmetry is lost due to the coupling with the states
of light and spin. The polariton states that entangle relative
space, spin, and radiation start to strongly depend on a series
of radiation states that confine the QD to a certain radius,
similar to the electron-electron interaction. Therefore, there
is measurable evidence of the violation of the KT.

[1] D. De Bernardis, T. Jaako, and P. Rabl, Cavity quantum elec-
trodynamics in the nonperturbative regime, Phys. Rev. A 97,
043820 (2018).

[2] P. Forn-Díaz, L. Lamata, E. Rico, J. Kono, and E. Solano,
Ultrastrong coupling regimes of light-matter interaction, Rev.
Mod. Phys. 91, 025005 (2019).

[3] A. F. Kockum, A. Miranowicz, S. D. Liberato, S. Savasta, and F.
Nori, Ultrastrong coupling between light and matter, Nat. Rev.
Phys. 1, 19 (2019).

[4] F. Appugliese, J. Enkner, G. L. Paravicini-Bagliani, M. Beck,
C. Reichl, W. Wegscheider, G. Scalari, C. Ciuti, and J. Faist,
Breakdown of topological protection by cavity vacuum fields in
the integer quantum Hall effect, Science 375, 1030 (2022).

[5] A. Farooqui, J. Breeland, M. Aslam, M. Sadatgol, S. Ozdemir,
M. Tame, L. Yang, and D. Güney, Quantum entanglement dis-
tillation with metamaterials, Opt. Express 23, 17941 (2015).

[6] Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Ob-
servation of Floquet-Bloch states on the surface of a topological
insulator, Science 342, 453 (2013).

[7] X. Mi, M. Benito, S. Putz, D. M. Zajac, J. M. Taylor, G.
Burkard, and J. R. Petta, A coherent spin–photon interface in
silicon, Nature (London) 555, 599 (2018).

[8] K. Lagoudakis, K. Fischer, T. Sarmiento, A. Majumdar, A.
Rundquist, J. Lu, M. Bajcsy, and J. Vuckovic, Deterministically
charged quantum dots in photonic crystal nanoresonators for ef-
ficient spin-photon interfaces, New J. Phys. 15, 113056 (2013).

195409-10

https://doi.org/10.1103/PhysRevA.97.043820
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1126/science.abl5818
https://doi.org/10.1364/OE.23.017941
https://doi.org/10.1126/science.1239834
https://doi.org/10.1038/nature25769
https://doi.org/10.1088/1367-2630/15/11/113056


CAVITY-INDUCED SWITCHING BETWEEN BELL-STATE … PHYSICAL REVIEW B 108, 195409 (2023)

[9] T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V.
Vuletić, and M. D. Lukin, Nanophotonic quantum phase switch
with a single atom, Nature (London) 508, 241 (2014).

[10] C. J. van Diepen, T.-K. Hsiao, U. Mukhopadhyay, C. Reichl,
W. Wegscheider, and L. M. K. Vandersypen, Quantum simu-
lation of antiferromagnetic Heisenberg chain with gate-defined
quantum dots, Phys. Rev. X 11, 041025 (2021).

[11] C. Y. Hu, W. J. Munro, and J. G. Rarity, Deterministic photon
entangler using a charged quantum dot inside a microcavity,
Phys. Rev. B 78, 125318 (2008).

[12] C. Huang, A. Ahrens, M. Beutel, and K. Varga, Two electrons
in harmonic confinement coupled to light in a cavity, Phys. Rev.
B 104, 165147 (2021).

[13] L. Quiroga, D. Ardila, and N. F. Johnson, Spatial correlation of
quantum dot electrons in a magnetic field, Solid State Commun.
86, 775 (1993).

[14] D. V. Bulaev and D. Loss, Spin relaxation and anticrossing in
quantum dots: Rashba versus Dresselhaus spin-orbit coupling,
Phys. Rev. B 71, 205324 (2005).

[15] D. Awschalom, L. Bassett, A. Dzurak, E. Hu, and J. Petta,
Quantum spintronics: Engineering and manipulating atom-like
spins in semiconductors, Science 339, 1174 (2013).

[16] W. Luo, A. Naseri, J. Sirker, and T. Chakraborty, Unique spin
vortices in quantum dots with spin-orbit couplings, Sci. Rep. 9,
672 (2019).

[17] W. Luo and T. Chakraborty, Tuning the topological features of
quantum-dot hydrogen and helium by a magnetic field, Phys.
Rev. B 100, 085309 (2019).

[18] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[19] M. K. Singh, P. K. Jha, and A. B. Bhattacherjee, Spin and tun-
neling dynamics in an asymmetrical double quantum dot with
spin-orbit coupling: Selective spin transport device, J. Appl.
Phys. 122, 114301 (2017).

[20] M. Vagadia, J. Sahoo, A. Kumar, S. Sardar, T. M. Tank, and
D. S. Rana, Rashba spin-orbit coupling induced modulation of
magnetic anisotropy in canted antiferromagnetic heterostruc-
tures, Phys. Rev. B 107, 064420 (2023).

[21] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki,
Gate control of spin-orbit interaction in an inverted
In0.53Ga0.47As/In0.52Al0.48As heterostructure, Phys. Rev.
Lett. 78, 1335 (1997).

[22] M. P. Nowak, B. Szafran, F. M. Peeters, B. Partoens, and W. J.
Pasek, Tuning of the spin-orbit interaction in a quantum dot by
an in-plane magnetic field, Phys. Rev. B 83, 245324 (2011).

[23] J. Petta, A. Johnson, J. Taylor, E. Laird, A. Yacoby, M. Lukin,
C. Marcus, M. Hanson, and A. Gossard, Applied physics: Co-
herent manipulation of coupled electron spins in semiconductor
quantum dots, Science 309, 2180 (2005).

[24] D. Shin, B. Henson, S. Hodgman, T. Wasak, J. Chwedeczuk,
and A. Truscott, Bell correlations between spatially separated
pairs of atoms, Nat. Commun. 10, 4447 (2019).

[25] D. Loss and D. P. DiVincenzo, Quantum computation with
quantum dots, Phys. Rev. A 57, 120 (1998).

[26] V. Giesz, N. Somaschi, G. Hornecker, T. Grange, B.
Reznychenko, L. De Santis, J. Demory, C. Gomez Carbonell,
I. Sagnes, A. Lemaítre et al., Coherent manipulation of a solid-

state artificial atom with few photons, Nat. Commun. 7, 11986
(2016).

[27] B. Real, N. Carlon Zambon, P. St-Jean, I. Sagnes, A. Lemaître,
L. Le Gratiet, A. Harouri, S. Ravets, J. Bloch, and A. Amo,
Chiral emission induced by optical Zeeman effect in polariton
micropillars, Phys. Rev. Res. 3, 043161 (2021).

[28] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, Circuit
quantum electrodynamics, Rev. Mod. Phys. 93, 025005 (2021).

[29] J. C. Owens, M. G. Panetta, B. Saxberg, G. Roberts, S.
Chakram, R. Ma, A. Vrajitoarea, J. Simon, and D. I. Schuster,
Chiral cavity quantum electrodynamics, Nat. Phys. 18, 1048
(2022).

[30] M. Nurizzo, B. Jadot, P.-A. Mortemousque, V. Thiney, E.
Chanrion, D. Niegemann, M. Dartiailh, A. Ludwig, A. D.
Wieck, C. Bäuerle et al., Complete readout of two-electron
spin states in a double quantum dot, PRX Quantum 4, 010329
(2023).

[31] K. Teichmann, M. Wenderoth, H. Prüser, K. Pierz, H.
Schumacher, and R. Ulbrich, Harmonic oscillator wave func-
tions of a self-assembled InAs quantum dot measured by
scanning tunneling microscopy, Nano Lett. 13, 3571 (2013).

[32] G. Rodary, L. Bernardi, C. David, B. Fain, A. Lemaitre, and
J.-C. G. Girard, Real space observation of electronic coupling
between self-assembled quantum dots, Nano Lett. 19, 3699
(2019).

[33] M. Kolmer, P. Olszowski, R. Zuzak, S. Godlewski, C. Joachim,
and M. Szymonski, Two-probe STM experiments at the atomic
level, J. Phys.: Condens. Matter 29, 444004 (2017).

[34] M. Eltschka, B. Jäck, M. Assig, O. V. Kondrashov, M. A.
Skvortsov, M. Etzkorn, C. R. Ast, and K. Kern, Probing ab-
solute spin polarization at the nanoscale, Nano Lett. 14, 7171
(2014).

[35] W. Kohn, Cyclotron resonance and de haas-van alphen oscil-
lations of an interacting electron gas, Phys. Rev. 123, 1242
(1961).

[36] N. F. Johnson and M. C. Payne, Exactly solvable model of
interacting particles in a quantum dot, Phys. Rev. Lett. 67, 1157
(1991).

[37] N. F. Johnson and L. Quiroga,Analytic results for N particles
with 1/r2 interaction in two dimensions and an external mag-
netic field, Phys. Rev. Lett. 74, 4277 (1995).

[38] N. F. Johnson and L. Quiroga, Microscopic analytical theory
of a correlated, two-dimensional n-electron gas in a magnetic
field, J. Phys.: Condens. Matter 9, 5889 (1997).

[39] J. M. Kinaret, Y. Meir, N. S. Wingreen, P. A. Lee, and X.-G.
Wen, Many-body coherence effects in conduction through a
quantum dot in the fractional quantum Hall regime, Phys. Rev.
B 46, 4681 (1992).

[40] J. H. Reina, L. Quiroga, and N. F. Johnson, NMR-based nanos-
tructure switch for quantum logic, Phys. Rev. B 62, R2267(R)
(2000).

[41] M. Cardona, N. E. Christensen, and G. Fasol, Relativistic band
structure and spin-orbit splitting of zinc-blende-type semicon-
ductors, Phys. Rev. B 38, 1806 (1988).

[42] A. Bordoloi, V. Zannier, L. Sorba, C. Schönenberger, and A.
Baumgartner, Spin cross-correlation experiments in an electron
entangler, Nature (London) 612, 454 (2022).

195409-11

https://doi.org/10.1038/nature13188
https://doi.org/10.1103/PhysRevX.11.041025
https://doi.org/10.1103/PhysRevB.78.125318
https://doi.org/10.1103/PhysRevB.104.165147
https://doi.org/10.1016/0038-1098(93)90107-X
https://doi.org/10.1103/PhysRevB.71.205324
https://doi.org/10.1126/science.1231364
https://doi.org/10.1038/s41598-018-35837-y
https://doi.org/10.1103/PhysRevB.100.085309
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1063/1.4985797
https://doi.org/10.1103/PhysRevB.107.064420
https://doi.org/10.1103/PhysRevLett.78.1335
https://doi.org/10.1103/PhysRevB.83.245324
https://doi.org/10.1126/science.1116955
https://doi.org/10.1038/s41467-019-12192-8
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1038/ncomms11986
https://doi.org/10.1103/PhysRevResearch.3.043161
https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.1038/s41567-022-01671-3
https://doi.org/10.1103/PRXQuantum.4.010329
https://doi.org/10.1021/nl401217q
https://doi.org/10.1021/acs.nanolett.9b00772
https://doi.org/10.1088/1361-648X/aa8a05
https://doi.org/10.1021/nl5037947
https://doi.org/10.1103/PhysRev.123.1242
https://doi.org/10.1103/PhysRevLett.67.1157
https://doi.org/10.1103/PhysRevLett.74.4277
https://doi.org/10.1088/0953-8984/9/27/018
https://doi.org/10.1103/PhysRevB.46.4681
https://doi.org/10.1103/PhysRevB.62.R2267
https://doi.org/10.1103/PhysRevB.38.1806
https://doi.org/10.1038/s41586-022-05436-z

