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Refined Majorana phase diagram in a topological insulator–superconductor hybrid system
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The edge state of the topological insulator coupled to a superconductor system is able to simulate the Majorana
fermion in zero-energy mode since the Kitaev-type pairing is induced by exchanging quasi-excitations in electron
tunneling. However, this is not always the case. The present study has revealed that this physical simulation is
not valid for a larger surface gap, which is the energy gap of the insulator’s surface states. A refined pairing term
that depends on the surface gap has been obtained as a second-order effect of the proximity effect, whereas the
lowest order produces a constant pairing strength. By carefully considering the dependence of pairing strength
on the surface gap, the Majorana phase diagram is re-achieved and a significant difference from previous work is
observed, where the pairing strength was assumed to be independent of the surface gap and resulted in a conical
phase boundary.
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I. INTRODUCTION

The zero-energy state of quasi-excitation in a hybrid sys-
tem, known as Majorana zero mode (MZM), has been used
to physically simulate the Majorana fermion [1–10]. Over
the last two decades, two common proposals for simulating
Majorana fermions have been developed based on hybrid con-
densed matter systems: the topological insulators (TI) [11–16]
in proximity to an s-wave superconductor (TI-SC) [3,6], and
the nanowire with spin-orbit coupling in contact with an s-
wave superconductor [4,5]. A Kitaev-type pairing term on the
surface of the TI or nanowire can be induced by the proximity
effect [17], which is a virtual process of exchanging the quasi-
excitation in the superconductor.

In previous theoretical studies [3,6,9,18], the MZM was
predicted when the Kitaev-type pairing was always induced
by the proximity effect in the lowest order. Therefore, whether
the pairing can be effectively induced to lead to a topologi-
cal phase transition depends on certain conditions. Moreover,
there have been controversies about the existence of chiral
Majorana fermion modes in some experiments, including a
retracted paper [19] that supported the lower-order theory,
but was later disproved by another experiment [20]. To re-
solve these issues, a more precise low-energy effective theory
with a higher-order proximity effect was considered by the
conventional Fröhlich-Nakajima (Schrieffer-Wolff) transfor-
mation [21–24] to refine the phase diagram.

Our study finds that the pairing strength depends on the
surface gap m, which is the energy gap of the surface states
of the insulator, in comparison with the pairing strength that
was previously thought to be independent of m. We take into
account the surface gap dependence and achieve a closed
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topological phase diagram in m − μ − � space, where μ

represents the chemical potential and � represents the con-
stant pairing strength. This closed phase diagram is different
from the previous open phase diagram of the conic shape [6].
Lastly, we note that the pairing strength becomes divergent
as the magnitude of surface gap |m| approaches the supercon-
ducting gap.

II. LOW-ENERGY EFFECTIVE HAMILTONIAN
FOR TI-SC SYSTEM

Unlike ordinary insulators, topological insulators (TIs) ex-
hibit surface states in the vicinity of the Fermi level, which
can be described by the two-dimensional massless Dirac
Hamiltonian Hsurf = v(kxσx + kyσy), with momentum space
representation ϕk = [ϕk↑, ϕk↓]T [16,25,26]. Here, v denotes
the Fermi velocity and σx, σy are the Pauli matrices. By dop-
ing the TI material with magnetic elements such as Fe or
Cr, a mass term mσz can be introduced [27], which opens
a band gap of 2m for the surface state. The magnitude of
the mass m (hereafter referred to as the surface gap) de-
pends on the magnetic ordering structure and can be tuned
by an external magnetic field. In reality, the low-energy
physics of TI thin films is more accurately described by a
four-band model, which includes tunneling between the op-
posite surfaces [9,27]. For the sake of clarity, we employ
a reduced two-band Hamiltonian that captures the essential
features of TIs, HTI = ∫

d2k/(2π )2 ϕ†
k · Hk · ϕk [6,18], where

the Hamiltonian matrix is given by

Hk = (m + m1k2)σz − μ + v(kxσx + kyσy). (1)

Here, μ is the chemical potential and m1k2 := m1(k2
x + k2

y )
is the parabolic band component, which is crucial for de-
termining the topological properties [6]. The TI thin film is
placed in contact with an s-wave superconductor, which is
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described by the BCS Hamiltonian

HSC =
∫

d3k

(2π )3
c†

K[εsσz + �sσx]cK, (2)

where cK = [cK↑, c†
−K↓]T represents the Nambu spinor, �s is

the superconducting gap, and εs = K2/(2ms) − μs is the the
kinetic energy of the electron above the Fermi level μs. The
interaction between the TI surface and the superconductor is
modeled by the electron tunneling Hamiltonian,

HT = J
∫

d3k

(2π )3

∑
σ=↑,↓

[cKσ ϕ
†
kσ

+ H.c.]. (3)

Here, we have assumed that the momentum parallel to the
surface of the TIs [k = K// ≡ (kx, ky), K⊥ ≡ kz] and the spin
are conserved during the electron tunneling process. To elimi-
nate virtual processes in the electron exchange between the TI
surface and the superconductor, we apply the Schrieffer-Wolff
transformation to the total Hamiltonian,

Heff = eSHe−S = H + [H, S] + 1

2!
[[H, S], S] + · · · , (4)

where H ≡ HTI + HSC + HT and S is an anti-Hermitian op-
erator to be determined by the condition [HTI + HSC, S] +
HT = 0. This transformation results in a second-order effec-
tive Hamiltonian for the TI-SC system within the low-energy
approximation (see the Appendix A),

Heff � 1

2

∫
d2k

(2π )2
�†

k · Heff (k) · �k, (5)

with �k = [ϕk↑, ϕk↓, ϕ
†
k↑, ϕ

†
k↓]T and

Heff (k) =
((

1 − �̃
�s

)
Hk i�̃σy

−i�̃σy −(
1 − �̃

�s

)
H∗

−k

)
. (6)

Here, the pairing strength �̃ induced by the SC proximity
effect is

�̃ �
[

1 −
(

m

�s

)2
]− 1

2

�, (7)

where �: = J2√ms/(2μs) is the constant pairing strength.
Notably, the pairing strength �̃ depends on the ratio of the
surface gap and the superconducting gap, i.e., m/�s. More-
over, there is an overall correction term proportional to �̃/�s

for the original TI Hamiltonian. As a result, the renormalized
surface gap and the chemical potential of TI become, respec-
tively,

m̃ =
(

1 − �̃

�s

)
m, μ̃ =

(
1 − �̃

�s

)
μ. (8)

This parametric dependence of the pairing strength �̃ on
the surface gap m leads to a significant change in the topolog-
ical phase diagram, as will be discussed in detail in the next
section.

III. CHERN NUMBER AND PHASE DIAGRAM

Typically, the parameter space is partitioned into distinct
regions based on the topological invariant, such as the Chern

number, to obtain the phase diagram with the topological
phases located in those regions. In the case of the hybrid
system described by the low-energy effective Hamiltonian
Heff (k), the first Chern number in momentum space is defined
by [6,28,29]

N = 1

2π

∫∫
d2k

(
∂Ax

∂ky
− ∂Ay

∂kx

)
, (9)

where Ax, Ay are the components of Berry connection
A = (Ax, Ay) = −i

∑
En<0〈un(k)|∇k|un(k)〉, with |un(k)〉 the

Bloch state that satisfies the eigenequation Heff (k)|un(k)〉 =
En(k)|un(k)〉. With the method of block diagonalization [6],
the Chern number can be evaluated as follows:

N =

⎧⎪⎪⎨
⎪⎪⎩

0, m̃ >
√

�̃2 + μ̃2

1, −
√

�̃2 + μ̃2 < m̃ <
√

�̃2 + μ̃2

2, m̃ < −
√

�̃2 + μ̃2.

(10)

It follows from Eq. (10) that the topological phase transition
occurs at the condition m̃2 = �̃2 + μ̃2, which seems the same
as the former results: m2 = �2 + μ2 in Refs. [6,18]. However,
the renormalized surface gap m̃, the chemical potential μ̃, and
the induced pairing �̃ all depend on the surface gap m, which
is different from the former results where the three parameters
are independent of each other.

By combining Eqs. (7), (8), and (10), we can obtain the
the phase diagram of the TI-SC system in m − μ − � space,
as presented in Fig. 1(a). The phase boundary exhibits a
double-peak structure that divides the phase space into three
regions with distinct Chern numbers. The left peak (m < 0)
has a Chern number of N = 2, while the right peak has
N = 0. Outside of the peaks, the Chern number is N = 1.
Next, we compare the phase boundary for μ = 0, as illustrated
in Fig. 1(b), with previous works on the m − � phase dia-
gram that has a linear phase boundary described by � = ±m
[6]. Additionally, we present the phase boundary when � =
0.125�s in Fig. 1(c). It is worth noting that as the constant
pairing � increases, the region that corresponds to N = 2 and
N = 0 becomes smaller, eventually shrinking to a point when
� = 0.30�s, which corresponds to the maximum value of �

on the phase boundary curve in Fig. 1(b). Beyond this value
(i.e., when � > 0.30�s), the Chern number will always be 1
and no phase transition will occur when m is adjusted.

It is important to note that the pairing strength �̃ be-
comes divergent when the surface gap |m| approaches the
superconducting gap �s. Because of the divergent behavior,
the boundary gets sharply closed when |m| is near �s. The
divergence indicates that the perturbation theory fails when
|m| is approximately equal to or greater than �s. In such cases,
it remains an open question whether an effective Hamiltonian
can be used to describe the hybrid system. When the surface
gap is sufficiently small (|m| � �s), the pairing strength be-
comes constant, and the m − μ − � phase diagram reverts to
the conic form presented in previous research [6], resulting
in a linear phase boundary for μ = 0. Meanwhile, the m − μ

phase diagram returns to a parabolic curve, as described in
previous studies of nanowire-superconductor systems [7] (the
surface gap m in the TI system will correspond to the external
magnetic field B in the nanowire system).
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FIG. 1. (a) Phase diagram of the topological insulator–superconductor (TI-SC) system in m − μ − � space (the coordinate axes are in
units of �s). The phase boundary becomes closed compared with the open conic phase boundary in the previous literature [6]. The Chern
number N = 0 corresponds to a normal superconductor (NSC) state, while N = 1, 2 correspond to the topological superconductor (TSC)
state. The Chern number N equals the number of Majorana zero modes. The region where |m| > �s remains unclear. (b) Phase diagram of
the TI-SC system for μ = 0. (c) Phase diagram of the TI-SC system when � = 0.125�s.

The refined phase diagram shown in Fig. 1(b), in com-
parison with the previous one [6], reveals a smaller range
of values for the topological Majorana phase (Chern number
N = 1). Therefore, it is crucial to compare the surface gap of
TI materials with the superconducting gap in experiments to
simulating Majorana fermions. Currently, the superconduct-
ing gaps of commonly used materials for Majorana detection,
such as Nb, Al, and NbSe2, are 1.5, 2.0, and 2.15 meV, respec-
tively [19,20,30,31], while the surface gap of TI thin films is
typically of a larger order than the superconducting gap, such
as a first-principles calculation of the Hall conductance for
Fe-doped Bi2Se3, which shows that the surface gap for 3, 4,
and 5 quintuple layers is 90, 42, and 21 meV, respectively
[27]. Moreover, in another experimental work using angle-
resolved photoemission spectroscopy, the measured surface
gap of Bi2Se3 doped with 1% Mn is 7 meV [32]. Both of
these data suggest that the surface gap may exceed the super-
conducting gap in actual experiments, raising questions about
the effectiveness of simulating Majorana fermions in these
systems.

IV. CONCLUSION AND DISCUSSION

After examining the definition of a Majorana zero mode
(MZM) in the topological insulator–superconductor hybrid
system (TI-SC), we recognized that the previous conclusion
that the Kitaev-type pairing can always be induced to predict
MZM is a consequence of the lowest-order approximation.
Within a higher-order calculation, we have observed that as
the surface gap |m| approaches the superconducting gap �s,
the pairing strength �̃ becomes divergent, which indicates a
breakdown of the perturbation theory.

Therefore, when the surface gap exceeds the superconduct-
ing gap (|m|>�s), the Kitaev-type pairing may not be induced
from the hybrid system, so the MZM is not defined. Further
investigations in this region should first define the MZM and
then demonstrate the connection between the MZM and the

conductance signature; otherwise, the experimental results are
merely complex transport phenomena.

As for now, the theory for detecting MZM beyond the pa-
rameter constraint (i.e., when |m|>�s) is not established, and
a convincing experimental discovery of MZM in the TI-SC
system needs to be achieved within the restricted parameter
region (|m|<�s) in our refined phase diagram. However, the
available experimental data suggest that the surface gap may
be beyond the range of validity given by our refined phase
diagram, so this is an urgent issue to be addressed. It would be
anticipated to experimentally determine whether the relevant
parameters fall within the modified phase region. This can be
done by using the well-established angle-resolved photoelec-
tron spectroscopy techniques to measure the surface gap.
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APPENDIX: THE LOW-ENERGY EFFECTIVE
HAMILTONIAN OF TOPOLOGICAL

INSULATOR–SUPERCONDUCTOR SYSTEM

In this Appendix, we derive the low-energy effective
Hamiltonian (5) in the main text for the topological insulator
(TI) in proximity to an s-wave superconductor (SC) system
by the Schrieffer-Wolff transformation. The total Hamiltonian
for the TI-SC system includes three main terms: H = HTI +
HSC + HT ≡ H0 + H1. And the surface state of a magnetic TI
thin film can be described by a two-band model,

HTI =
∫

d2k

(2π )2
{(mk − μ)ϕ†

k↑ϕk↑ − (mk + μ)ϕ†
k↓ϕk↓

+ [v(kx + iky)ϕ†
k↓ϕk↑ + H.c.]}, (A1)
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with ϕkσ annihilating an electron of momentum k and spin
σ =↑,↓. Here, mk = m + m1(k2

x + k2
y ) is the mass term with

the surface gap m, μ is the chemical potential, and v is the
Fermi velocity. The s-wave SC providing the superconducting
proximity effect for the TI film is described by the BCS
Hamiltonian (under self-consistent field approximation),

HSC =
∫

d3k

(2π )3
[εs(c

†
K↑cK↑ + c†

−K↓c−K↓)

+ �s(c
†
K↑c†

−K↓ + H.c.)], (A2)

with the superconducting gap �s and the kinetic energy of
electron, εs = K2/(2ms) − μs, above the Fermi level μs. The
tunneling interaction between the TI and SC by the contact
plane z = 0 is

H1 = −J
∑

σ=↑,↓

∫∫
dxdy[ϕ†

σ (x, y)cσ (x, y, 0) + H.c.]. (A3)

Here, J is the tunneling strength, and ϕσ (x), cσ (X) are the
inverse Fourier transforms of ϕkσ , cKσ ,

ϕ(x) =
∫

d2k

(2π )2
ϕkσ eik·x, c(X) =

∫
d3k

(2π )3
cKσ eiK·X.

(A4)

Notice that x, k are the two-dimensional component (parallel
to the TI surface) of X, K, respectively. By the Fourier trans-
formation, we can rewrite the tunneling Hamiltonian (A3) in
momentum space,

H1 = −J
∫

d3k

(2π )3
(ϕ†

k↑cK↑ + ϕ
†
k↓cK↓ + H.c.). (A5)

To describe the quasiparticles in the SC, we introduce the
Bogoliubov transformation as follows:

ηK↑ := cos θKcK↑ + sin θKc†
−K↓,

η
†
−K↓ := − sin θKcK↑ + cos θKc†

−K↓,
(A6)

with tan 2θK = �s/εs. Then the BCS Hamiltonian can be
diagonalized as

HSC =
∫

d3k

(2π )3
Es(η

†
K↑ηK↑ + η

†
−K↓η−K↓), (A7)

where Es = √
ε2

s + �2
s is the energy spectrum of the quasipar-

ticle in SC.
Similarly, we rewrite the tunneling interaction (A5) with

the Bogoliubov quasiparticle operators ηKσ as

H1 = − J
∫

d3k

(2π )3
ηK↑(− cos θKϕ

†
k↑ + sin θKϕ−k↓) + ηK↓(− cos θKϕ

†
k↓ − sin θKϕ−k↑)

+ η
†
K↑(− sin θKϕ

†
−k↓ + cos θKϕk↑) + η

†
K↓(sin θKϕ

†
−k↑ + cos θKϕk↓). (A8)

Now, we apply the Schrieffer-Wolff transformation to eliminate the quasi-excitation of the SC. Treating H1 as a perturbation
term, we perform a canonical transformation eS to the total Hamiltonian,

Heff = eSHe−S = H + [H, S] + 1

2!
[[H, S], S] + · · ·

= H0 + (H1 + [H0, S]) + 1

2
[(H1 + [H0, S]), S] + 1

2
[H1, S] + · · · . (A9)

Moreover, we require that the transformed Hamiltonian has no first-order term, i.e., [H0, S] + H1 = 0, and the ansatz for the
anti-Hermitian transformation S is set as

S =
∫

d3k

(2π )3
{η↑K[AKϕ

†
k↑ + BKϕ−k↓ + EKϕ

†
k↓ + FKϕ−k↑] + η

†
↑K[A∗

Kϕk↑ + B∗
Kϕ

†
−k↓ + E∗

Kϕk↓ + F ∗
Kϕ

†
−k↑]

+ η↓K[CKϕ
†
k↓ + DKϕ−k↑ + HKϕ

†
k↑ + LKϕ−k↓] + η

†
↓K[C∗

Kϕk↓ + D∗
Kϕ

†
−k↑ + H∗

Kϕk↑ + L∗
Kϕ

†
−k↓]}. (A10)

By satisfying the condition [H0, S] + H1 = 0, the undetermined coefficients of the transformation S in Eq. (A10) can be obtained
as

AK = J cos θK
Es + mk − μ


−
, EK = J cos θK

vk+

−

,

BK = −J sin θK
Es + mk − μ


+
, FK = −J sin θK

vk+

+

,

CK = J cos θK
Es − mk + μ


−
, HK = J cos θK

vk−

−

,

DK = J sin θK
Es − mk − μ


+
, LK = J sin θK

vk−

+

, (A11)

with 
± ≡ (Es ∓ μ)2 − m2
k − v2k2 and k± ≡ kx ± iky. When the surface gap m is not too large (compared to the superconducting

gap �s) and the electron tunneling strength J is weak (i.e., |
±|  J2), the effective Hamiltonian of the TI-SC in second-order
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perturbation is further obtained as Heff = H0 + 1
2 [H1, S], where the second-order term can be calculated as

1

2
[H1, S] = J

2

∫
d3k

(2π )3
(− cos θKϕ

†
k↑ + sin θKϕ−k↓)(A∗

Kϕk↑ + B∗
Kϕ

†
−k↓ + E∗

Kϕk↓ + F ∗
Kϕ

†
−k↑)

+ (− sin θKϕ
†
−k↓ + cos θKϕk↑)(AKϕ

†
k↑ + BKϕ−k↓ + EKϕ

†
k↓ + FKϕk↑)

+ (− cos θKϕ
†
k↓ − sin θKϕ−k↑)(C∗

Kϕk↓ + D∗
Kϕ

†
−k↑ + H∗

Kϕk↑ + L∗
Kϕ

†
−k↓)

+ (sin θKϕ
†
−k↑ + cos θKϕk↓)(CKϕ

†
k↓ + DKϕ−k↑ + HKϕ

†
k↑ + LKϕ−k↓)

= J

2

∫
d3k

(2π )3
{[−2AK cos θK + 2DK sin θK]ϕ†

k↑ϕk↑ + [−2BK sin θK − 2CK cos θK]ϕ†
k↓ϕk↓

+ [(−2EK cos θK + 2FK sin θK )ϕ†
k↓ϕk↑ + H.c.] + [(EK sin θK + FK cos θK )(ϕ†

k↓ϕ
†
−k↑ + ϕk↑ϕ−k↑) + H.c.]

+ [(AK sin θK − BK cos θK + CK sin θK + DK cos θK )ϕ†
k↑ϕ−k↓ + H.c.]}. (A12)

In the above calculation (A12), we have utilized the relations of the coefficients, i.e., AK = A−K = A∗
K and EK = −E−K =

H∗
K, and discarded the superconducting terms η†η†, η†η, ηη due to the decoupled hybrid system in the second-order approxima-

tion. By substituting the coefficients in Eq. (A11) into Eq. (A12), the effective Hamiltonian of TI dressed by the superconducting
proximity effect is obtained as

Heff =
∫

d2k

(2π )2
{m̃k (ϕ†

k↑ϕk↑ − ϕ
†
k↓ϕk↓) − μ̃(ϕ†

k↑ϕk↑ + ϕ
†
k↓ϕk↓) + [ṽ(kx + iky)ϕ†

k↓ϕk↑ + H.c.]

× �̃k(ϕ†
k↑ϕ

†
−k↓ + H.c.) + [�̃k(ϕ†

k↓ϕ
†
−k↓ + ϕk↑ϕ−k↑) + H.c.]}, (A13)

where the renormalized mass term m̃k , the chemical potential μ̃, the Fermi velocity of the TI, ṽ, and the induced pairing terms
with the same spin, �̃k, and the opposite spin, �̃k, are, respectively,

m̃k =
[

1 − J2
∫

dkz

2π

(
cos2 θK


−
+ sin2 θK


+

)]
mk ≈

(
1 − J2

∫
dkz

2π

1




)
mk,

μ̃ = μ + J2
∫

dkz

2π

[
cos2 θK(Es + μ)


−
− sin2 θK(Es − μ)


+

]
≈ μ + J2

∫
dkz

2π

εs − μ



,

ṽ =
[

1 − J2
∫

dkz

2π

(
cos2 θK


−
+ sin2 θK


+

)]
v≈

(
1 − J2

∫
dkz

2π

1




)
v,

�̃k = J2

2

∫
dkz

2π
sin 2θK

(
Es + μ


−
+ Es − μ


+

)
≈ J2�s

∫
dkz

2π

1



,

�̃k = J2

4

∫
dkz

2π
sin 2θK

(
1


−
− 1


+

)
vk+ ≈ 0, (A14)

with 
 ≡ E2
s − m2

k − v2k2. In the above simplification of (A14), we have considered that the chemical potential is much smaller
than the SC gap (i.e., μ � �s), so the higher orders of μ/Es are ignored. In addition, the renormalized chemical potential μ̃ is
obtained by simultaneously considering the small mass term and the low-energy state of TI (mk, vk � Es).

Finally, we need to finish the calculation of the two integrals that remain in Eq. (A14). One is∫
dkz

2π

1



=

∫
dkz

2π

1

E2
s − m2

k − v2k2
≈

∫
dkz

2π

1

�2
s +

(
k2

z

2ms
− μs

)2
− m2

≈ 1

π

∫ h̄ωD

−h̄ωD

dε

√
ms

2(ε + μs)

1

�2
s − m2 + ε2

≈
√

ms

2μs

1√
�2

s − m2
. (A15)

Above, we have considered that the TI is in the low-energy state (k2 is small) and employed the Debye truncation
approximation (the Debye frequency ωD). In addition, �s � ωD � μs has been used to simplify the result. Similarly, we can
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obtain the other integral
∫ dkz

2π
εs



≈0; then the effective Hamiltonian of (4) in the main text is finally achieved as

Heff =
∫

d2k

(2π )2
{m̃k (ϕ†

k↑ϕk↑ − ϕ
†
k↓ϕk↓) − μ̃(ϕ†

k↑ϕk↑ + ϕ
†
k↓ϕk↓) + [ṽ(kx + iky)ϕ†

k↓ϕk↑ + H.c.]�̃(ϕ†
k↑ϕ

†
−k↓+H.c.)}, (A16)

where the mass term, the chemical potential, and the Fermi velocity are renormalized by a universal factor,

m̃k

mk
= μ̃

μ
= ṽ

v
≈ 1 − �̃/�s, �̃ ≈ J2

√
ms

2μs

[
1 −

(
m

�s

)2
]− 1

2
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