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Majorana bound states in germanium Josephson junctions via phase control
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We consider superconductor-normal-superconductor-normal-superconductor (SNSNS) planar Josephson
junctions in hole systems with spin-orbit interaction that is cubic in momentum (CSOI). Using only the
superconducting phase difference, we find parameter regimes where junctions of experimentally achievable
transparency can enter a topological superconducting phase with Majorana bound states (MBSs) at the junction
ends. In planar germanium heterostructures CSOI can be the dominant form of SOI and extremely strong. We
show analytically and numerically that, within experimental regimes, our results provide an achievable roadmap
for a new MBS platform with low disorder, minimal magnetic fields, and very strong spin-orbit interaction,
overcoming many of the key deficiencies that have so far prevented the conclusive observation of MBSs.
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I. INTRODUCTION

Majorana bound states (MBSs) [1–7] hold promise for
topological quantum computing [8–10]. However, despite
enormous effort there has been no conclusive observation
of MBSs so far. Key reasons postulated for this are: (1)
the level of disorder, which can result in spurious signals
that mimic MBSs [11–30]; (2) the small energy scales in-
volved, especially due to the metalization of a semiconductor
by a superconductor [31–39]; and (3) many protocols re-
quire large magnetic fields [40–53] that are detrimental to
superconductors.

Germanium (Ge) has been one of the most used semi-
conductors since the early days of electronics. The continual
interest in Ge [54–67] has resulted in an extremely high qual-
ity material [66,68], with ultralong mean free paths (MFPs) of
up to 30 µm [69]. Also, two-dimensional hole gases (2DHG)
in Ge have become prominent platforms for quantum infor-
mation processing [70–78]. Recently, there have also been
significant advances in fabricating hybrid superconductor-Ge
devices [79–85]. Finally, a most attractive feature of Ge is
the large spin-orbit interaction (SOI) [86–90], enabling, e.g.,
ultrafast qubit operations [66,91–96]. Most notably, cubic SOI
(CSOI) is very strong in Ge 2DHGs [97–100] and results in
spin-split Fermi surfaces with large mismatches in velocities,
playing a central role in the following.

Despite ultralong MFPs and strong SOI, the small
in-plane g factor of Ge (|g| � 1.5) [66,80,93,101–104]
is a considerable obstacle to realize MBSs because large
Zeeman energies are often required [105,106]. Only a few
proposals have eliminated the need for Zeeman terms, such
as time-reversal invariant setups with Kramers pairs of
MBSs [107–117]. However, they complicate braiding, thus,
systems with broken time-reversal symmetry are preferable.

*melina.luethi@unibas.ch

For instance, a π -phase difference across superconductor-
normal-superconductor (SNS) Josephson junctions requires
only a reduced Zeeman energy to produce MBSs
[52,53,106,118–120] and enhanced orbital effects in, e.g.,
topological insulator nanowires enable MBSs without any
Zeeman effect [121–123]. Interestingly, utilizing only phase
differences in planar SNSNS Josephson junctions (see Fig. 1)
it was recently shown that MBSs can exist in electron systems
with linear SOI [124]. However, a significant mismatch in
velocities of the inner and outer spin-split Fermi surfaces is
required, which is difficult to achieve using linear SOI [124].

Here, instead we focus on holes in valence bands described
by the Luttinger-Kohn Hamiltonian. We show analytically and
numerically that achieving topological superconductivity in
SNSNS Josephson junctions with CSOI requires also only
phase differences, thereby extending the mechanism proposed
for electrons [124] to a different class of systems. Moreover,
for such hole systems one finds conditions on the ideal junc-
tion geometry that enable large topological regions of phase

FIG. 1. An SNSNS junction consists of three sections with
proximity-induced superconductivity (blue) and two normal con-
ducting sections (red) of width WN,l and WN,r . The proximity-induced
superconducting gaps are �l, �m, and �r , and the corresponding su-
perconducting phases are −θ , φ, and θ . The middle superconductor
has a width WS. The two outer superconductors have widths WS,l and
WS,r. In the analytical calculations, WS,l and WS,r are infinite, whereas
they are finite for the numerical calculations.
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FIG. 2. (a) Analytically calculated phase diagram [see Eq. (7)] for different CSOI strengths α, compared to α0 = 1600 meV nm3 [106],
which is also the CSOI strength used in panels (b–d). The topological phase is indicated by the hatched region. The two different Fermi
velocities v1 and v2, and Fermi momenta k1 and k2 are shown in the inset. The larger α is, the more v1 and v2 differ and therefore the larger is
the topological phase. (b) Numerically calculated bulk gap closing points, i.e., the points where E (kx = 0) = 0, for different transparencies τ

controlled via the tunneling barrier height μb. The topological phase is indicated by the hatched region. An imperfect transparency reduces the
size of the topological phase region, therefore highly transparent junctions are favorable. We set μb = 0 for τ ≈ 1, μb = 1.3 meV for τ = 0.98,
and μb = 6.0 meV for τ = 0.94. (c) Minimum energy minθ |E (kx = 0, φ = 0, θ )| in the semi-infinite geometry at kx = 0 and φ = 0. The
tunneling barrier is fixed to 2 meV. The dashed lines indicate the ideal junction geometry conditions of Eq. (8), for which a topological phase
exists even at a low transparency. (d) Profile of the probability distribution |�|2 (arbitrary units) of the lowest energy state, i.e., the MBS (dark
blue, E/�m = 7.4 · 10−6), the first excited state (yellow, E/�m = 0.035), and the third excited state (pink, E/�m = 0.037), going through the
left normal section in the finite geometry. The second excited state is not shown because it looks similar to the first excited state. In contrast
to all other calculations shown, the junction here has a finite length Lx = 2 µm in x direction. The inset shows the local density of states
(LDOS) integrated over a small section at the junction end for three different energy broadening coefficients (�E , 2�E , and 4�E , where
�E is the average level spacing), see Appendix E. Although there are several in-gap states, the MBSs are well discernible as zero-energy
peaks because the Andreev bound states are delocalized over the full length of the normal section. The parameters, taken from Ref. [106],
are h̄2/2m∗ = 580 meV nm2, αa = 0, β = 4600 meV nm4, μ = 2.4 meV, �0 = 0.26 meV in panels (a–c), and �0 = 0.8 meV in panel (d).
The junction size in panels (a) and (b) is WN = 28 nm and WS = 130 nm. In panel (d) WN = 20 nm and WS = 68 nm. These parameters
reveal the qualitative behavior of the system and are easily tractable numerically. We study realistic parameters later; see Fig. 3. We give all
parameters rounded to two significant digits. All parameter values used for the numerical calculations are given in Appendix B 3.

space, even for reduced junction transparencies. Finally, an
in-plane magnetic field provides additional fingerprints of the
topological phase. Using realistic parameters for Ge 2DHGs,
we argue that recent advances in superconductor-Ge devices
enable MBSs to be realized in an experimentally accessible
regime. Our results provide a roadmap to achieve topological
superconductivity using only weak magnetic fields in a mate-
rial with ultralong MFPs and large SOI.

The structure of this paper is as follows. We introduce our
setup as well as the corresponding Hamiltonian and show
results for toy model parameters in Sec. II. In Sec. III, we
present results for realistic parameters for Ge, and, further-
more, discuss the effect of an external Zeeman field. We
conclude in Sec. IV. In the Appendix, we give more infor-
mation on the numerical calculations and give derivations of
equations shown in the main text.

II. SNSNS JOSEPHSON JUNCTIONS WITH CSOI

Materials with CSOI have large differences in veloci-
ties at the inner and outer Fermi surfaces; see Fig. 2(a).
In particular, a 2DHG in Ge confined to the crystallo-
graphic xy plane [97,125] has large and dominant CSOI of
Rashba type with negligible linear SOI [126]. Anticipating
superconductivity, we introduce the Nambu basis �(x, y) =
(ψ↑(x, y) ψ↓(x, y) ψ

†
↑(x, y) ψ

†
↓(x, y))T , where ψ†

s (x, y) cre-
ates a particle at position (x, y) with spin s. In this basis,

the effective Hamiltonian of a Ge 2DHG, derived using the
Luttinger-Kohn formalism, is [97–99]

Heff =
[
− h̄2

2m∗
(
∂2

x + ∂2
y

) − μ

]
τz + 2iα

[
∂y

(
∂2

y − 3∂2
x

)
σx

+ ∂x
(
∂2

x − 3∂2
y

)
σyτz

] − 2iαa
(
∂2

x + ∂2
y

)
(∂yσx + ∂xσyτz ),

(1)

where m∗ is the effective mass, σi (τi) are the Pauli ma-
trices acting in spin (particle-hole) space, and α and αa

are the strengths of the CSOI. The term αa comes from
anisotropic corrections and for Ge αa � α [97]. As dis-
cussed in Ref. [106], throughout we also introduce a quartic
term H4 = β(∂4

x + ∂4
y + 2∂2

x ∂2
y )τz to avoid spurious additional

Fermi surfaces in discretized numerical calculations. The ex-
act size of β does not affect our results. The energy spectrum
of the full normal state Hamiltonian H = Heff + H4 in mo-
mentum space has two spin-split Fermi surfaces, labeled by
j = 1 ( j = 2) for the inner (outer) Fermi surface. The corre-
sponding Fermi velocities are different, see inset of Fig. 2(a).
These velocities may be tuned by varying the SOI strength
or the chemical potential μ. The SNSNS junction comprises
three sections that are proximitized by superconductors and
two normal sections between them; see Fig. 1. The Hamilto-
nian for the proximity-induced superconducting potential is

HSC = iσy[�∗(y)τ+ − �(y)τ−]/2, (2)
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with τ± = τx ± iτy and

�(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�le−iθ if y < −WN,l − WS
2 ,

�meiφ if − WS
2 � y < WS

2 ,

�reiθ if WN,r + WS
2 � y,

0 otherwise,

(3)

where WN,l (WN,r) is the width of the left (right) normal sec-
tion, and WS the width of the middle superconductor.

While a Zeeman field is not required to enter the topolog-
ical phase, we will demonstrate later that it can be beneficial
and provide additional features to distinguish MBSs from
trivial bound states. The Hamiltonian for a magnetic field
of strength B applied in x direction along the junction is
HZ = �Z (y)σxτz, where for simplicity we use

�Z (y) =

⎧⎪⎪⎨
⎪⎪⎩

�Z if − WN,l − WS
2 � y < −WS

2 ,

or WS
2 � y < WN,r + WS

2 ,

0 otherwise,

(4)

and �Z = gμBB with g the g factor of the material and μB the
Bohr magneton. The induced superconducting gap is reduced
as a magnetic field is applied, however, we focus on small
magnetic fields and therefore neglect the reduction of the
induced gap. To take into account that the junction does not
have perfect transparency, we introduce a potential barrier
Hb = μb(y)τz, where

μb(y) =
{

μb if yb − Wb
2 � y < yb + Wb

2 ,

0 otherwise,
(5)

where yb ∈ {−WN,l − WS
2 ,−WS

2 , WS
2 ,WN,r + WS

2 } and Wb is the
width of the barrier. The full Hamiltonian of the system is

H = Heff + H4 + HSC + HZ + Hb. (6)

For now, neglecting the potential barrier and, for simplicity,
assuming that WN,l = WN,r ≡ WN and that the Fermi velocities
in both normal conducting sections are equal, the phase tran-
sition curves are given by

cos

(
θ + 2�ZWN(−1) j

vN
j

)
+ tanh

(
WS�m

vS,m
j

)
cos (φ) = 0,

(7)

where j = 1 ( j = 2) indicates the inner (outer) Fermi surface
and vN

j (vS,m
j ) are the Fermi velocities of the corresponding

Fermi surface in the normal conducting (middle supercon-
ducting) section. The topological phase is between the two
curves defined by j = 1 and j = 2. In Appendix A, we con-
sider a more general case of WN,l 	= WN,r as well as of different
Fermi velocities in each section. A larger CSOI strength α

results in a larger difference of velocities at the Fermi level,
which increases the topological region of phase space; see
Fig. 2(a).

To study the system numerically, the full Hamiltonian H
is discretized. We utilize two different geometries: In the
finite geometry, a finite extent in both x and y direction is
assumed. In the semi-infinite geometry, it is assumed that
the junction has a finite extent along the y direction, but is
infinitely extended along the x direction, in this case, the

momentum kx along the x axis is a good quantum number.
The discretized Hamiltonians for both cases are given in
Appendix B. In the following, for simplicity, we also assume
a constant pairing potential, �l = �m = �r = �0, in the
superconducting sections.

The topological phase transition is of class D [124], which
is characterized by a closing of the bulk gap at momentum
kx = 0 [53]. This allows us to calculate the phase diagram
numerically; see Fig. 2(b). Imperfect transparency has a no-
ticeable effect on the phase diagram, reducing the topological
region of phase space. To estimate the transparency, we calcu-
late the current-phase relation, see Appendix C. An imperfect
transparency is caused by normal reflection at the SN inter-
faces [53], which is neglected in the analytical derivation.
However, assuming WN,l = WN,r ≡ WN and Fermi momenta
k1 (k2) for the inner (outer) Fermi surfaces within the junction,
see inset of Fig. 2(a), values for WN and WS exist for which the
effects of scattering are minimized (see Appendix D)

WN = (2n + 1)π

k1 + k2
, WS + WN = 2mπ

k1 + k2
, n, m ∈ Z. (8)

We will refer to the conditions in Eq. (8) as the ideal junction
geometry. At kx = 0 and φ = 0—the region where the topo-
logical phase disappears last with decreasing transparency—
the minimum energy for varying θ , minθ |E (kx = 0, φ =
0, θ )|, determines whether a topological phase can still exist at
a certain value of the tunneling barrier μb. If the minimum is
zero, a topological phase still exists. Therefore, at sufficiently
high tunneling barriers, only systems with WS and WN close
to the ideal junction geometry can still be topological; see
Fig. 2(c). In an experiment, however, WS and WN are fixed
after fabrication. In this case, the chemical potential can be
tuned, which changes the Fermi momenta and therefore brings
the system into a favorable configuration, where either one
of the ideal junction geometry conditions is fulfilled, see
Appendix D. Systems in which both conditions of the ideal
junction geometry are fulfilled are particularly favorable, as
they allow for topological phases with particularly low trans-
parencies. The deviation between the numerical and analytical
ideal junction geometry in Fig. 2(c) is further discussed in
Appendix D.

Although the topological gap of an SNSNS junction might
not be large, as is also the case in SNS junctions [53,106],
MBSs are still clearly discernible as zero-energy peaks in the
LDOS at the junction ends because the low-energy Andreev
bound states in planar Josephson junctions are delocalized
over the full length of the normal section; see Fig. 2(d) and
Appendix F.

III. REALISTIC PARAMETERS FOR GERMANIUM

So far, using toy model parameters, we have demonstrated
that an SNSNS junction based on a material with CSOI is a
good candidate to host MBSs and we have shown the qual-
itative behavior of such systems. It was shown in Ref. [85]
that fabricating Ge SNS junctions with transparencies up to
0.96 is possible. Using realistic parameters, we find a finite
topological region of phase space, as shown in Fig. 3(a). We
note that the topological gap in this realistic case is rather
small, however, we discussed in Fig. 2(d) that the first few
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FIG. 3. (a) Phase diagram for realistic Ge parameters, without Zeeman field. The black line indicates the topological phase transition. In
the topological phase (purple area), we calculate the topological gap Eg, which is defined in the semi-infinite geometry as Eg = minkx |E (kx )|.
For realistic parameters we find that there exists a finite topological region of phase space. (b) Phase diagram for realistic Ge parameters, with a
small external Zeeman field �Z in x direction. Without any Zeeman field, the phase diagram is symmetric under a π -rotation about (π/2, π/2).
Adding a Zeeman term breaks this symmetry, but increases the total area of the topological phase space. (c) The distance δθ between the two
phase transition curves at different values of φ as a function of the Zeeman field �Z . The dots (lines) represent numerical (analytical) results.
Panels (b) and (c) demonstrate that the magnetic field breaks the rotational symmetry of phase space, giving an additional tool to distinguish
MBSs from trivial states. For Ge, we use the following parameters [106,127]: h̄2/2m∗ = 620 meV nm2, α = 190 meV nm3, αa = 23 meV
nm3, μ = 7.4 meV, WS = 170 nm, WN,l = WN,r = 72 nm, β = 74 meV nm4, and μb = 12 meV such that the transparency of the junction is
τ = 0.96 (see Appendix C for more information about the transparency calculation). We set the induced superconducting gap in germanium to
�m = 0.49 meV, which is from Ref. [84], where germanium is proximitized by superconducting aluminum and niobium. All parameters are
rounded to two significant digits. All parameter values used for the numerical calculations are given in Appendix B 3.

excited states of planar Josephson junctions are spatially more
extended than the MBSs. Therefore, a clear zero-energy peak
in the local density of states at the junction ends is to be
expected.

A. Including a Zeeman field

Given the small g factor in Ge, a considerable advantage of
a planar SNSNS junction compared to SNS junctions is that
no Zeeman field is required to enter the topological phase.
However, applying a magnetic field parallel to the junction
does not destroy the topological region of phase space. In
fact, a parallel magnetic field increases the total area of the
topological phase region, see Fig. 3(b) and Appendix A 1. A
magnetic field further breaks inversion symmetry which gives
an additional tool to distinguish MBSs from trivial states; see
Fig. 3(c). Here, we plot the distance δθ between the two phase
transition curves at a fixed φ. Although the total topological
area of phase space increases with a magnetic field, depending
on φ and the sign of �Z , the difference δθ may increase or
decrease. This is important because the antisymmetric be-
havior of the topological phase in a magnetic field provides
an extra signature by which we can distinguish topological
from trivial features. For instance, a zero-bias peak with a
topological origin would be expected to be less robust against,
e.g., changes in the superconducting phase difference θ for
the magnetic field in one direction compared to the opposite
direction, because δθ (�Z ) 	= δθ (−�Z ).

IV. CONCLUSION

We demonstrated that the dominant cubic SOI in a Ge
2DHG is ideal for hosting MBSs in SNSNS junctions. The
SNSNS junction enters the topological phase without any

Zeeman term, which eliminates the large magnetic fields that
enable many trivial effects to mimic MBSs and provides a
route to topological superconductivity in Ge despite the small
g factor. Further, we show that an imperfect transparency
is detrimental for the topological phase. However, we de-
rive conditions on the ideal junction geometry for which a
topological phase exists for experimentally achievable trans-
parencies and parameters. The ideal junction geometry can
be approached, e.g., by gating the junction. Finally, although
not necessary for MBSs within our setup, we also show that
a Zeeman field increases the topological phase region and
provides an additional tool to distinguish MBSs from trivial
states.
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APPENDIX A: DERIVATION OF PHASE DIAGRAM
WITH A ZEEMAN FIELD

In this Appendix, the analytical expression for the topo-
logical phase transition curve [see Eq. (7)] is derived. The
derivation generalizes the one of Ref. [124] by including also
a magnetic field in x direction. Perfect transparency of the
junction is assumed. Later, in Appendix D, we will consider
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FIG. 4. Spectrum of the effective Hamiltonian Heff + H4 defined
in the main text for kx = 0 with the linearized functions L± (left
movers) and R± (right movers), the Fermi momenta ±k1,2, and the
Fermi velocities ±v1,2. The color indicates the expectation value 〈Sx〉
of the spin in x direction.

the impact of imperfect transparency and demonstrate the
existence of an ideal junction geometry.

Since a topological phase transition is characterized by a
bulk gap closing at kx = 0, we set kx = 0 in the momentum
space version of Eq. (1) and linearize the spectrum, giving
four branches; see Fig. 4. We assume that the Zeeman term
is only a perturbation to the spectrum and therefore linearize
without the Zeeman term. For kx = 0, the Hamiltonian com-
mutes with σx and therefore the spin along the x direction Sx is
a good quantum number. Based on the direction of the Fermi
velocity and the spin of the branch, we label the slow-varying
fermionic fields as L±(ky) and R±(ky) (L refers to left-movers,
R to right-movers, and the ± labels the spin eigenvalues) and
their corresponding Fermi momenta and Fermi velocities as
k j and v j , j = 1, 2, respectively. The linearized spectrum is
thus given by [7]

Hkin = −v2L†
+k̂yL+ − v1L†

−k̂yL− + v1R†
+k̂yR+ + v2R†

−k̂yR−,

(A1)

where k̂y is the momentum operator in y direction and we
assume v j > 0 and k j > 0. Since σx commutes with the
Hamiltonian, we will consider only states ψ± that are si-
multaneous eigenstates of σx and the Hamiltonian, the index
± indicating their eigenvalue with respect to σx. Using the
linearized ansatz, ψ± can be written as [7,128]

ψ+(y) =e−ik2yL+(y) + eik1yR+(y),

ψ−(y) =e−ik1yL−(y) + eik2yR−(y). (A2)

To get the linearized version of the superconducting and
the Zeeman term, we use

ψ↑ = 1√
2

(ψ+ + ψ−), ψ↓ = 1√
2

(ψ+ − ψ−), (A3)

where ψ↑/↓ are spin eigenstates of σz. Assuming a super-
conducting term with pairing potential � and phase γ , the

superconducting part becomes

HSC = �

2
{[ψ↑ψ↓ − ψ↓ψ↑]eiγ + [ψ†

↓ψ
†
↑ − ψ

†
↑ψ

†
↓]e−iγ }

=�

2
{[L−R+ − R+L− + R−L+ − L+R−]eiγ

+ [R†
+L†

− − L†
−R†

+ + L†
+R†

− − R†
−L†

+]e−iγ }
+ oscillating terms, (A4)

while the Zeeman term with Zeeman field �Z reads

HZ =�Z [ψ†
↑ψ↓ + ψ

†
↓ψ↑]

=�Z [L†
+L+ + R†

+R+ − L†
−L− − R†

−R−]

+ oscillating terms. (A5)

In the following, we neglect the fast oscillat-
ing terms [7]. In the basis c(ky) = (R+, L†

−,

L−, R†
+, R−, L†

+, L+, R†
−)T , the full Hamiltonian

H = Hkin + HSC + HZ is block-diagonal:

H =

⎛
⎜⎜⎝
H(v1ky) 0 0 0

0 −H(v1ky) 0 0
0 0 −H(−v2ky) 0
0 0 0 H(−v2ky)

⎞
⎟⎟⎠,

(A6)

H(vk) =
(

vk + �Z �e−iγ

�eiγ −vk + �Z

)
. (A7)

Since the Hamiltonian is block-diagonal, one can calculate
the wave function for each block independently. Depending
on the block, the Fermi velocity is either positive or negative.
Thus, we assume a general Hamiltonian H(vk) as defined in
Eq. (A7), where the Fermi velocity v = ±v1,±v2 can both be
positive or negative.

First, consider the superconducting region: We assume that
there is no Zeeman term in this region, therefore giving the
Hamiltonian

H(vk) =
(

vk �e−iγ

�eiγ −vk

)
. (A8)

As such, the energy in this region is given by

E = ±
√

k2v2 + �2. (A9)

Since we are interested in a closing of the bulk gap we set
E = 0, giving

k = ±i
�

v
. (A10)

The corresponding eigenvector is

ωS
± =

(±ie−iγ

1

)
. (A11)

In the normal section, we assume a Zeeman energy �Z and
thus the Hamiltonian is

H(vk) =
(

vk + �Z 0
0 −vk + �Z

)
. (A12)
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The energy and eigenfunctions in this region are

E = ±vk + �Z
!= 0 ⇒ k = ±�Z

v
, (A13)

and the eigenvectors are

ωN
+ =

(
0
1

)
, ωN

− =
(

1
0

)
. (A14)

We now make an ansatz for the wave function in each
section of the SNSNS junction separately. We assume that
the junction has perfect transparency, therefore there is no
normal scattering. Thus, each block of the Hamiltonian de-
fined in Eq. (A6) can be considered separately. Generally, the
chemical potential may be different in each section. Thus,
we assume different Fermi momenta and velocities in each
section, i.e., kS,l and vS,l, kS,m and vS,m, and kS,r and vS,r

in the left, middle, and right superconductors, respectively,
and kN,l and vN,l (kN,r and vN,r) in the left (right) normal
section. The widths of the normal sections are WN,l and WN,r,
respectively. The left and right superconducting sections are
assumed to be infinitely extended, the middle superconducting
section has a width WS. The induced superconducting gaps
(superconducting phases) are �l (−θ ) in the left, �m (φ) in
the center, and �r (θ ) in the right superconducting sections;
see Fig. 1. We choose the coordinate system such that the
interface between the left superconductor and the left normal
section is at y = 0. Note that this convention is different from
the convention used in Fig. 1, where y = 0 is in the center of
the middle superconductor.

Because the left superconductor is infinitely extended, only
wave functions that are decaying for y → −∞ are valid.
Therefore, the wave function in the left superconducting re-
gion contains either only ωS

+ or only ωS
−, depending on the

sign of vS,l:

�S,l (y) = ey�l/|vS,l|
(−i sgn(vS,l )eiθ

1

)
. (A15)

We emphasize that one gets the same type of the wave func-
tion for each of the four blocks defined by the Hamiltonian of
Eq. (A6) separately. However, the basis in which Eq. (A15) is
defined depends on the block under consideration. Following
the same arguments, the wave function in the right supercon-
ducting section must be exponentially decaying for y → ∞
and is therefore given by

�S,r (y) = AS,re
−y�r/|vS,r |

(
i sgn(vS,r )e−iθ

1

)
. (A16)

In the middle superconducting region, the ansatz for the wave
function is

�S,m(y) =AS,me−y�m/vS,m

(
ie−iφ

1

)

+ BS,mey�m/vS,m

(−ie−iφ

1

)
. (A17)

The ansatz for the wave function �N,l (�N,r) in the left (right)
normal region is

�N,l/r =AN,l/re
iy�Z /vN,l/r

(
0
1

)
+ BN,l/re

−iy�Z /vN,l/r

(
1
0

)
.

(A18)

Next, all wave function parameters are determined by match-
ing boundary conditions. As mentioned before, we assume
perfect transparency and therefore the matching process can
be done for each block defined by the Hamiltonian of Eq. (A6)
separately as there is no back-scattering in this approach. Fur-
thermore, since we consider a linearized spectrum, matching
only the wave functions is sufficient, it is not required to match
their first derivative. At the first interface we get

�S,l (0) = �N,l (0) ⇔
(−i sgn(vS,l )eiθ

1

)
= T1

(
AN,l

BN,l

)
⇔

(
AN,l

BN,l

)
= T1

(−i sgn(vS,l )eiθ

1

)
, (A19)

T1 =
(

0 1
1 0

)
, (A20)

using T −1
1 = T1.

The second interface is at y = WN,l, between the left normal section and the middle superconducting region. We require

�N,l (WN,l ) = �S,m(WN,l ) ⇔ T1DN (WN,l, v
N,l )

(
AN,l

BN,l

)
= T2DS (WN,l,�m, vS,m )

(
AS,m

BS,m

)

⇔
(

AS,m

BS,m

)
= DS (−WN,l,�m, vS,m )T −1

2 T1DN (WN,l, v
N,l )

(
AN,l

BN,l

)
, (A21)

where we define

T2 =
(

ie−iφ −ie−iφ

1 1

)
, (A22)

DN (W, v) =
(

eiW �Z /v 0
0 e−iW �Z /v

)
, (A23)

DS (W,�, v) =
(

e−W �/v 0
0 eW �/v

)
, (A24)
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and using DN (W, v)−1 = DN (−W, v) and DS (W,�, v)−1 = DS (−W,�, v).
The third intersection at y = WN,l + WS is between the middle superconducting region and the right normal section:

�S,m(WN,l + WS) = �N,r (WN,l + WS) ⇔ T2DS (WN,l + WS,�m, vS,m )

(
AS,m

BS,m

)
= T1DN (WN,l + WS, v

N,r )

(
AN,r

BN,r

)

⇔
(

AN,r

BN,r

)
= DN (−WN,l − WS, v

N,r )T1T2DS (WN,l + WS,�m, vS,m )

(
AS,m

BS,m

)
. (A25)

The fourth intersection is at y = WN,l + WN,r + WS and is between the right normal section and the right superconducting
region. Here, we require

�N,r (WN,l + WN,r + WS) = �S,r (WN,l + WN,r + WS)

⇔ T1DN (WN,l + WN,r + WS, v
N,r )

(
AN,r

BN,r

)
= AS,re

−(WN,l+WN,r+WS )�/|vS,r |
(

i sgn(vS,r )e−iθ

1

)
. (A26)

Using Eqs. (A19), (A21), (A25), and DN (W1, v)DN (W2, v) = DN (W1 + W2, v), T1DN (W, v)T1 = DN (−W, v), and equiva-
lently for DS , the left-hand side of Eq. (A26) becomes

DN (−WN,r, v
N,r )T2DS (WS,�m, vS,m )T −1

2 DN (−WN,l, v
N,l )

(−i sgn(vS,l )eiθ

1

)
. (A27)

Now, we require that the ratio between the first and second element of the vector defined in Eq. (A27) equals the ratio on the
right hand side of Eq. (A26). This gives

i sgn(vS,r )e−iθ = −ie−2iWN,r�Z /vN,r
e−iφ e2iWN,l�Z /vN,l(−1 + e2WS�m/vS,m) + eiθ eiφsgn(vS,l )

(
1 + e2WS�m/vS,m)

e2iWN,l�Z /vN,l
(
1 + e2WS�m/vS,m

) + eiθ eiφsgn(vS,l )
(−1 + e2WS�m/vS,m

) . (A28)

After some simplification, and using sgn(vN,l ) = sgn(vN,r ) = sgn(vS,l ) = sgn(vS,m ) = sgn(vS,r ), we obtain

cos

(
θ − �Z

[
WN,l

vN,l
+ WN,r

vN,r

])
+ tanh

(
WS�m

|vS,m|
)

cos

(
φ − �Z

[
WN,l

vN,l
− WN,r

vN,r

])
= 0. (A29)

For simplicity, we assume �l = �m = �r = �0 in all nu-
merical calculations. We assume vN,l = vN,r and vS,l = vS,r .
Then, to get the equation for the first branch, set vN,l = vN,r ≡
vN

1 and vS,m = vS,m
1 [see Eq. (A6)]. For the equation of the

second branch, set vN,l = vN,r = −vN
2 and vS,m = −vS,m

2 [see
Eq. (A6)]. This leads us to Eq. (7). To conclude, Eq. (A29)
gives two distinct phase transition curves. This is to be ex-
pected from the Hamiltonian defined in Eq. (A6), as it has four
blocks, but the first and second, as well as the third and fourth
block, are particle-hole partners. Therefore, two independent
solutions remain. We emphasize again that the topological
phase is the area between the two phase transition curves,
thus it is crucial that the two solutions have different Fermi
velocities, i.e., v1 	= v2.

1. Area of topological phase with Zeeman field

The area A of the topological phase is given by

A =
∫ 2π

0
dφ |θ1(φ) − θ2(φ)|, (A30)

with θ1,2(φ) defined by Eq. (7) (assuming WN,l = WN,r ≡
WN). To get an analytical estimate of the area, assume
tanh(WS�m/vS,m

j ) � 1, such that the arccos-function can be
expanded:

θ j (φ) ≈ π

2
+ cos φ tanh

(
WS�m

vS,m
j

)
− 2(−1) jWN�Z

vN
j

.

(A31)

Therefore, the integral in Eq. (A30) is of the form

A = |b1|
∫ 2π

0
dφ| cos φ + b2|

= |b1|
[
4
√

1− b2
2 + 2b2π − 4b2 arccos(b2)

]
if |b1| <1,

(A32)

with

b1 = tanh

(
WS�m

vS,m
1

)
− tanh

(
WS�m

vS,m
2

)
, (A33)

b2 = −
2WN�Z

(
1
vN

1
+ 1

vN
2

)
b1

. (A34)

Assuming that WN�Z/vN
j � 1, Eq. (A32) can be expanded in

powers of �Z , giving

A ≈4

∣∣∣∣∣tanh

(
WS�m

vS,m
1

)
− tanh

(
WS�m

vS,m
2

)∣∣∣∣∣
+

8
(

1
vN

1
+ 1

vN
2

)2
W 2

N∣∣ tanh
(WS�m

v
S,m
1

) − tanh
(WS�m

v
S,m
2

)∣∣�2
Z , (A35)

which means that the area increases quadratically with �Z .
However, it was assumed that the induced superconducting
gaps were independent of �Z . Realistically, the induced gap
decreases when a magnetic field is applied. Depending on the
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system parameters, this decrease of the superconducting gap
can lead to an overall decrease of the area of the topologi-
cal phase. However, since we consider only small magnetic
fields (compared to the critical field of the superconductor),
we assume that the decrease of the superconducting gap is
negligible.

APPENDIX B: DISCRETIZED HAMILTONIAN

1. Finite geometry

The Hamiltonians given in the main text are discretized on
a square lattice with a lattice spacing a. The Nambu basis in
the finite geometry is given by

cn,m = (c↑,n,m c↓,n,m c†
↑,n,m c†

↓,n,m)T , (B1)

where n, m ∈ Z and c†
s,n,m creates a particle with spin s at

position (x, y) = (na, ma). The full Hamiltonian in the finite
geometry is [106]

H̄ = 1
2 (H̄eff + H̄b + H̄4 + H̄SC + H̄Z ), (B2)

H̄eff + H̄b + H̄4

=
Nx−1∑
n=0

Ny−1∑
m=0

c†
n,m

(
2t

a2
− μ

2
+ μb,m

2
+ 10β

a4

)
τzcn,m

+
Nx−1∑
n=1

Ny−1∑
m=0

c†
n,m

[
− t

a2
− 4i(α + αa)

a3
σy − 8β

a4

]
τzcn−1,m

+
Nx−1∑
n=0

Ny−1∑
m=1

c†
n,m

[
− t

a2
τz − 4i(α + αa)

a3
σx − 8β

a4
τz

]
cn,m−1

+
Nx−1∑
n=2

Ny−1∑
m=0

c†
n,m

[
i(−α + αa)

a3
σy + β

a4

]
τzcn−2,m

+
Nx−1∑
n=0

Ny−1∑
m=2

c†
n,m

[
i(−α + αa)

a3
σx + β

a4
τz

]
cn,m−2

+
Nx−1∑
n=1

Ny−1∑
m=1

c†
n,m

[
i(3α + αa)

a3
(σx + σyτz ) + 2β

a4
τz

]
cn−1,m−1

+
Nx−2∑
n=0

Ny−1∑
m=1

c†
n,m

[
i(3α + αa)

a3
(σx − σyτz ) + 2β

a4
τz

]
cn+1,m−1

+ H.c., (B3)

with Nx and Ny the number of lattice points in x and y direction
respectively, t = h̄2/2m∗, and

μb,m =
{

μb if mb − Nb
2 � m < mb + Nb

2 ,

0 otherwise,
(B4)

where mb ∈ {NS,l, NS,l + NN,l, NS,l + NS,m + NN,l, Ny − NS,r},
NS,l (NS,r) is the number of lattice points in y direction in

the left (right) superconductor, NS,m is the number of lat-
tice points in y direction in the middle superconductor, NN,l

(NN,r) is the number of lattice points in y direction in the
left (right) normal conducting regions, Ny = NS,l + NS,m +
NS,r + NN,l + NN,r , and Nb is the number of lattice points in y
direction in the barrier. Throughout we set Nb = 2. We relate
the widths to the number of lattice points as follows:

Lx =(Nx − 1)a, (B5)

Ly =(
Ny − 1

)
a, (B6)

WN,l =(NN,l − 1)a, (B7)

WN,r =(NN,r − 1)a, (B8)

WS =(NS,m − 1)a. (B9)

Furthermore, the term describing the induced pairing po-
tential due to the superconductor is

H̄SC =
Nx−1∑
n=0

Ny−1∑
m=0

c†
n,m

iσy

2
(�∗

mτ+ − �mτ−)cn,m, (B10)

�m =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�le−iθ if 0 � m < NS,l,

�meiφ if NS,l + NN,l � m < NS,l + NS,m + NN,l,

�reiθ if Ny − NS,r � m < Ny,

0 otherwise.

(B11)

The Zeeman term is given by

H̄Z =
Nx−1∑
n=0

Ny−1∑
m=0

c†
n,m�Z,mσxτzcn,m, (B12)

�Z,m =

⎧⎪⎨
⎪⎩

�Z if NS,l � m < NS,l + NN,l,

or Ny − NS,r − NN,r � m < Ny − NS,r,

0 otherwise.
(B13)

We note that the finite geometry is only used for Figs. 2(d)
and 9. All other calculations are done in the semi-infinite
geometry.

2. Semi-infinite geometry

For the semi-infinite geometry, we assume that the junction
has an infinite extent in x direction (with periodic boundary
conditions). Therefore, the momentum kx along the x axis is a
good quantum number. The corresponding Nambu basis is

ckx,m = (c↑,kx,m c↓,kx,m c†
↑,−kx,m

c†
↓,−kx,m

)T , (B14)

where c†
s,kx,m

creates a particle at position y = ma with spin s
and momentum kx in the x direction. The Hamiltonian in the
semi-infinite geometry is [106]

H̃ = 1

2

∫ ∞

−∞
dkx[H̃eff (kx ) + H̃b(kx ) + H̃4(kx ) + H̃SC (kx ) + H̃Z (kx )], (B15)
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H̃eff (kx ) + H̃b(kx ) + H̃4(kx ) =
Ny−1∑
m=0

c†
kx,m

{
t[2 − cos (kxa)]

a2
− μ

2
+ μb,m

2
+ β

a4
[10 − 8 cos (kxa) + cos (2kxa)]

−4(α + αa)

a3
sin (kxa)σy + −α + αa

a3
sin (2kxa)σy

}
τzckx,m

+
Ny−1∑
m=1

c†
kx,m

{
− t

a2
τz + 4β

a4
[−2 + cos (kxa)]τz + 2(3α + αa)

a3
sin (kxa)σyτz

+ 2i

a3
[(3α + αa) cos (kxa) − 2(α + αa)]σx

}
ckx,m−1

+
Ny−1∑
m=2

c†
kx,m

(
i(−α + αa)

a3
σx + β

a4
τz

)
ckx,m−2 + H.c. (B16)

The induced superconducting pairing potential is described by

H̃SC (kx ) =
Ny−1∑
m=0

c†
kx,m

iσy

2
(�mτ+ − �∗

mτ−)ckx,m, (B17)

where �m is defined in Eq. (B11). The Zeeman term is

H̃Z (kx ) =
Ny−1∑
m=0

�Z,mc†
kx,m

σxτzckx,m, (B18)

where �Z,m is defined in Eq. (B13).

3. Parameters

In this subsection, we give the numerical values for all
parameters used to generate Figs. 2 and 3. For Fig. 2, all
parameters are given in units of t = h̄2/2m∗ and the lattice
spacing a. The parameters are a = 4 nm, α = 0.68ta, β =
0.49ta2, μ = 0.065ta−2. In Figs. 2(a)–2(c) �0 = 0.007ta−2,
NN,l = NN,r = 8, and NS = 33. In Fig. 2(d) �0 = 0.022ta−2,
NN,l = NN,r = 6, and NS = 18. In Fig. 2(a), the outer super-
conductors are assumed to be infinitely wide (in y direction),
while in Figs. 2(b) and 2(c), their widths are finite, given
by NS,l = NS,r = 300. In Fig. 2(d) the widths of the outer
superconductors are NS,l = NS,r = 100 and the system has a
finite extent in x direction of Nx = 500. The potential barriers
in Fig. 2(b) are μb = 0.035ta−2 and μb = 0.165ta−2. The po-
tential barrier in Fig. 2(c) is μb = 0.055ta−2 and in Fig. 2(d)
μb = 0. The superconducting coherence lengths ξ j = v j/�0

in Figs. 2(a)–2(c) are ξ1 = 50a and ξ2 = 41a. In 2(d) ξ1 =
30a and ξ2 = 13a. For Figs. 2(a)–2(d), the Fermi wavelengths
λ j = 2π/k j are λ1 = 28a and λ2 = 19a.

For Fig. 3 the parameters are instead given in units of
the lattice spacing a and the energy scale E0 = 37 meV,
which is an energy scale discussed in Ref. [106]. In
these units, the parameters are a = 1.85 nm, t = h̄2/2m∗ =
4.9E0a2, α = 0.81E0a3, αa = 0.1E0a3, β = 0.17E0a4, μ =
0.2E0, �0 = 0.013E0, μb = 0.33E0, NN,l = NN,r = 40, NS =
95, and NS,l = NS,r = 500. The superconducting coherence
lengths are ξ1 = 161a and λ2 = 143a and the Fermi wave-
lengths are λ1 = 32a and λ2 = 30a.

APPENDIX C: TRANSPARENCY CALCULATION

In this Appendix, we show how the transparency of the
junction is calculated. We estimate the transparency using the
current-phase relation I (ρ), which is proportional to [129]

I (ρ) ∝ ∂

∂ρ

∫
E<0

dkxE (kx, ρ), (C1)

where ρ is the superconducting phase difference and E (kx, ρ)
is the energy spectrum calculated in the semi-infinite geome-
try. The current-phase relation of an SNSNS junction is not
uniquely defined because there are two independent super-
conducting phase differences. For simplicity, we set φ = 0.
This, however, results in a rather complicated current-phase
relation for an SNSNS junction; see Fig. 5. It is not clear
how this current-phase relation depends on the transparency.
In contrast, for an SNS junction, the transparency is well
approximated by [129]

I (ρ) = I0
sin(ρ)√

1 − τ sin2(ρ/2)
, (C2)

where I0 is a real parameter. Therefore, we estimate the
transparency of the system using the current-phase relation
of an SNS junction with normal conducting section width
WN ≡ WN,l = WN,r. The transparency τ is then obtained by
comparing the ratio of the first and second harmonics of
Eqs. (C1) and (C2).

FIG. 5. Current-phase relation of an SNSNS junction, where the
superconducting phase differences are −θ/2, φ = 0, θ/2 for the left,
middle, and right superconductors respectively. This current-phase
relation is more complicated than the simple form for an SNS junc-
tion defined in Eq. (C2).
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APPENDIX D: IDEAL JUNCTION GEOMETRY

The analytic calculation of the phase diagram (see
Ref. [124] and Appendix A) assumes perfect transparency,
which is apparent from the Hamiltonian in Eq. (A6), as it
does not couple left and right movers. Phenomenologically,
such a coupling can be introduced by adapting the linearized
Hamiltonian of Appendix A as follows:

H ′ = H + c†(ky)

⎛
⎜⎜⎝

0 0 0 HT

0 0 HT 0
0 HT 0 0

HT 0 0 0

⎞
⎟⎟⎠c(ky), (D1)

where the Hamiltonian H is defined in Eq. (A6) and

HT =
(

δ 0
0 δ

)
, (D2)

where δ labels the overlap between the left- and right-movers.
In this ansatz, we assume that spin is conserved. Perturba-
tively, the overlap δ can be estimated as the overlap between
the left- and right-moving wave functions calculated for the
uncoupled system in Appendix A. For the following deriva-
tion, we focus on the spin + branch, noting that the derivation
for the spin − branch is equivalent. By defining the wave
functions

�R = (R+(ky) L†
−(−ky))T , (D3)

�L = (L+(ky) R†
−(−ky))T , (D4)

we want a condition for which parameters the scattering has
a negligible impact. This is the case if there is no overlap
between left- and right-movers:

0 = 〈�R|V |�L〉, (D5)

where V is the potential that couples the left- and right-
movers, i.e., the potential barrier at the SN interface. For
simplicity, we assume a Dirac δ potential at each intersection:

V (y) =V0[δ(y) + δ(y − WN)

+δ(y − WN − WS) + δ(y − 2WN − WS)], (D6)

where V0 is real, WN = WN,l = WN,r is the width of each
normal conducting section, and WS is the width of the mid-
dle superconducting section. Since the largest extent of the
topological phase is at φ = 0 (or φ = π ), we set φ = 0.
Furthermore, we set �Z = 0 and assume that the Fermi
velocities and Fermi momenta are equal in all sectors,
i.e., vS,l

j = vS,m
j = vS,r

j = vN,l
j = vN,r

j ≡ v j and kS,l
j = kS,m

j =
kS,r

j = kN,l
j = kN,r

j ≡ k j for j = 1, 2. We note that in this step,
the oscillating prefactors e±ik1,2y in Eq. (A2) must be taken into
account explicitly. At the first interface, which is at y = 0, the
wave functions are [see Eq. (A19)]

�L(0) =
(

ieiθL

1

)
, �R(0) =

(−ieiθR

1

)
, (D7)

where θL and θR can be expressed using Eq. (7):

eiθL = − tanh

(
WS�m

v2

)
+ i

√
1 − tanh2

(
WS�m

v2

)
, (D8)

e−iθR = − tanh

(
WS�m

v1

)
− i

√
1 − tanh2

(
WS�m

v1

)
. (D9)

At the second interface at y = WN, one gets

�L(WN) = e−ik2WN�L(0), (D10)

�R(WN) = eik1WN�R(0). (D11)

At the third interface at y = WN + WS the wave functions are
[see Eq. (A25)]

�L(WN + WS) = e−ik2(WN+WS )M(−v2)�L(0), (D12)

�R(WN + WS) = eik1(WN+WS )M(v1)ψR(0), (D13)

with

M(v) =
(

cosh
(WS�m

v

) −i sinh
(WS�m

v

)
i sinh

(WS�m
v

)
cosh

(WS�m
v

)
)

. (D14)

Finally, at the fourth interface at y = 2WN + WS, one obtains

�L(2WN + WS) = e−ik2WN�L(WN + WS), (D15)

�R(2WN + WS) = eik1WN�R(WN + WS). (D16)

Therefore, Eq. (D5) becomes

0 = (1 + e−i(k1+k2 )WN )(ie−iθR 1)

× (1 + e−i(k1+k2 )(WN+WS )[M(v1)]†M(−v2))

(
ieiθL

1

)
.

(D17)

Finally, this gives the condition that the overlap of left- and
right-movers is minimized when

0 =2ie−i(k1+k2 )(WN+WS ) eWS�m/v1 − eWS�m/v2

(1 + ieWS�m/v1 )(1 − ieWS�m/v2 )

× (1 + e−i(k1+k2 )WN )(−1 + ei(k1+k2 )(WN+WS ) ). (D18)

Thus, either one of the following conditions must be fulfilled:

0 = 1 + e−i(k1+k2 )WN or 0 = −1 + ei(k1+k2 )(WN+WS ), (D19)

which are the conditions in Eq. (8). We show the existence
of an ideal junction geometry for the toy-model parameters
in Fig. 2(c) and for realistic Ge parameters in Fig. 6. In
both cases, the analytically calculated lines [see Eq. (8)] de-
viate systematically from the numerically calculated values.
There are several reasons why the numerically observed ideal
junction geometry is slightly different compared to the analyt-
ically expected conditions. For instance, although we define
a relation between NS and WS (and between NN and WN) in
Eqs. (B7)–(B9), it is only a convention and not uniquely de-
fined. A further complication comes from the potential barrier,
which is not a Dirac δ potential, but has a finite extent in the
numerical calculation.

Although no longer giving simple analytical conditions, we
have checked numerically that qualitatively, the same condi-
tions on the ideal junction geometry still apply even for the
case when WN,l 	= WN,r, or having different tunneling barrier
heights at each intersection, or when there are different Fermi
velocities and wave vectors in each section.
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FIG. 6. Minimum energy varying θ in the semi-infinite geometry
at kx = 0 and φ = 0. This is the same plot as Fig. 2(c), however here
using realistic parameters for Ge. The parameters are as in Fig. 3 and
the tunneling barrier is fixed to 5.18 meV.

We mention in the main text that in an experiment, WN

and WS are fixed after fabrication. However, by gating the
sample, the chemical potential μ is changed, which affects
the Fermi momenta k1 and k2. This changes the conditions
on the ideal junction geometry, see Eq. (8). While it is not
always reasonable to change the chemical potential such that
both conditions in Eq. (8) are fulfilled, it is possible to change
the chemical potential such that at least one of the conditions
in Eq. (8) is satisfied, see Fig. 7.

APPENDIX E: LOCAL DENSITY OF STATES

The integrated local density of states LDOS for Fig. 2(d) is
defined as follows:

LDOS =
∑

n

∫∫
N

dx dy
∫ E

−E
dE f (E − En)|�n(x, y)|2,

(E1)

where n labels all eigenstates of the system, their energy being
En and their wave function �n, N is the area over which
to integrate, E is a parameter that defines the boundary of
the energy integral [we use E/�0 = 0.47 for Fig. 2(d)], and
f (E − En) is a broadening function. Using the same coordi-
nate system as in the main text, we define N = {(x, y)| 0 �
x < WN,l and − WN,l − WS/2 � y < −WS/2}, see Fig. 8. The
broadening function is defined as a Cauchy distribution:

f (E ) = 1

π

ν

E2 + ν2
, (E2)

FIG. 7. For fixed widths WN and WS, the chemical potential μ is
varied to tune the system such that one of the conditions of Eq. (8)
is fulfilled. (a) The black dots indicate WN(k1+k2 )

π
, which has to be

an odd integer (indicated by the horizontal black dashed lines) to
satisfy one of the ideal junction geometry conditions in Eq. (8).
The red dots indicate (WN+WS )(k1+k2 )

π
, which has to be an even integer

(indicated by the horizontal red dashed lines) to satisfy Eq. (8).
By varying the chemical potential μ, the Fermi momenta k1 and
k2 are varied, while WN and WS are kept constant. (b) Minimum
energy minθ |E (φ = 0, θ )| in the semi-infinite geometry at kx = 0
and φ = 0. A topological phase only exists if this minimum energy
is zero. The vertical dashed line indicates where one of the conditions
of Eq. (8) is satisfied. The parameters are as in Fig. 2(c). The width
of the normal section is WN = 68 nm (i.e., NN = 13) and WS = 48
nm (i.e., NS = 18).

where ν is the broadening coefficient. In the inset of Fig. 2(d),
the broadening coefficient of the green curve is �E , 2�E for
the blue curve, and 4�E for the orange curve. Here, �E is
the numerically determined average level spacing, which is
1.9 µm eV.

APPENDIX F: WAVE FUNCTION OF MAJORANA
BOUND STATES

In Fig. 2(d), we show a profile cut through an MBS
probability density. We show the full two-dimensional MBS
probability density in Fig. 9. The MBSs are localized at oppo-
site ends and, depending on the superconducting phase, values
are more localized in one or the other junction. We note that
the large portion of the MBS wave function is located under
the bulk superconductor, which allows one to minimize the
overlap between two MBSs. These MBSs are well localized
and hardly overlap in spite of a relatively small topological
gap.

FIG. 8. Definition of the area N in Eq. (E1). It is a square of side
length WN,l.
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FIG. 9. The probability density of MBSs for different points in
the phase diagram. All parameters are as in Fig. 2(d), except the
superconducting phase differences φ and θ , which are indicated in
the corresponding panel. We note that, depending on these phases,
the MBSs have larger support in one or the other junction, breaking
the symmetry between them.

APPENDIX G: ENERGY SPECTRUM FOR GERMANIUM

In this Appendix we show the energy spectrum E (kx ) in
the semi-infinite geometry for realistic Ge parameters in both
the trivial and topological phase, as well as at the topological
phase transition; see Fig. 10. The energy spectrum shows that

FIG. 10. Energy spectrum E (kx ) in the semi-infinite geometry.
The parameters are for a realistic Ge system and are the same as for
Fig. 3. The data represented by the blue dots is for superconducting
phase differences φ and θ deep in the trivial phase, the yellow dots
are at the phase transition, and the red dots are in the topological
phase.

in the topological phase there are many in-gap states, however,
as discussed in the main text, in finite length systems the trivial
states are delocalized over the full length of the junction,
whereas MBSs are localized at the junction ends and therefore
more prominent in the LDOS.
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