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Quantum transport theory of hybrid superconducting systems
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We present a quantum transport theory for hybrid superconducting systems based on our exact master-
equation approach. The system-terminal transport current dynamics are fully captured by the extended
nonequilibrium Green’s function incorporating pair correlations via spectral density matrices. The total transient
transport current is decomposed into components that describe coherent transports through different paths of
particle and hole channels. We show that these coherent transports are resultant interferences of numerous
repeated tunneling processes and cannot be rendered as a simple normal transmission or Andreev reflection
as usually described in the steady quantum transport involving superconductivity. As a practical application,
we apply the theory to a two-terminal superconductor-semiconductor nanowire to study the transport dynamics
through a pair of Majorana zero modes. We find that the coherent transport currents passing through a pair of
well-separated Majorana zero modes vanish due to the totally destructive interference between the particle and
hole channels. This provides a different understanding to the scenario of “teleportation” via a pair of delocalized
Majorana zero modes, namely, a pair of delocalized Majorana zero modes does not possess the nonlocality of an
entangled pair for quantum teleportation.
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I. INTRODUCTION

Topological quantum computation has been considered as
the promising candidate because it has been thought to be
robust against decoherence [1–12]. The building blocks of
topological quantum computation, i.e., topological qubits, are
proposed to be made by anyons which obey the non-Abelian
statistics [2–4]. One of the realizations for topological qubits
is the spatially well-separated Majorana zero modes (MZMs)
which form a highly degenerate ground-state space [5–12].
The existence of MZMs is theoretically predicted to mani-
fest at the boundaries of p-wave topological superconductors
[1,2]. Both theoretical and experimental investigations aimed
at confirming the presence of MZMs have heavily relied on
their transport properties. For instance, tunneling conductance
measurements have been conducted in two-terminal [13–17]
or three-terminal experimental setups [18,19]. However, the
origin of the observed zero-bias conductance peaks (ZBCPs)
in these experiments, whether they arise from MZMs or other
nontopological bound states, remains a subject of ongoing
debate [20–26]. Furthermore, current power spectroscopy has
been proposed as another approach of detecting evidence for
MZMs, also utilizing the transport dynamics [27–31].

In the experimental studies of transport properties, particu-
larly those concerning MZMs, a significant portion of research
has centered with hybrid superconducting structures. With
proximity-induced conventional s-wave superconductivity in
various systems, it becomes possible to generate effective
p-wave superconductivity. A prime example is the utilization
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of the surface states of a topological insulator combined with
induced s-wave superconductivity to create effective p-wave
superconductivity. Consequently, MZMs can manifest as vor-
tices at the interface between a well-engineered topological
insulator and a conventional superconductor [32,33]. Such
achievements can also be accomplished by inducing s-wave
superconductivity in a semiconductor with strong spin-orbit
coupling when the time-reversal symmetry is intentionally
broken. Agents capable of breaking time-reversal symmetry
include external magnetic fields [34–36], ferromagnetic insu-
lators [35] or layers of half-metals [37,38], or, alternatively,
positioning a chain of magnetic adatoms on a conventional
superconductor substrate [39,40].

In the literature, the investigation of tunneling currents and
conductances in hybrid superconducting systems primarily
relies on the scattering matrix formalism applied to a normal
metal (or semiconductor-)superconductor junction [41–44].
The transport processes described by the scattering matrix are
classified as normal transmissions and Andreev reflections.
However, the scattering theory may be valid only in the
steady-state limit with a semiclassical particle picture but
cannot capture the transient transport dynamics adequately.
In fact, the simple picture of the normal transmission and
Andreev reflection for transient quantum transport fails
quantum mechanically because the actual transport processes
are the resultant interferences of numerous repeated tunneling
processes between the system and the terminals that mix
the normal transmissions and Andreev reflections in a very
complicated dynamical way, as we will show in details in
this paper.

It is therefore desired to develop a nonequilibrium
transport theory that specifies the transient dynamics from
the system-terminal interactions and clarifies the connection
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between transport current and the quantum states of the
system, including both topological and nontopological states.
Over the past decade, we have derived an exact master
equation that incorporates transport current, applicable to the
study of non-Markovian dissipation, decoherence dynamics,
and nonequilibrium transport physics in various bosonic and
fermionic open systems [45–51]. Recently, our exact master
equation has been extended to topological systems [52–57],
including MZM systems [52,53,57] and Majorana Aharonov-
Bohm interferometers [56]. The exact master equation reveals
an important consequence that the dissipative and the transient
transport dynamics of a quantum system are fully captured by
the extended nonequilibrium Green’s functions incorporating
pair correlations via spectral density matrices. The spectral
density matrices are given by the product of the terminal
densities of state (which characterizes the spectral structures
of the terminals) and the conjugate products of the system-
terminal coupling amplitudes (which involve wave-function
overlaps between the Majorana bound states of the system
and the terminal states). Since the topological properties of
MZMs in the system are characterized by both their energy
spectra and energy eigenfunctions, topological structures of
the system are manifested in the dissipative and transport
dynamics through these spectral density matrices [54].

In this paper, our aim is to extend our transport theory
based on the exact master-equation approach to explore the
general transient transport dynamics of hybrid superconduct-
ing systems. A hybrid superconducting system comprises a
central system that is coupled to multiple leads with ad-
justable tunneling couplings, given by the Hamiltonian Htot =
HS + Hlead + HT . Notably, both Hamiltonians HS and Hlead

may incorporate superconducting pairing terms, enabling the
analysis of a broad range of systems, including both topo-
logical and nontopological ones. By performing Bogoliubov
transformations, the central system and terminals can be di-
agonalized and the pairing terms can always be incorporated
into the tunneling Hamiltonian between the central system and
terminals [55].

It is important to notice that after Bogoliubov transforma-
tions, the coupling strengths in the tunneling Hamiltonian (see
the detailed expressions given in Sec. II A) are proportional to
the wave-function overlap between the topological (or non-
topological) states and the terminal states, and are therefore
crucial in showing the transport dynamics involving differ-
ent topological structures. However, in most of researches
[58–64], to simplify the calculations, people use a Majo-
rana tunneling Hamiltonian with the Lindblad-type master
equation plus the wide-band limit to study dissipation, de-
coherence, and transport dynamics of topological systems.
In these studies, the spectral density matrices are treated as
constant decay rates. Such a simplification ignores the wave-
function structures of the topological states for transport and
thereby removes the significance coming from topological
contribution in transport dynamics. As a result, it fails to
describe correctly the topological transport dynamics, namely,
fails to account for the topological structures embedded in the
system wave functions and is thereby unable to distinguish the
difference of transport dynamics between topological states
and nontopological states, as we have pointed out in our previ-
ous work [55]. A very recent work [65] follows our derivation

of the exact master equation for MZMs [52,55] to study the
transport through MZMs. Although the approach can apply to
arbitrary spectral density matrices, they also focus their study
only in the wide-band limit. Once the wide-band limit is used,
it faces the same problem of being unable to capture the topo-
logical properties of MZMs (which are characterized by the
MZM wave functions through the spectral density matrices)
in transport dynamics.

With a general Hamiltonian of the hybrid superconducting
systems, we have extended and generalized our exact master
equation to include superconducting pairing between the sys-
tem and the terminals [55]. In this paper, we further derive
the transient transport dynamics of hybrid superconducting
systems or MZM topological systems in both the partitioned
and partition-free schemes. In the partitioned scheme, the
central system is initially decoupled to the biased terminals
before the system-terminal couplings are turned on. In the
partition-free scheme, the central system is initially in equi-
librium with the terminals before the bias is turned on. The
resulting particle and hole transport dynamics between the
terminals and the system can be fully described with the
extended nonequilibrium Green’s functions, which incorpo-
rate pairing correlations through the spectral density matrices.
Consequently, the transient transport dynamics effectively re-
veals the topological properties of the system and terminals.
This allows our transport theory to unambiguously identify
the influence of the nonlocal MZM wave function on the
transient transport current through the spectral density ma-
trices, which is a crucial aspect in the experimental search
for MZM signatures. Moreover, the total transient transport
current can be decomposed into components that coherently
transfer between different terminal channels. As a result,
the simple picture of the normal transmission and Andreev
reflection cannot capture the transient transport dynamics
adequately.

As an application of the theory, we study the trans-
port dynamics of a MZM topological system modeled by
a superconductor-semiconductor nanowire in the partitioned
and partition-free schemes. We also provide a different un-
derstanding to the scenario of “teleportation” via a pair of
well-separated MZMs. Here, “teleportation” introduced by Fu
[66] refers to an incident electron tunneling into one MZM
and coming out from its spatially separated partner while pre-
serving phase coherence. We found that, in both partitioned
and partition-free schemes, if the MZMs are perfectly delocal-
ized (or spatially well separated, namely, their wave functions
do not overlap with each other), the current components
tunneling through the particle channel and the hole channel
cancel each other. In other words, no quantum teleportation
occurs between a pair of perfectly delocalized MZMs because
of the totally destructive interference between the particle and
hole channels. In other words, a pair of perfectly delocalized
MZMs cannot be thought of being nonlocally entangled. Note
that the key issue of the teleportation in quantum technology
is the utilizing of the nonlocality of a spatially separated
entangled pair of states. In [66], for the “teleportation” to
occur a finite charging energy term coupling the two MZMs
must explicitly appear in the Hamiltonian. Thus, electron
transport caused by the direct coupling energy between the
two MZMs, rather than the nonlocality of the two MZM
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entanglements, is not the effect of teleportation referred com-
monly in quantum technology. In fact, in a previous work [52],
we already proved that in the topological phase, when one of
the two delocalized MZMs in a nanowire is disturbed, only
the disturbed MZM decoheres, leaving the other MZM un-
changed. This indicates that the two delocalized MZMs do not
entangle together. Therefore, no teleportation occurs via two
delocalized MZMs.

The rest of the paper is organized as follows. In Sec. II, we
discuss the general Hamiltonian of the hybrid superconduct-
ing systems, derive their exact master equation, and develop
the transient quantum transport theory in both partitioned and
partition-free schemes. In Sec. III, we identify the current
contributions of coherent tunnelings through different paths.
We then study the transport dynamics of a MZM topological
system. Also, we analyze the behavior of the cross differ-
ential conductance and the differential conductance that is
experimentally measurable, where the simple description of
the normal transmission and Andreev reflection becomes in-
sufficient in the transient regime. We discuss in details the
teleportation scenario of MZMs by analyzing interferences
between coherent transportations through the particle and hole
channels of different leads, and show that the coherent trans-
port currents through a pair of perfectly delocalized MZMs
vanish due to totally destructive interference. Finally, a con-
clusion is given in Sec. IV.

II. QUANTUM TRANSPORT THEORY FOR HYBRID
SUPERCONDUCTING SYSTEMS

A. The general Hamiltonian for hybrid
superconducting systems

A hybrid superconducting system comprises a central sys-
tem that is coupled to multiple leads with adjustable tunneling
couplings, given by the Hamiltonian

Htot = HS + Hlead + HT . (1)

Notably, both Hamiltonians HS and Hlead may incorporate
superconducting pairing terms, enabling the analysis of a
broad range of systems, including both topological and non-
topological ones. By performing Bogoliubov transformations,
the central system and terminals can be diagonalized and the
pairing terms can always be incorporated into the tunnel-
ing Hamiltonian between the central system and terminals,
namely,

Htot =
∑

i

εia
†
i ai +

∑
αk

[εαk + Uα (t )]b†
αkbαk

+
∑
jαk

[ηαkb†
αk (κα ja j + κ ′

α ja
†
j ) + H.c.], (2)

where ai (bαk) is the annihilation operator of the ith energy
level (spectrum k mode) of the central system (terminal α),
Uα (t ) is the applied bias to lead α, ηαk is the tunneling strength
between the central system and the spectrum k mode of lead α.
In this context, the topological properties of the central system
and the leads are manifested through their respective wave
functions, which are given by the Bogoliubov transformation
coefficients κα j and κ ′

α j .

As a specific example, let us consider a hybrid supercon-
ducting system modeled by a tight-binding N-site p-wave
superconducting wire with its left and right ends coupled,
respectively, to the left and right leads (α = L, R). More ex-
plicitly, the left and right leads are coupled to the leftmost
and the rightmost cites of the wire. Thus, the Hamiltonians of
the superconducting wire and the two leads plus the tunneling
Hamiltonian are given by [55,57]

Htot =
N−1∑
j=1

(μwc†
j c j + wc†

j+1c j + �c j+1c j + H.c.)

+
∑
αk

[εαk + Uα (t )]b†
αkbαk

+
∑

k

(ηLkb†
αkc1 + ηRkb†

RkcN + H.c.), (3a)

where c j (c†
j ) is the electron annihilation (creation) operator

of the system chain cite j. Consequently, by diagonalizing the
system Hamiltonian with a Bogoliubov transformation, the
above Hamiltonian is reduced to the form of Eq. (2) in terms
of bogoliubon operators

Htot =
∑

j

ε ja
†
j a j +

∑
αk

[εαk + Uα (t )]b†
αkbαk

+
∑

k j

[ηLk (κL jb
†
Lka j + κ ′

L jb
†
Lka†

j )

+ ηRk (κR jb
†
Rka j + κ ′

R jb
†
Rka†

j ) + H.c.], (3b)

where a j are bogoliubon operators of the wire. An analytical
diagonalization of such a system Hamiltonian with asymmet-
rical distributed chemical potentials μi has been presented
in our previous work [57]. The Bogoliubov transformation
and the corresponding coefficients κα j and κ ′

α j representing
the wave-function structure of the Majorana zero modes and
nonzero modes are given explicitly by

c1 =
∑

j

(κL ja j + κ ′
L ja

†
j ), (4a)

cN =
∑

j

(κR ja j + κ ′
R ja

†
j ). (4b)

A numerical calculation of these Bogoliubov transformation
coefficients is shown in Fig. 6 in Sec. III. For a large-number
chain of the p-wave superconducting wire with small chemi-
cal potentials, it is well known that two Majorana zero modes
are localized at the ends of the wire with exponentially de-
caying wave functions along the wire (also see our previous
works [54,57]). It is the Majorana zero mode and nonzero
mode wave functions embedded in the tunneling Hamiltonian
that can distinguish the difference in the transport phenomena
through the topological and nontopological states in such a
two-terminal device.

In a similar way, we can also apply the Hamiltonian (2)
to the two-dimensional superconductor-semiconductor het-
erostructure, where the system can be modeled, for example,
as a two-dimensional topological Haldane model [67]. By
diagonalizing the system Hamiltonian of the Haldane model
with a Bogoliubov transformation, one obtains again the gen-
eral form of the Hamiltonian (2), and the wave functions

195402-3



YAO, LAI, AND ZHANG PHYSICAL REVIEW B 108, 195402 (2023)

of topological (or nontopological) states will enter explicitly
into the coupling strength between the topological (or non-
topological) states and the terminals states [68]. The resulting
transport theory, if one formulates it correctly, can manifest
the difference in transport through the topological and non-
topological states.

In the literature, one usually starts with a general topolog-
ical system containing, for example, 2N MZMs, and models
the system Hamiltonian and the tunneling Hamiltonian by

HS = i

2

2N∑
i j=1

εi jγiγ j, HT =
∑
iαk

(Viαkb†
αkγi + H.c.), (5a)

where γi represents the ith Majorana zero mode. This Ma-
jorana Hamiltonian can be easily rewritten in terms of N
bogoliubon operators an = 1

2 (γ2n−1 + iγ2n), namely,

HS =
N∑
mn

ε̃mn(a†
man − ama†

n), (5b)

HT =
∑
nαk

(Ṽnαkb†
αkan + Ṽ ′

nαkb†
αka†

n + H.c.). (5c)

By diagonalizing HS , one again obtains a total Hamiltonian
with the form of Eq. (2). Note that the coupling strength
Viαk in Eq. (5a) is proportional to the wave-function overlap
between the topological (or nontopological) states and the ter-
minal states, and is therefore crucial in showing the transport
dynamics involving different topological structures. However,
in most of the researches [58–64], one usually takes the wide-
band limit to simplify the calculations. Such a simplification
ignores the wave-function structures of the topological states
for transport and thereby removes the significance coming
from topological contribution in transport dynamics. As a
result, it fails to describe correctly the topological transport
dynamics, as we have pointed out in our previous work [55]
(also see the detailed formulation of the transport theory given
below).

B. The generalized quantum transport theory for partition-free
and partitioned initial states

From the total Hamiltonian (2), the total density matrix of
the system and the leads (terminals) is determined by the von
Neumann equation d

dt ρtot(t ) = 1
ih̄ [H, ρ(t )], the reduced den-

sity matrix of the system is then obtained by partially tracing
out the degrees of freedom of the leads, i.e., ρS = TrE [ρtot(t )].
We consider first the partition-free scheme, in which the total
system is initially in an equilibrium entangled state between
the system and terminals, namely, ρtot(t0) = 1

Z e−βHtot . A bias
Uα (t ) = Uα
(t − t0) is then applied to the leads at time t0.
Since the system and the environment are highly entangled
initially, the Feynman-Vernon influence functional method is
no longer applicable. We have found [55] that the exact master
equation is given by

d

dt
ρS (t ) = 1

ih̄
[HS (t ), ρS (t )] + [L+(t ) + L−(t )]ρS (t ). (6)

The total current flow out of the system to the leads IT (t ) =∑
α Iα (t ) can be obtained by tracing the current superoperators

L+(t )ρS (t ) and L−(t )ρS (t ),

IT (t ) = e Tr[L+(t )ρS (t )] = −e Tr[L−(t )ρS (t )] (7)

(see Appendix, Sec. A 1 for a detailed derivation). The current
Iα passing through the lead α can be expressed as

Iα (t ) = − e

h̄2 Tr

[∫ t

t0

dτ g−
α (t, τ )ρ̃(τ, t )

−
∫ t

t0

dτ g̃−
α (t, τ )U†(t, τ ) + H.c.

]
, (8)

where ρ̃i j (τ, t ) = (
〈ai (τ )a†

j (t )〉 〈ai (τ )a j (t )〉
〈a†

i (τ )a†
j (t )〉 〈a†

i (τ )a j (t )〉) is the extended particle

correlation functional matrix and can be explicitly written as

ρ̃(τ, t ) =U (τ, t0)ρ̃(t0, t0)U†(t, t0)

+ 1

h̄2

∫ τ

t0

dτ1

∫ t

t0

dτ2U (τ, τ1)g̃+(τ1, τ2)U†(t, τ2)

+ 1

h̄2

∫ τ

t0

dτ1

∫ t

t0

dτ2U (τ, τ1)[ḡ(τ1, τ2)

+ ḡ†(τ2, τ1)]U†(t, τ2), (9)

while U i j (t, t0 ) =
(

〈{ai (t ), a†
j (t0 )}〉 〈{ai (t ), a j (t0 )}〉

〈{a†
i (t ), a†

j (t0 )}〉 〈{a†
i (t ), a j (t0 )}〉

)
is the extended

retarded Green function matrix that obeys the following
differential-integral equation:

d

dt
U (t, t0) + i

h̄

(
ε 0
0 −ε

)
U (t, t0)

+ 1

h̄2

∫ t

t0

dτ g+(t, τ )U (τ, t0) = 0. (10)

The time-correlation functions ḡ(τ1, τ2) =∑α ḡα (τ1, τ2),
g±(t, τ ) =∑α g±

α (t, τ ), and g̃±(τ1, τ2) =∑α g̃±
α (τ1, τ2) de-

scribe the system-leads correlations that encompass all the
initial correlations of the system and the leads between them.
They can be expressed in terms of spectral density matrices

g±
α (t, τ ) =

∫
dω

2π
e−i(ω+ Uα

h̄ )(t−τ )J ±
α (ω), (11a)

g̃±
α (t, τ ) =

∫
dω

2π
e−i(ω+ Uα

h̄ )(t−τ )J̃ ±
α (ω), (11b)

ḡα (t, τ ) = −2i
∫

dω

2π

(
e−i(ω+ Uα

h̄ )(t−t0 ) 0
0 ei(ω+ Uα

h̄ )(t−t0 )

)

× J̃ +
α (ω)χ(ω)δ(τ − t0), (11c)

where χ(ω) is given by Eq. (A20). The spectral density matri-
ces are given by J ±

α (ω) = J α (ω) ± J ′
α (−ω) and J̃ ±

α (ω) =
nα (ω)J α (ω) ± [1 − nα (−ω)]J ′

α (−ω). In the partition-free
scheme, nα (ω) is given by Eq. (A23). The spectral density
matrices are given by

J α (ω) =
(

Jα (ω) J̄α (ω)

J̄†
α (ω) Ĵα (ω)

)
, (12a)

J ′
α (ω) =

(
Ĵα (ω) J̄†

α (ω)

J̄α (ω) Jα (ω)

)
, (12b)
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with the matrix elements

Jαi j (ω) = κ∗
αiκα jJ0α (ω), (13a)

Ĵαi j (ω) = κ ′∗
αiκ

′
α jJ0α (ω), (13b)

J̄αi j (ω) = κ∗
αiκ

′
α jJ0α (ω), (13c)

and J0α (ω) = 2π
∑

k |ηαk|2δ(ω − εαk/h̄), which closely lies
on the wave-function structures of the system and the terminal
states.

On the other hand, in the partitioned scheme, the cen-
tral system is initially decoupled from the leads, namely,
ρtot(t0) = ρS (t0) ⊗ ρE (t0). We have derived the exact master
equation in this case by using the Feynman-Vernon influ-
ence functional in the coherent state representation (see
Appendix, Sec. A 2 for the detailed derivation). The ex-
act master equation and the current Iα can be written
in the same form as Eqs. (6) and (8), respectively. In
this case, the extended particle reduced density matrix is
given by

ρ̃(τ, t ) =U (τ, t0)ρ̃(t0, t0)U†(t, t0)

+ 1

h̄2

∫ τ

t0

dτ1

∫ t

t0

dτ2U (τ, τ1)g̃+(τ1, τ2)U†(t, τ2).

(14)

In the partitioned scheme, the lead α are initially biased with
nα (ω) = 1

e(ω−μα )/kBTα +1 for Uα = 0 [see Eq. (11)].

III. TRANSPORT DYNAMICS OF HYBRID
SUPERCONDUCTING SYSTEMS

A. General discussion

The transient transport current Iα (t ) [see Eq. (8)] can be
expressed as the combination of contributions flowing into the
particle and hole channels of the lead α, namely,

Iα (t ) = Iαp(t ) − Iαh(t ). (15)

Notice that the minus sign comes from the correlation func-
tions g−

α (t, τ ) and g̃−
α (t, τ ) in Eq. (8). By utilizing the

identity

U†(t, τ ) =U (τ, t0)U†(t, t0)

+ 1

h̄2

∫ τ

t0

dτ1

∫ t

t0

dτ2U (τ, τ1)g+(τ1, τ2)U†(t, τ2),

(16)

the current contributions can further be decomposed into com-
ponents that describe coherent transports through different
paths,

Iασ (t ) = Iασ0(t ) +
∑
βσ ′

Iασ,βσ ′ (t ) +
∑
βσ ′

Īασ,βσ ′ (t ), (17)

where σ, σ ′ = p, h indicate the particle or hole channels,
and

Iασ0(t ) = −e

h̄2

∫ t

t0

dτ Tr
[
gσ
α (t, τ )U (τ, t0)ρ̃(t0, t0)U†(t, t0)

− g̃σ
α (t, τ )U (τ, t0)U†(t, t0) + H.c.

]
, (18a)

Iασ,βσ ′ (t ) = −e

h̄4

∫ t

t0

dτ

∫ τ

t0

dτ1

∫ t

t0

dτ2

× Tr
[
gσ
α (t, τ )U (τ, τ1)g̃σ ′

β (τ1, τ2)U†(t, τ2)

− g̃σ
α (t, τ )U (τ, τ1)gσ ′

β (τ1, τ2)U†(t, τ2) + H.c.
]
,

(18b)

Īασ,βσ ′ (t ) = −e

h̄4

∫ t

t0

dτ

∫ τ

t0

dτ1

∫ t

t0

dτ2Tr
[
gσ
α (t, τ )U (τ, τ1)

× [ḡσ ′
β (τ1, τ2) + ḡ†σ ′

β (τ2, τ1)
]
U†(t, τ2) + H.c.

]
,

(18c)

with the system-lead time correlations through the particle and
hole channels,

gp
α (t, τ ) =

∫
dω

2π
e−i(ω+ Uα

h̄ )(t−τ )J α (ω), (19a)

gh
α (t, τ ) =

∫
dω

2π
e−i(ω+ Uα

h̄ )(t−τ )J ′
α (−ω), (19b)

g̃p
α (t, τ ) =

∫
dω

2π
e−i(ω+ Uα

h̄ )(t−τ )nα (ω)J α (ω), (19c)

g̃h
α (t, τ ) =

∫
dω

2π
e−i(ω+ Uα

h̄ )(t−τ )[1 − nα (−ω)]J ′
α (−ω),

(19d)

ḡp
α (t, τ ) = −2iδ(τ − t0)

∫
dω

2π
e−i(ω+ Uα

h̄ )(t−t0 )J α (ω)χ(ω),

(19e)

ḡh
α (t, τ ) = −2iδ(τ − t0)

∫
dω

2π
ei(ω+ Uα

h̄ )(t−t0 )J ′
α (−ω)χ(ω).

(19f)

The current Iασ0(t ) describes the coherent transport between
the system and the channel σ of lead α. The contribution of
these processes will eventually decay to zero in the steady-
state limit if there is no localized bound state [48,51]. This is
because U (t → ∞, t0) = 0 if no localized bound state exists.
On the other hand, both currents Iασ,βσ ′ (t ) and Īασ,βσ ′ (t ) de-
scribe the coherent transport between the channel σ ′ of lead
β and the channel σ of lead α, where Īασ,βσ ′ (t ) is caused
by the initial system-lead correlations through the correla-
tion function ḡσ ′

β (τ1, τ2). Note that in the partitioned scheme,
Īασ,βσ ′ (t ) = 0.

In the steady-state limit, the coherent transport current
Iασ,βσ ′ (t ) can be explicitly expressed as follows:

Iαp,βp(t → ∞) = −e

h̄4

∫
dωT pp

αβ (ω)[nβ (ω) − nα (ω)],

(20a)

Iαh,βh(t → ∞) = −e

h̄4

∫
dωT hh

αβ (ω)[nα (−ω) − nβ (−ω)],

(20b)

Iαp,βh(t → ∞) = −e

h̄4

∫
dωT ph

αβ (ω)[1 − nβ (−ω) − nα (ω)]

= −Iβh,αp(t → ∞), (20c)
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where Ũ (ω) = ∫∞
t0

dτ U (τ, t0)e−iω(τ−t0 ) is the modified
Laplace transform of U (τ, t0) and the transmission matrices
are given by

T pp
αβ (ω) = Tr

[
J α (ω)Ũ

(
ω + Uα

h̄

)
J β (ω)

× Ũ
†
(

ω + Uβ

h̄

)
+ H.c.

]
, (21a)

T hh
αβ (ω) = Tr

[
J ′

α (−ω)Ũ
(

ω + Uα

h̄

)
J ′

β (−ω)

× Ũ
†
(

ω + Uβ

h̄

)
+ H.c.

]
, (21b)

T ph
αβ (ω) = Tr

[
J α (ω)Ũ

(
ω + Uα

h̄

)
J ′

β (−ω)

× Ũ
†
(

ω + Uβ

h̄

)
+ H.c.

]

= T hp
βα (ω). (21c)

It is obvious that Iαp,αp(t → ∞) = Iαh,αh(t → ∞) = 0.

The current components Iαp,βp (Iαh,βh) and Iαp,βh (Iαh,βp)
are commonly called, respectively, the normal transmission
and the Andreev reflection in the scattering matrix theory.
However, this picture may be misleading in the transient
regime. Notice that the Green function matrix U (t, t0) has
taken into account all the system-lead tunnelings through the
spectral density matrices [see Eq. (10)], which is not a free
propagator of the system. In order to clarify the transient phys-
ical processes, we expand the Green function matrix U (t, t0)
with respect to the system-lead time correlation functions g
(g ∝ |η|2) order by order,

U (t, t0) =U0(t, t0)

− 1

h̄2

∫ t

t0

dτ1

∫ τ1

t0

dτ2U0(t, τ1)

× g+(τ1, τ2)U0(τ2, t0) + · · · , (22)

where U0(t, t0) = exp − i
h̄ HS (t − t0) is the free propagator of

the system. Likewise, we can expand Iασ,βσ ′ (t ) in the same
way,

Iασ,βσ ′ (t ) = I (2)
ασ,βσ ′ (t ) + I (3)

ασ,βσ ′ (t ) + · · · , (23)

where

I (2)
ασ,βσ ′ (t ) = −e

h̄4

∫ t

t0

dτ

∫ τ

t0

dτ1

∫ t

t0

dτ2Tr
[
gσ
α (t, τ )U0(τ, τ1)g̃σ ′

β (τ1, τ2)U†
0(t, τ2) − g̃σ

α (t, τ )U0(τ, τ1)gσ ′
β (τ1, τ2)U†

0(t, τ2) + H.c.
]
,

(24a)

I (3)
ασ,βσ ′ (t ) =

∑
σ ′′α′

e

h̄6

∫ t

t0

dτ

∫ τ

t0

dτ1

∫ t

t0

dτ2

∫ τ

τ1

dτ3

∫ τ3

τ1

dτ4Tr
[
gσ
α (t, τ )U0(τ, τ3)gσ ′′

α′ (τ3, τ4)U0(τ4, τ1)g̃σ ′
β (τ1, τ2)U†

0(t, τ2)

− g̃σ
α (t, τ )U0(τ, τ3)gσ ′′

α′ (τ3, τ4)U0(τ4, τ1)gσ ′
β (τ1, τ2)U†

0(t, τ2) + H.c.
]

+
∑
σ ′′α′

e

h̄6

∫ t

t0

dτ

∫ τ

t0

dτ1

∫ t

t0

dτ2

∫ t

τ2

dτ3

∫ τ3

τ2

dτ4Tr
[
gσ
α (t, τ )U0(τ, τ1)g̃σ ′

β (τ1, τ2)U†
0(τ4, τ2)

[
gσ ′′
α′
]†

(τ3, τ4)U†
0(t, τ3)

− g̃σ
α (t, τ )U0(τ, τ1)gσ ′

β (τ1, τ2)U†
0(τ4, τ2)

[
gσ ′′
α′
]†

(τ3, τ4)U†
0(t, τ3) + H.c.

]
. (24b)

Here, only the first two leading-order contributions are shown.
In the following discussions, we focus on a central system

coupled to two leads (left lead L and right lead R). Figure 1
shows the basic Feynman diagrams for particle and hole free
propagators U0(τ, τ1), respectively, of the system and the
system-lead time-correlation functions gp

α (t, τ ) and gh
α (t, τ ) in

the expansions of the transient transport currents of Eq. (17)
given by Eqs. (23) and (24). Note that in this transport current
obtained from the exact master equation or from the nonequi-
librium Green function technique, the lead (reservoir) degrees
of freedoms have been completely integrated out. The cur-
rent is determined only by the particle and hole propagating
functions of the system plus the system-lead correlations (also
called as the self-energy correlation functions to the system).
It is the system-lead correlations that show how the particle
and hole channels are opened between the system and leads.
If one does not look at the physical processes that happened in
the system and only pays attention on the measured current at
time t , then the resulting current Iα (t ) only shows apparently

the electrons (holes) transferring from lead α into the system
at time t . But the real physical processes are much more
complicated, as shown by Fig. 1(b).

More specifically, the correlation function gp
α (t, τ ) contains

the processes of a quasiparticle transferring from the system

FIG. 1. Feynman diagrams of (a) the free propagator of the
system U 0(τ, τ1) for particles and holes, respectively, (b) the system-
lead time-correlation functions gp

α (t, τ ) and gh
α (t, τ ).
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FIG. 2. Representative diagrams of (a) the second-order processes in I (2)
Lp,Rp and (b) the third-order processes in I (3)

Lp,Rp. The black circle
represents a particle and the white circle represents a hole. Only diagrams of the first two lines of Eq. (24b) are shown; other diagrams can be
drawn similarly.

to lead α at time τ , propagating freely in the lead from time
τ to time t and then transferring back to the system at time
t , as shown by the first diagram in Fig. 1(b). But it also
contains three other processes [corresponding to the other
three diagrams in top of Fig. 1(b)]: a quasiparticle transfers
into the lead at time τ , propagates freely in the lead, and
then is annihilated with another quasiparticle (or a quasihole
is created) in the system at time t ; a quasihole is annihilated
(or a quasiparticle is created) in the system accompanied with
a quasiparticle creating in the lead at the same time τ , the
quasiparticle propagates freely in the lead, and then is trans-
ferred into the system at time t ; a quasihole is annihilated (or a
quasiparticle created) in the system with another quasiparticle
created in the lead at the same time τ , then the quasiparticle
propagates freely in the lead, and is annihilated with a quasi-
particle (or a quasihole is created) in the system at time t . The
latter three processes are induced by the superconductivity of
the system, as shown in the tunneling Hamiltonian of Eq. (2)
after the Bogoliubov transformation is performed. But if one
pays attention only to the current at time t , then only the part
of electron transferring from lead α to the system at time t
is observed, the electron dynamics before time t is hardly
manifested in the scattering matrix theory, for example.

To see the detailed processes of electron transfer through
the superconductor in the transient regime, we show diagram-
matically in Figs. 2 and 3 a part of the first two leading-order
contributions to the transport current of Eq. (17). The lowest-
order contributions shown in Figs. 2(a) and 3(a) are the
second-order processes (with respect to g) to the current, given

by I (2)
Lp,Rp(t ) of Eq. (24). It involves four processes of two

particle and hole exchanges between the two leads through
the system [characterized by two g functions, see Eq. (24a)].
Explicitly, Fig. 2(a1) depicts the process of particle trans-
missions between leads L and R through the two particle
channels of the system, while Fig. 2(a4) depicts the process
of particle transmissions between the leads through two hole
channels of the system. On the other hand, Figs. 2(a2) and
2(a3) depict the processes of particle transmissions between
the leads through a combination of both the particle channel
and hole channel of the system. However, with respect to the
current ILp(t ) which measures the current passing the lead L
at time t , these four processes depicted by Fig. 2(a) corre-
spond to two different physical processes. One is the normal
particle transmission from lead L to the system, contributed
with Figs. 2(a1) and 2(a3), as a resultant particle transmission
between leads L and R through a combination of the particle
and hole channels of the system. The other one is the particle
(hole) pair production and annihilation of the lead and the
system, respectively, contributed with Figs. 2(a2) and 2(a4),
which is also a resultant particle transmission between leads L
and R through a combination of the particle and hole channels
of the system (but the particle channels and hole channels are
exchanged), as shown in Fig. 2(a). Thus, it is difficult both
theoretically and experimentally to distinguish the contribu-
tions from the particle transmission or the pair production
and annihilation. Likewise, Fig. 3(a) depicts processes that
a particle in lead L is transmitted to the system and back in
the same lead through different channels of the system. All
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FIG. 3. Representative diagrams of (a) the second-order processes in I (2)
Lp,Lh and (b) the third-order processes in I (3)

Lp,Lh. The black circle
represents a particle and the white circle represents a hole. Only diagrams of the first two lines of Eq. (24b) are shown; other diagrams can be
drawn similarly.

the four processes plotted in Fig. 3(a) involve the resultant
combinations of particle transport through the mixture of the
particle and hole channels of the system. This cannot be de-
picted by the scattering matrix in terms of the simple picture
of normal particle transmission and Andreev reflection. The
next-order contributions are the third-order processes which
correspond to three particle and hole exchanges between the
leads and the system [see Eq. (24b)], as shown in Figs. 2(b)
and 3(b). These processes are much more complicated and
certainly cannot be rendered as a simple normal transmission
or Andreev reflection in the scattering matrix theory. For ex-
ample, Fig. 2(b) depicts processes involved by the third-order
contribution I (3)

Lp,Rp(t ). Figures 2(b1)–2(b8) depict processes
resulting from the mixing of two normal transmissions be-
tween the two leads. Furthermore, Figs. 2(b17)–2(b24) depict
processes resulting from the mixing of a normal transmission
and a cross Andreev reflection between the two leads. Simi-
larly, Fig. 3(b) depicts processes involved by I (3)

Lp,Rh(t ), which
also result from the mixing of the normal transmissions and
Andreev reflections (or cross Andreev reflections) between
the leads.

Obviously, the higher-order contributions in the expansion
(23) consist of more complicated mixtures of numerous nor-
mal transmissions and Andreev reflections between the leads
and the system. As a result, the resultant coherent transport
ILσ,Rσ ′ (t ) between leads L and R is the total sum of all order
contributions, and consists of numerous but more complicated
processes that cannot be rendered simply as normal transmis-
sions and Andreev reflections. Therefore, the simple picture

of normal transmission and Andreev reflection based on the
scattering matrix theory is not applicable to the transient
quantum transport processes. In fact, the coherent transport
currents (18) are the resultant interferences of all the tunneling
processes between the particle and hole channels of the leads
and the system. Of course, if there is no superconductivity
involved, all the hole channels do not occur, and our theory
reproduces the Meir-Wingreen formula based on the nonequi-
librium Green function technique, as we have shown in our
previous work [46,69]. In the steady-state limit, it also repro-
duces the Landauer-Büttiker formula based on the scattering
matrix theory [46,69]

B. Coherent transports through Majorana zero modes

In the following, we will apply our transport theory to the
system consisting of a pair of MZMs at the ends of the wire
and discuss the coherent transport dynamics through the left
and the right leads coupled to the system. With only a pair of
MZMs being considered, the total Hamiltonian can be written
as

Htot = εM

(
a†

0a0 − 1

2

)
+
∑
αk

[εαk + Uα (t )]b†
αkbαk

+
∑
αk

ηαk (κα0b†
αka0 + κ ′

α0b†
αka†

0 + H.c.), (25)

where a0 (a†
0) is the zero-mode bogoliubon operator, the

nonzero εM is caused by the wave-function overlap between
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the two separated MZMs, and bαk (b†
αk) is the annihilation

(creation) operator of the lead α = L, R. Again, we apply
the bias voltage Uα (t ) = Uα
(t − t0) to the two leads for
the partition-free scheme and let Uα = 0 for the partitioned
scheme. The system Hamiltonian and the tunneling Hamil-
tonian can be rewritten in terms of Majorana operators γL =
a0 + a†

0 and γR = −i(a0 + a†
0):

HS = i

2
εMγLγR, (26a)

HT =
∑

k

ηLk

2
[(κL0 + κ ′

L0)b†
LkγL + i(κL0 − κ ′

L0)b†
LkγR]

+
∑

k

ηRk

2
[(κR0 + κ ′

R0)b†
RkγL + i(κR0 − κ ′

R0)b†
RkγR]

+ H.c. (26b)

In the literature, this tunneling Hamiltonian is usually given in
the following form:

HT =
∑
αk

(Ṽαkb†
αka0 + Ṽ ′

αkb†
αka†

0 + H.c.)

=
∑

k

(VLLkb†
LkγL + VLRkb†

LkγR

+ VRLkb†
RkγL + VRRkb†

RkγR + H.c.). (27)

The coefficient Vααk is the coupling between the MZM γα

and the lead α, and the coefficient VLRk (VRLk) depicts the
cross coupling between the left (right) lead and the right (left)
MZM. In our formalism, it is clear that these couplings and
cross couplings are determined by the wave-function struc-
tures of the MZMs, which are characterized by κα0 and κ ′

α0
through the following relations:

Ṽαk = ηαkκα0, Ṽ ′
αk = ηαkκ

′
α0 (28)

and

VLLk = ηLk

2
(κL0 + κ ′

L0), VLRk = iηLk

2
(κL0 − κ ′

L0), (29a)

VRLk = ηRk

2
(κR0 + κ ′

R0), VRRk = iηRk

2
(κR0 − κ ′

R0). (29b)

The coupling VLLk (VRRk) is determined by the coefficient
(κL0 + κ ′

L0) [i(κR0 − κ ′
R0)], which describes the MZM ampli-

tude of γL (γR) coupling to the leftmost (rightmost) cite. On
the other hand, the cross coupling VLRk (VRLk) is determined
by the coefficient i(κL0 − κ ′

L0) [(κR0 + κ ′
R0)], which describes

the MZM amplitude of γR (γL) coupling to its opposite-end
cite. In other words, if a MZM is not perfectly localized, i.e.,
i(κL0 − κ ′

L0) 
= 0 and κR0 + κ ′
R0 
= 0, it can be directly coupled

to its opposite-end lead [see Fig. 4(a)].
Moreover, as shown in Fig. 4(b), this tunneling

Hamiltonian involves couplings between different channels of
quantum states of the leads and the system, respectively. The
hopping term Ṽαk describes the tunnelings from the particle
(hole) channel of lead α to the quasiparticle (quasihole)
state of the bogoliubon in the system [see the blue lines in
Fig. 4(b)]. The pairing term Ṽ ′

αk describes the tunnelings
from the particle (hole) channel of lead α to the quasihole
(quasiparticle) state of the bogoliubon [see the red lines in
Fig. 4(b)]. Therefore, the coherent transport current ILσ,Rσ ′ (t )

FIG. 4. A schematic plot of the two-terminal MZM system.
(a) The colored profiles labeled with γL,R represent the wave-function
distributions of the left and the right MZMs. In the MZM basis, εM

depicts the wave-function overlap of two MZMs, VLLk (VRRk) is the
tunneling coupling between the left (right) lead and the left (right)
MZM, and VLRk (VRLk) is the cross coupling between the left (right)
lead and the right (left) MZM. (b) In the bogoliubon basis, Ṽαk is
the particle-particle (or hole-hole) tunneling coupling between the
system and lead α, and Ṽ ′

αk is the particle-hole tunneling coupling
between the system and lead α.

is induced from an equivalent interferometer formed by the σ

channel of the left lead and the σ ′ channel of the right lead via
the quasiparticle and quasihole states of the bogoliubon in the
system. Equation (29) shows that when the MZMs are per-
fectly delocalized, i.e., i(κL0 − κ ′

L0) = 0 and κR0 + κ ′
R0 = 0,

the cross couplings between the MZMs and the leads vanish,
i.e., VLRk = VRLk = 0. In this case, the coupling coefficients
become ṼLk = Ṽ ′

Lk and ṼRk = −Ṽ ′
Rk = Ṽ ′

Rkeiπ [see Eq. (28)],
of which the interference dynamics is given equivalently
by that of the double-dot Aharonov-Bohm interferometer
with a π -phase difference and symmetric couplings to
the two system states, which produce a totally destructive
interference [49].

We are now going to show that the coherent transport cur-
rents ILσ,Rσ ′ (t ) and ĪLσ,Rσ ′ (t ) between the left and right leads
through the zero-energy bogoliubon (i.e. a pair of MZMs)
vanishes when the MZMs are perfectly delocalized, which
implies that the left and right MZM wave-function overlaps
are zero and there is no cross coupling, i.e., εM = 0 and
VLRk = VRLk = 0. Under such conditions, the elements of the
correlation function matrices satisfy the following relations:

[
gp(h)

L

]
11 = [gp(h)

L

]
22 = [gp(h)

L

]
12 = [gp(h)

L

]
21,[

gp(h)
R

]
11 = [gp(h)

R

]
22 = −[gp(h)

R

]
12 = −[gp(h)

R

]
21,[

g̃p(h)
L

]
11 = [g̃p(h)

L

]
22 = [g̃p(h)

L

]
12 = [g̃p(h)

L

]
21,[

g̃p(h)
R

]
11 = [g̃p(h)

R

]
22 = −[g̃p(h)

R

]
12 = −[g̃p(h)

R

]
21,[

ḡp(h)
L

]
11 = [ḡp(h)

L

]
22 = [ḡp(h)

L

]
12 = [ḡp(h)

L

]
21,[

ḡp(h)
R

]
11 = [ḡp(h)

R

]
22 = −[ḡp(h)

R

]
12 = −[ḡp(h)

R

]
21. (30)
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Furthermore, the elements of g+
α (t, τ ) become real numbers

g+
α (t, τ )

= 2

(
Re[gL(t, τ ) + gR(t, τ )] Re[gL(t, τ ) − gR(t, τ )]
Re[gL(t, τ ) − gR(t, τ )] Re[gL(t, τ ) + gR(t, τ )]

)
,

(31)

with gα (t, τ ) = ∫ dω/(2π )e−i(ω+ Uα
h̄ )(t−τ )J0α (ω). Therefore,

from Eq. (10), the extended retarded Green function matrix
U (t, t0) becomes real and satisfies the following relations:

[U (τ1, τ2)]11 = [U (τ1, τ2)]22, (32a)

[U (τ1, τ2)]12 = [U (τ1, τ2)]21. (32b)

The coherent transport currents ILσ,Rσ ′ (t ) and ĪLσ,Rσ ′ (t )
between the left and right leads through the zero-energy
bogoliubons (a pair of MZMs) come from the interference
of all the contributions of various paths. From Eqs. (18b)
and (18c), one can write ILσ,Rσ ′ (t ) =∑2

a,b,c,d=1 I (abcd )
Lσ,Rσ ′ (t )

and ĪLσ,Rσ ′ (t ) =∑2
a,b,c,d=1 Ī (abcd )

Lσ,Rσ ′ (t ), where a, b, c, d are the
matrix indices that indicate the path. Explicitly,

I (abcd )
Lσ,Rσ ′ (t ) = −e

h̄4

∫ t

t0

dτ

∫ τ

t0

dτ1

∫ t

t0

dτ2
[
gσ

L (t, τ )
]

ab[U (τ, τ1)]bc

× [g̃σ ′
R (τ1, τ2)

]
cd [U†(t, τ2)]da

+ e

h̄4

∫ t

t0

dτ

∫ τ

t0

dτ1

∫ t

t0

dτ2
[
g̃σ

L (t, τ )
]

ab

× [U (τ, τ1)]bc
[
gσ ′

R (τ1, τ2)
]

cd [U†(t, τ2)]da+H.c.,

(33a)

Ī (abcd )
Lσ,Rσ ′ (t ) = −e

h̄4

∫ t

t0

dτ

∫ τ

t0

dτ1

∫ t

t0

dτ2
[
gσ

L (t, τ )
]

ab[U (τ, τ1)]bc

× [
ḡσ ′

R (τ1, τ2)
]

cd [U†(t, τ2)]da + H.c. (33b)

By utilizing the relations (30) and (32) and also the fact that
all the matrix elements of U are real, it can be shown that the
contributions from all paths in ILσ,Rσ ′ (t ) and ĪLσ,Rσ ′ (t ) cancel
each other, respectively:

I (1111)
Lσ,Rσ ′ (t ) + I (1221)

Lσ,Rσ ′ (t ) = 0, I (1121)
Lσ,Rσ ′ (t ) + I (1211)

Lσ,Rσ ′ (t ) = 0,

I (1112)
Lσ,Rσ ′ (t ) + I (1222)

Lσ,Rσ ′ (t ) = 0, I (1212)
Lσ,Rσ ′ (t ) + I (1122)

Lσ,Rσ ′ (t ) = 0,

I (2121)
Lσ,Rσ ′ (t ) + I (2211)

Lσ,Rσ ′ (t ) = 0, I (2111)
Lσ,Rσ ′ (t ) + I (2221)

Lσ,Rσ ′ (t ) = 0,

I (2122)
Lσ,Rσ ′ (t ) + I (2212)

Lσ,Rσ ′ (t ) = 0, I (2112)
Lσ,Rσ ′ (t ) + I (2222)

Lσ,Rσ ′ (t ) = 0,

(34a)

Ī (1111)
Lσ,Rσ ′ (t ) + Ī (1221)

Lσ,Rσ ′ (t ) = 0, Ī (1121)
Lσ,Rσ ′ (t ) + Ī (1211)

Lσ,Rσ ′ (t ) = 0,

Ī (1112)
Lσ,Rσ ′ (t ) + Ī (1222)

Lσ,Rσ ′ (t ) = 0, Ī (1212)
Lσ,Rσ ′ (t ) + Ī (1122)

Lσ,Rσ ′ (t ) = 0,

Ī (2121)
Lσ,Rσ ′ (t ) + Ī (2211)

Lσ,Rσ ′ (t ) = 0, Ī (2111)
Lσ,Rσ ′ (t ) + Ī (2221)

Lσ,Rσ ′ (t ) = 0,

Ī (2122)
Lσ,Rσ ′ (t ) + Ī (2212)

Lσ,Rσ ′ (t ) = 0, Ī (2112)
Lσ,Rσ ′ (t ) + Ī (2222)

Lσ,Rσ ′ (t ) = 0.

(34b)

As a result, the coherent transport currents ILσ,Rσ ′ (t )
and ĪLσ,Rσ ′ (t ) vanish because of the totally destructive

interferences between various paths. Therefore, in both
partitioned and partition-free schemes, a particle or hole from
one lead cannot coherently transport to the other lead when
the two MZMs are perfectly delocalized (well separated).
In other words, a delocalized MZM pair does not have the
nonlocal properties of an entangled pair.

When the MZMs are not perfectly delocalized, the cross
couplings or the MZM wave-function overlap become finite,
particles (holes) can transport coherently between different
leads through MZMs. As an illustration, we calculate the cross
current IRL(t ) =∑σ,σ ′ IRσ,Lσ ′ (t ) through a pair of MZMs gen-
erated from a semiconductor-superconductor nanowire. Also,
the left and right leads are coupled to the leftmost and the
rightmost cites of the wire. Thus, the total Hamiltonian is
given by Eq. (3). The topological structures of the wire are
manifested in the transport dynamics through the spectral
density matrices given by Eq. (13), with the coefficients καi

and κ ′
αi given by the Bogoliubov transformation of Eq. (4), If

we only consider the coherent transport through the MZMs,
namely, focus on the system ground state and neglect all other
system excited states, then

HS = εMa†
0a0, (35a)

HT =
∑

k

[ηLk (κL0b†
Lka0 + κ ′

L0b†
Lka†

0)

+ ηRk (κR0b†
Rka0 + κ ′

R0b†
Rka†

0) + H.c.], (35b)

which is just a realization of Eq. (25). We will compute the
cross current IRL(t ) in the partitioned scheme, with Lorentzian
spectral densities

J0α (ω) = 2π
∑

k

|ηαk|2δ(ω − εαk/h̄) = �αd2

ω2 + d2
, (36)

where �α is the coupling strength to the lead α and d is
the width of the spectrum. Note that the full spectral density
matrices containing all the topological properties of MZMs
are given by Eq. (13) which is the above spectral densities
multiplying the Bogoliubov transformation coefficients καi

and κ ′
αi.

In Fig. 5, the cross current is studied in two scenarios: (1)
with a fixed μw and different � [see Figs. 5(a) and 5(c)], and
(2) with a fixed � and different μw [see Figs. 5(b) and 5(d)].
In the first scenario, the cross coupling between MZM γL and
lead R, which is determined by the difference i(κα0 − κ ′

α0)
[see Eq. (29)], increases when � decreases, as shown in
Fig. 5(a). As a result, the particles (holes) can transport coher-
ently to the other lead because the MZMs are directly coupled
to the opposite-end leads [see Fig. 5(c)]. In this scenario, the
Majorana energy εM/� (MZM wave-function overlap) is neg-
ligible and the cross current is mainly caused by the explicit
cross coupling. In the second scenario, the Majorana energy
εM emerges from zero when the chemical potential of the
chain is increased near the topological phase transition point
μw ∼ 2� [see Fig. 5(b)], where the cross-coherent transports
can happen through the wave-function overlap between the
two MZMs [see Fig. 5(d)]. In this scenario, the cross coupling
[i(κα0 − κ ′

α0)] is negligible and the cross current is mainly
caused by the MZM wave-function overlap. In both scenarios,
there is no “quantum teleportation” between a delocalized
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FIG. 5. The coherent transport passing through a nanowire, with
the ground-state energy and wave-function structure of the chain.
The coefficients κL0, κ ′

L0 and the MZM wave-function overlap εM/�

(a) at various �, with μw = 0.01�, and (b) at various μw , with
� = w. The time evolution of the cross current IRL (t ) for (c) dif-
ferent � and (d) different μw . These calculations are performed
with Lorentzian spectral densities J0α (ω) = �αd2

ω2+d2 with the tunneling
strengths to the left and right leads are given by �L = �R = � and the
spectrum width d = 50�. Other parameters are set to be w = 10�,
μR = −μL = �, kBTL = kBTR = 0.1�, and the total number of chain
cites N = 81.

pair of MZMs in this topological system because the above
electron transports are not caused by the nonlocality of an
entangled pair. As we have shown in our previous work [52],
in the topological phase, when one of the two delocalized
MZMs in a nanowire is disturbed, only the disturbed MZM
decoheres, leaving the other MZM unchanged. That is, the two
delocalized MZMs do not entangle together. In other words,
no teleportation can occur via delocalized MZM pairs.

In Ref. [66], by constraining the system Hilbert space
to a subspace with allowed charge number, Fu obtained the
following effective Hamiltonian [i.e., Eq. (10) of Ref. [66]:

H̃ = HL + δ
(

f † f − 1
2

)
+ (λ1b†

1 f + H.c.)

+ (−1)n0 (−iλ2b†
2 f + H.c.). (37)

Here, HL is the Hamiltonian of the leads, bα is the fermion
operator of the lead α, and f is a single-level fermion operator.
Taking lead 1 as the left lead and lead 2 as the right lead,
the above effective Hamiltonian is of the same form as our
Eq. (27) with

εM → δ,

ṼLk → λ1, Ṽ ′
Lk → 0,

ṼRk → ±iλ2, Ṽ ′
Rk → 0. (38)

The + (−) sign corresponds to an odd (even) n0. Utilizing
the relation (29), for both Ṽ ′

Lk and Ṽ ′
Rk are zero, the cross

coupling coefficients VLRk = VLLk → λ1 and VRLk = VRRk →
±iλ2. In this case, electrons can be coherently transported
through a pair of delocalized MZMs because the charging
energy induces direct cross coupling between the MZMs and

the opposite-side leads, i.e., both electrons and holes are di-
rectly coupled to the two leads. These processes should not
be called as “teleportation” because teleportation is defined
as a realization through the nonlocality of an entangled pair
rather than a direct coupling between two objects [70]. A
delocalized (well-separated) MZM pair does not have the
nonlocal property of entanglement pairs that can be used as a
resource for quantum teleportation. Calling the coherent trans-
port via a direct coupling of delocalized MZMs induced by the
charging energy between them as teleportation is conceptually
misleading.

The coherent transport between the left and right leads
through a pair of MZMs can be explored in experiments
by measuring the cross differential conductance (CDC) in a
superconductor-semiconductor nanowire. The CDC is defined
by the differentiation of the left-lead (right-lead) current with
respect to the right (left) bias, namely, dIL/dμR (dIR/dμL),
with μα being the bias voltage of lead α. As we have already
shown, a particle or hole cannot transport coherently through
a pair of perfectly delocalized MZMs, therefore, one may
expect that the measured CDC vanish within the topologically
protected energy gap when MZMs exist. This behavior of
CDC is contrary to the usual differential conductance (simply
called as DC) dIL/dμL (dIR/dμR). The DC shows a peak
value at zero bias when MZMs exist, which is the well-known
zero-bias conductance peak (ZBCP). This ZBCP is caused
by local coherent transport processes, i.e., particles and holes
flow coherently in and out of the same lead, no cross-coherent
transport contribution takes place through a pair of MZMs in
DC. On the other hand, if the transport processes are con-
tributed by nontopological system states other than MZMs,
one may expect that both CDC and the DC behave similarly.

As a further illustration, we extend our calculations of the
CDC and DC for the semiconductor-superconductor nanowire
from the Hamiltonian (3b) that includes all the nontopological
excited states of the wire. The wave-function structures of
both topological and nontopological states are captured by the
coefficients καi and κ ′

αi [see Eq. (4)]. As shown in Fig. 6, in
the topological regime of the wire (μw < 2�), the coefficient
κα0 (κ ′

α0), which characterizes the ground-state wave function
of the wire, are much larger than other coefficients καi (κ ′

αi),
which characterize the nontopological excited states of the
wire. This indicates that the wave function of the system
ground state is localized at the end of the wire and the
transport dynamics is mainly contributed by the electrons
tunneling through the topological ground state of the wire. On
the other hand, as the system chemical potential μw increases,
κα0 (κ ′

α0) decreases because the wave function of the ground
state begins to spread along the wire. Eventually, in the
nontopological regime of the wire (μw > 2�), the coefficient
κα0 (κ ′

α0) becomes smaller than other coefficients καi (κ ′
αi),

which indicates that transport dynamics is mainly contributed
by electrons tunneling through the nontopological states
of the wire.

The following calculations are performed in the partitioned
scheme. In the partitioned scheme, the wire and the leads
are assumed to be initially decoupled. Then one can turn
on the tunneling couplings ηLk and ηRk so that the system
starts to be driven by the biased leads. Figure 7 shows the
CDC (dIL/dμR), and the DC (dIR/dμR), respectively. The
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FIG. 6. The coefficients (a) κLi and (b) κ ′
Li that characterize the

wave-function structures of the quantum states of the system wire.
Here, the coefficients of the ground state and first four excited states
are shown. The parameters are set to be w = � = 10� and the total
number of system cites N = 81.

DC gradually forms peaks from plateaus as time evolves [see
Figs. 7(a)–7(d)], while the CDC shows very different behav-
iors in the transient regime than that in the steady-state limit
[see Figs. 7(f)–7(i)]. In the transient regime, the CDC does not
vanish at zero bias in the topological phase of the wire [see
Figs. 7(f)–7(h)]. This is because particles and holes can trans-
port to the opposite leads through the overlap of the MZM
wave function, which can be measured by Majorana energy
[see Fig. 5(b)], as we have discussed above. In the steady-state
limit, near the topological phase transition point of the wire
(μw = 2�), the CDC becomes approximately an odd function
and a linear function of the bias in the low-bias limit [see
Fig. 7(i)]. However, these behaviors cannot be observed in
the transient regime, in which the CDC is neither an odd
function nor a linear function even in the low-bias limit [see
Figs. 7(f)–7(h)]. Furthermore, the CDC vanishes at zero bias
in the steady-state limit [see Fig. 7(j)], while the DC shows a
ZBCP [see Fig. 7(e)]. On the other hand, near the topological
phase transition point of the wire (μw = 2�), the MZM wave
functions spread along the wire and the two MZMs overlap
so that coherent transport processes occur between the two
leads. Therefore, one can find that the CDC begins to emerge
while the ZBCP of the DC begins to split [see Figs. 7(d) and
7(i)]. Away from zero bias, particles can transport coherently
between two leads through nontopological finite-energy bo-
goliubon states so that the CDC and the DC behave similarly
[see Figs. 7(e) and 7(j)]. A similar steady-state behavior of the
CDC has also be demonstrated in a three-terminal device with

the scattering matrix theory [44], but the scattering matrix
theory cannot describe the above transient transport dynamics.

IV. CONCLUSION AND PERSPECTIVE

We have presented a quantum transport theory for hybrid
superconducting systems in both partition-free and partitioned
schemes. The transient transport dynamics is fully captured
in the extended nonequilibrium Green’s functions which in-
corporate pair correlations via the spectral density matrices.
Especially, the spectral density matrices are proportional to
the wave-function overlaps of the system and terminal states
and therefore can characterize the topological structures of the
system and terminals if they are in the topological phases.
Our transport theory shows that all coherent transport dy-
namics of particles and holes between different terminals
are resultant interferences of various tunneling processes be-
tween the system and the terminals, and cannot be rendered
simply as the picture of normal transmission and Andreev
reflection that one usually used. We then applied our theory
to study the transport dynamics via a pair of MZMs in a
two-terminal nanowire. We showed that, when the MZMs are
well delocalized so that their wave functions do not overlap
with each other, the transport process corresponds to inter-
ferences in double-dot AB interferometers with a π -phase
difference so that totally destructive interferences occur. Con-
sequently, there is no coherent current flowing through the
pair of delocalized MZMs and the so-called “teleportation”
cannot happen between a pair of delocalized MZMs. Electron
transport induced by a finite charging energy between a pair
of MZMs is a consequence of the direct coupling between the
two MZMs, it is not the teleportation utilizing the nonlocality
of an entangled pair. The pair of delocalized MZMs generated
in topological systems does not form an entangled pair, as we
have shown in our previous work [52]. For the application
to a superconductor-semiconductor nanowire, which could be
experimentally measured, it also shows signatures of these
destructive interferences. The cross differential conductance
vanishes in the topological regime of the nanowire, while the
direct differential conductance shows the well-known ZBCP,
indicating that local coherent transports can happen only lo-
cally in a MZM system and there is no coherent transport
through a pair of perfectly delocalized MZMs.

In addition to the quantum transport theory, it is natural to
apply our exact master equation to the study of thermoelec-
tric properties, for example, the thermopower, of Majorana
systems, which are recently highly discussed as signatures
of MZMs [71–74]. It is worth noting that all the physical
observables of the system can be computed from the reduced
density matrix at any time, including all the thermodynamics
quantities such as the internal energy, particle number, and
also entropy S(t ) = −kBTrS[ρS (t )lnρS (t )]. Based on our exact
master equation, from which the reduced density matrix can
be solved, we have developed the quantum thermodynamics
far from equilibrium [75–77]. We have pointed out that, when
the system-bath couplings become strong, the thermodynamic
quantities of the system must be renormalized [75,76]. By
considering the renormalization of the central-system energy
due to the system-lead couplings, the transient heat current as
well as the transient electric current through the central system
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FIG. 7. (a)–(d) The transient differential conductance dIR/dμR, and (f)–(i) the transient cross differential conductance dIL/dμR with
various wire chemical potential μw at different times. (e) The usual differential conductance and (j) the cross differential conductance with
different bias and wire chemical potential in the steady-state limit. These calculations are performed with Lorentzian spectral densities J0α (ω) =
�αd2

ω2+d2 , and the coupling strengths to the left and right leads are set to be �L = �R = �, the spectrum width d = 50�. Other parameters are
w = � = 10�, kBTL = kBTR = 0.1�. The total number of system cites N = 51.

can be changed significantly and the thermopower far from
equilibrium can be explored. Thus, it is straightforward to
extend our theory to the theory of thermoelectric transport for
hybrid superconducting systems, which goes far beyond the
steady-state limit and linear response theory. All the properties
of the topological state wave functions are fully captured
by the extended nonequilibrium Green function through the
spectral density matrices incorporating pair correlations, so

that topological features manifested in the heat currents and
other thermodynamics quantities can be investigated.
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APPENDIX: DERIVATION OF THE EXACT MASTER EQUATION

In this Appendix, we will derive the transient transport current incorporating all the dissipation and fluctuation processes
through the particle and hole channels in the partition-free scheme and partitioned scheme, respectively. The derivation is based
on our master-equation approach proposed in Ref. [55] for partition-free scheme and Ref. [78] for partitioned scheme, in which
the exact master equation is given by

d

dt
ρS (t ) = 1

ih̄
[HS (t ), ρS (t )] + [L+(t ) + L−(t )]ρS (t ), (A1)

where

L+(t )ρS (t ) = a† · A(t ) + A†(t ) · a(t ), (A2a)

L−(t )ρS (t ) = −a · A†(t ) − A(t ) · a†(t ). (A2b)

The collective operator A(t ) is defined as

A[ρS (t )] ≡ i

h̄
TrE [(ηκ′b† − η∗κ∗b)ρtot(t )]. (A3)

1. Partition-free scheme

We first consider the case that the system and the environment (leads) are initially correlated. More specifically, we suppose
the total system is initially in a partition-free state (a Gaussian-type state including initial system-environment correlations), the
Gaussian-type total density matrix in the coherent-state representation is given by

〈ξ|ρtot(t )|ξ′〉 = 1

Ztot(t )
exp

[
1

2
(ξ† ξ′T )

(
�(t ) 	(t )

−	∗(t ) −�∗(t )

)(
ξ′

ξ∗

)]
, (A4)
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where �(t ) is a Hermitian matrix and 	(t ) is an antisymmetric matrix. The collective operator A[ρS (t )] can be solved with the
generalized Gaussian integral

〈ξS|
(

A(t )

−A†(t )T

)
|ξ′

S〉 = 1

ih̄

∑
α

(
η∗

ακ
∗
α −ηακ

′
α

η∗
ακ

′∗
α −ηακα

)∫
dμ(ξEα

)〈ξS, ξEα
|
(

bα

(bα
†)T

)
ρtot (t )|ξ′

S,−ξEα
〉

= 1

ih̄

∑
α

(
η∗

ακ
∗
α −ηακ

′
α

η∗
ακ

′∗
α −ηακα

)
1

Ztot (t )

∫
dμ(ξEα

)

(
∂

∂ξ†
Eα

ξ†
Eα

)
exp

[
1

2
(ξ†

α ξ′T
α )

(
�α(t ) 	α(t )

−	∗
α(t ) −�∗

α(t )

)(
ξ′
α

ξ∗
α

)]
,

(A5)

where the D algebra of fermion creation and annihilation operators 〈ξEα
|bα = ∂

∂ξ†
Eα

〈ξEα
| and 〈ξEα

|b†
α = ξ†

Eα
〈ξEα

| is used.

The Gaussian integral
∫

dμ(ξ)eξ†·�·ξ+η†·ξ+ξ†·η′ = ||1 − �||eη†·(1−�)−1·η′
can be generalized to the system with pairing terms∫

dμ(ξ) exp

[
1

2
(ξ∗ ξT )

(
� P ′
P∗ −�†

)(
ξ

ξ†

)
+ (ξ∗ ξT )

(
η′

−η†

)]

=
∥∥∥∥1 −

(
� P ′

−P∗ �†

)∥∥∥∥
1/2

exp

{
1

2
(η∗ −η′T )

[
1 −

(
� P ′

−P∗ �†

)]−1(
1 0
0 −1

)(
η′

−η†

)}
. (A6)

Using this generalized Gaussian integral, we have

〈ξS|
(

A(t )
−A†(t )T

)
|ξ′

S〉 = 1

ih̄

∑
α

(
η∗

ακ
∗
α −ηακ

′
α

η∗
ακ

′∗
α −ηακα

)(
1 + �EαEα

(t ) −	EαEα
(t )

−	∗
EαEα

(t ) 1 + �∗
EαEα

(t )

)−1

×
(

�EαS(t ) 	EαS(t )

−	∗
EαS(t ) −�∗

EαS(t )

)(
ξ′

S

ξ∗
S

)
〈ξS|ρS (t )|ξ′

S〉, (A7)

where

〈ξS|ρS (t )|ξ′
S〉 = 1

ZS (t )
exp

[(
ξ†

S ξ′T
S

)( �S(t ) 	S(t )

−	∗
S(t ) −�∗

S(t )

)(
ξ′

S

ξ∗
S

)]
, (A8a)

ZS (t ) = Ztot(t )

∥∥∥∥∥1 −
(

�EαEα
(t ) 	EαEα

(t )

	∗
EαEα

(t ) �∗
EαEα

(t )

)∥∥∥∥∥
−1/2

, (A8b)

and (
�S(t ) 	S(t )

−	∗
S(t ) −�∗

S(t )

)
=
(

�SS(t ) 	SS(t )
−	∗

SS(t ) −�∗
SS(t )

)

+
(

�SEα
(t ) 	SEα

(t )
−	∗

SEα
(t ) −�∗

SEα
(t )

)[
1 −

(
�EαEα

(t ) 	EαEα
(t )

	∗
EαEα

(t ) �∗
EαEα

(t )

)]−1(
�EαS(t ) 	EαS(t )
	∗

EαS(t ) �∗
EαS(t )

)
. (A9)

Then using the D algebra of fermion creation and annihilation operators again, the collective operators can be expressed as(
A(t )

−A†(t )T

)
= i

h̄

∑
α

(
η∗

ακ
∗
α −ηακ

′
α

η∗
ακ

′∗
α −ηακα

)(
1 + �EαEα

(t ) −	EαEα
(t )

−	∗
EαEα

(t ) 1 + �∗
EαEα

(t )

)−1(
�EαS(t ) 	EαS(t )

−	∗
EαS(t ) −�∗

EαS(t )

)(
ρS (t )a
a†ρS (t )

)
. (A10)

Similarly, we can use the same technique to calculate the correlation functions in terms of the Gaussian kernel elements

NS(t ) ≡
( 〈a†(t )a(t )〉 〈a(t )a(t )〉

〈a†(t )a†(t )〉 〈a(t )a†(t )〉
)

=
(

�S(t ) 	S(t )
−	∗

S(t ) −�∗
S(t )

)[
1 −

(
�S(t ) 	S(t )
	∗

S(t ) �∗
S(t )

)]−1

, (A11a)

NEαS(t ) ≡
(〈a†(t )bα(t )〉 〈a(t )bα(t )〉

〈a†(t )b†
α(t )〉 〈a(t )b†

α(t )〉
)

=
(

1 + �EαEα
(t ) −	EαEα

(t )
−	∗

EαEα
(t ) 1 + �∗

EαEα
(t )

)−1(
�EαS(t ) 	EαS(t )

−	∗
EαS(t ) −�∗

EαS(t )

)[
1 −

(
�S(t ) 	S(t )
	∗

S(t ) �∗
S(t )

)]−1

. (A11b)
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On the other hand, the time evolution of these correlation functions can be solved by the Heisenberg equation of motion

ṄS(t, τ ) = 1

ih̄

[(
ε 0

0 −ε

)
NS(t ) +

∑
α

(
η∗

ακ
∗
α −ηακ

′
α

η∗
ακ

′∗
α −ηακα

)
NEαS(t )

]
, (A12)

and its solution is

NS(t, τ ) = U (t, t0)NS(t0)U†(τ, t0) + VC (t, τ ), (A13)

where the retarded Green function U (t, t0) satisfies the differential-integral equation (10), while the noise-induced correlation
Green function of the initially correlated state VC (t, τ ) is given by

VC (t, τ ) =
∫ t

t0

dτ1

∫ τ

t0

dτ2U (t, τ1)[g̃+(τ1, τ2) + ḡ(τ1, τ2) + ḡ†(τ2, τ1)]U†(τ, τ2). (A14)

The effects of the initial correlations between the system and the environment 〈a†(t0)bα(t0)〉 and 〈a(t0)bα(t0)〉 are manifested in
the additional terms of ḡ(τ1, τ2) =∑α ḡα (τ1, τ2) in the integral kernel, which is given by

ḡα (τ1, τ2) = −2i
∑
jαk

(
ηαkκα je−i(εαk+Uα )(τ1−t0 )/h̄ −ηαkκ

′
α je

i(εαk+Uα )(τ1−t0 )/h̄

η∗
αkκ

′∗
α je

−i(εαk+Uα )(τ1−t0 )/h̄ −η∗
αkκ

∗
α je

i(εαk+Uα )(τ1−t0 )/h̄

)
[NEαS(t0)] jkδ(τ2 − t0). (A15)

The initial correlation NEαS(t0) can be exactly solved by diagonalizing the total system Htot =∑αk εαkc†
αkcαk with the following

transformation [79]:

(
a†

j

a j

)
=
∑
iαk

(
η∗

αkκ
∗
αi −ηαkκ

′
αi

−η∗
αkκ

′∗
αi ηαkκαi

)
Gi j (εαk )

(
c†
αk

cαk

)
, (A16a)

(
b†

αk

bαk

)
=
∑

i j

(
ηαkκαi η∗

αkκ
′∗
αi

ηαkκ
′
αi η∗

αkκ
∗
αi

)
Z−1

i jαk

(
(η∗

αkκ
∗
α j − ηαkκ

′
α j )c

†
αk

(ηαkκα j − η∗
αkκ

′∗
α j )cαk

)
+
∑
i jα′k′

Zi jα′k′
Gi j (εα′k′ )

εα′k′ − εαk + iδ

(
c†
α′k′

cα′k′

)
, (A16b)

where δ → 0+ and

Zi jαk = |ηαk|2
(

κikκ
∗
jk − κ ′∗

ik κ ′
jk κikκ

′∗
jk − κ ′∗

ik κ jk

κ∗
ikκ

′
jk − κ ′

ikκ
∗
jk κ∗

ikκ jk − κ ′
ikκ

′∗
jk

)
. (A17)

The Green function G(εαk ) is related to the self-energy function 
(εαk ), and they are given by

G(εαk ) = [εαkI − εS − 
(εαk )]−1, 
(εαk ) =
∑
α′

∫
dε

2π

√
J +

α′ (ε)J −
α′ (ε)

εαk − ε
. (A18)

Then the initial correlation can be expressed as

[NEαS] jk (t0) =
∑

i

(
η∗

αkκ
∗
αi −ηαkκ

′
αi

−η∗
αkκ

′∗
αi ηαkκαi

)
χi j (εαk ), (A19)

where

χi j (εαk ) = Gi j (εαk )
∑
i′ j′

(
(ηαkκα j′ − η∗

αkκ
′∗
α j′ )n0(εαk ) 0

0 (η∗
αkκ

∗
α j′ − ηαkκ

′
α j′ )[1 − n0(εαk )]

)
Z†−1

i′ j′αk

(
ηαkκαi′ η∗

αkκ
′∗
αi′

ηαkκ
′
αi′ η∗

αkκ
∗
αi′

)

+
∑

i′ j′α′k′
Gi j (εα′k′ )

(
n0(εα′k′ ) 0

0 1 − n0(εα′k′ )

)
G†

i′ j′ (εα′k′ )

εα′k′ − εαk − iδ
Z†

i′ j′α′k′ , (A20)

and n0(εαk ) = [e(εαk−μ0 )/kBT0 + 1]−1 is the Fermi-Dirac distribution with the initial chemical potential μ0 and the initial temper-
ature T0 of the total system. Then Eq. (A15) can be simply expressed as

ḡα (τ1, τ2) = −2iδ(τ2 − t0)
∫

dω

2π

(
e−i(ω+ Uα

h̄ )(τ1−t0 ) 0
0 ei(ω+ Uα

h̄ )(τ1−t0 )

)
J +

α (ω)χ(ω), (A21)
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which is the last equation in Eq. (11). It can be expressed as the combination of particle channel and hole channel
ḡα (τ1, τ2) = ḡp

α (τ1, τ2) + ḡh
α (τ1, τ2), where

ḡp
α (τ1, τ2) = −2i

∑
j,k

(
ηαkκα j

η∗
αkκ

′∗
α j

)
(〈a†

j (t0)bαk (t0)〉〈a j (t0)bαk (t0)〉)e− i
h̄ (εαk−Uα )(τ1−t0 )δ(τ2 − t0) (A22a)

= −2iδ(τ2 − t0)
∫

dω

2π
e−i(ω+ Uα

h̄ )(τ1−t0 )J α (ω)χ(ω), (A22b)

ḡh
α (τ1, τ2) = 2i

∑
j,k

(
ηαkκ

′
α j

η∗
αkκ

∗
α j

)
(〈a†

j (t0)b†
αk (t0)〉 〈a j (t0)b†

αk (t0)〉)e
i
h̄ (εαk−Uα )(τ1−t0 )δ(τ2 − t0)

= −2iδ(τ2 − t0)
∫

dω

2π
ei(ω+ Uα

h̄ )(τ1−t0 )J ′
α (−ω)χ(ω). (A22c)

The other term of integral kernel g̃+ in Eq. (A14) is given by Eq. (11). Note that in partition-free scheme, the particle distribution
of lead α, nα (εαk ) = 〈b†

αkbαk〉, should be calculated from Eq. (A16):

nα (εαk ) =
∑
ii′ j j′

(ηαkκαiη
∗
αkκ

′∗
αi )Z

−1
i jαk

(
λ∗

jαkλ j′αkn0(εαk ) 0
0 λ jαkλ

∗
j′αk[1 − n0(εαk )]

)
Z†−1

i′ j′αk

(
η∗

αkκ
∗
αi

ηαkκ
′
αi

)

+
∑

ii′ j j′α′k′
Zi jα′k′

Gi j (εα′k′ )

εα′k′ − εαk + iδ

(
n0(εα′k′ ) 0

0 1 − n0(εα′k′ )

) G†
i′ j′ (εα′k′ )

εα′k′ − εαk − iδ
Z†

i′ j′α′k′ , (A23)

where λ jαk = ηαkκα j − η∗
αkκ

′∗
α j .

By the solution of Eq. (A13), the time derivative to the correlation function NS(t, t ) of Eq. (A12) can be expressed as

ṄS(t, t ) = −
[

i

h̄

(
ε 0
0 −ε

)
+ K(t, t0)

]
NS(t, t ) − �C (t, t0), (A24)

where

K(t, t0) = − i

h̄

(
ε 0
0 −ε

)
− U̇ (t, t0)U−1(t, t0), (A25a)

�C (t, t0) = U̇ (t, t0)U−1(t, t0)VC (t, t ) − V̇C (t, t ). (A25b)

Substituting this result into Eq. (A12), we have

i

h̄

∑
α

(
η∗

ακ
∗
α −ηακ

′
α

η∗
ακ

′∗
α −ηακα

)
NEαS(t ) = K(t, t0)NS(t ) + �C (t, t0). (A26)

Now, combining all these results together with the aid of the relation(
aρS (t )

ρS (t )(a†)T

)
=
(

�S(t ) 	S(t )
	S(t ) �S(t )

)(
ρS (t )a

(a†)T ρS (t ),

)
(A27)

then we can finally solve the collective operator(
A(t )

−A†(t )T

)
= 1

ih̄

∑
α

(
η∗

ακ
∗
α −ηακ

′
α

η∗
ακ

′∗
α −ηακα

)(
1 + �EαEα

(t ) −	EαEα
(t )

−	∗
EαEα

(t ) 1 + �∗
EαEα

(t )

)−1(
�EαS(t ) 	EαS(t )

−	∗
EαS(t ) −�∗

EαS(t )

)(
ρS (t )a
a†ρS (t )

)

= 1

ih̄

∑
α

(
η∗

ακ
∗
α −ηακ

′
α

η∗
ακ

′∗
α −ηακα

)
NEαS

[
1 −

(
�S(t ) 	S(t )
	∗

S(t ) �∗
S(t )

)]−1(
ρS (t )a
a†ρS (t )

)

= [K(t, t0)NS(t ) + �C (t, t0)]

[
1 −

(
�S(t ) 	S(t )
	∗

S(t ) �∗
S(t )

)]−1(
ρS (t )a
a†ρS (t )

)

=
{
K(t, t0)

(
�S(t ) 	S(t )

−	∗
S(t ) −�∗

S(t )

)[
1 −

(
�S(t ) 	S(t )
	∗

S(t ) �∗
S(t )

)]−1

+ �C (t, t0)

}

×
[

1 −
(

�S(t ) 	S(t )
	∗

S(t ) �∗
S(t )

)]−1(
ρS (t )a
a†ρS (t )

)
= −K(t, t0)

(
aρS (t )
a†ρS (t )

)
− �C (t, t0)

(
ρS (t )a + aρS (t )

ρS (t )a† + a†ρS (t )

)
. (A28)
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One can find it exactly the same as the result of the initially decoupled state, except that �D(t, t0) is replaced by �C (t, t0). By
combining Eqs. (A2a), (A24), and (A28), we can obtain Eq. (7), which describes a simple relation between the transient electron
transport current and the superoperators in the master equation

IT (t ) = e TrS[L+(t )ρS (t )] = −e TrS[L−(t )ρS (t )]. (A29)

The resulting transport current is given by

IT (t ) = − e

h̄2

∑
α

Tr

[∫ t

t0

dτ g−
α (t, τ )ρ̃(τ, t ) −

∫ t

t0

dτ g̃−
α (t, τ )U†(t, τ ) + H.c.

]
, (A30)

where

ρ̃(τ, t ) = U (τ, t0)ρ̃(t0, t0)U†(t, t0) + 1

h̄2

∫ τ

t0

dτ1

∫ t

t0

dτ2U (τ, τ1)[g̃+(τ1, τ2) + ḡ(τ1, τ2)]U†(t, τ2), (A31)

as given in Eqs. (15) and (9).

2. Partitioned scheme

Now we consider the case that the system and the environment are initially decoupled, and the environment is initially in a
thermal state, that is

ρtot(t0) = ρS (t0) ⊗ ρE (t0), ρE (t0) = 1

ZE
exp

[
−Hlead

kBT

]
, (A32)

where the initial state of the system ρS (t0) can be arbitrary. To complete the partial trace in Eq. (A3), we shall use the
coherent state path-integral method [45–48,51,52,54,55,75,76,78]. In the coherent-state representation, the matrix element of
the collective operator (A3) can be expressed as

〈ξt |
(

A(t )
A†(t )T

)
|ξ′

t 〉 =
∫

dμ(ξ∗
0 , ξ0)dμ(ξ′∗

0 , ξ′
0)〈ξ0|ρS (t0)|ξ′

0〉KA(ξ∗
t , ξ′

t , t ; ξ0, ξ
′∗
0 , t0), (A33)

where dμ(ξ) =∏ j dξ ∗
j dξ je−|ξ j |2 . In the above equation, we define the A operator associated propagating function

KA(ξ∗
t , ξ′

t , t ; ξ0, ξ
′∗
0 , t0) in a similar way as the propagating function for the reduced density matrix in the coherent-state

representation [45–47,52,54,78]

〈ξt |ρS (t )|ξ′
t 〉 =

∫
dμ(ξ∗

0 , ξ0)dμ(ξ′∗
0 , ξ′

0)〈ξ0|ρS (t0)|ξ′
0〉K(ξ∗

t , ξ′
t , t ; ξ0, ξ

′∗
0 , t0). (A34)

The A operator associated propagating function KA(ξ∗
t , ξ′

t , t ; ξ0, ξ
′∗
0 , t0) fully determines the evolution of the collective operator

A(t ), while the propagating function K(ξ∗
t , ξ′

t , t ; ξ0, ξ
′∗
0 , t0) fully describes the time evolution of the reduced density matrix ρS (t ),

and both of them can be obtained by utilizing the coherent-state path integrals

KA(ξ∗
t , ξ′

t , t ; ξ0, ξ
′∗
0 , t0) =

∫ ξ∗
t ,ξ′

t

ξ0,ξ
′∗
0

D

[
ξ∗, ξ, ξ′∗, ξ′

]
exp

[
i

h̄
(SS[ξ∗, ξ] − SS[ξ′∗, ξ′])

]
FA[ξ∗, ξ, ξ′∗, ξ′], (A35a)

K(ξ∗
t , ξ′

t , t ; ξ0, ξ
′∗
0 , t0) =

∫ ξ∗
t ,ξ′

t

ξ0,ξ
′∗
0

D[ξ∗, ξ, ξ′∗, ξ′] exp

[
i

h̄
(SS[ξ∗, ξ] − SS[ξ′∗, ξ′])

]
F[ξ∗, ξ, ξ′∗, ξ′]. (A35b)

The A-operator associated influence functional FA[ξ∗, ξ, ξ′∗, ξ′], after taking the partial trace over the environment states, can
be reduced as

FA[ξ∗, ξ, ξ′∗, ξ′] = − 1

h̄2

∫ t

t0

dτ

[
g+(t, τ )

(
ξ(τ )
ξ∗(τ )

)
+ g̃+(t, τ )

(
ξ(τ ) + ξ′(τ )

ξ∗(τ ) + ξ′∗(τ )

)]
F[ξ∗, ξ, ξ′∗, ξ′], (A36)

where the integral kernels g+(t, τ ) and g̃+(t, τ ) are the two-time correlation functions given by Eq. (11), and F[ξ∗, ξ, ξ′∗, ξ′] is
the influence functional of the reduced density matrix [45–47,52,78], which is given by

F[ξ∗, ξ, ξ′∗, ξ′] = exp

{
− 1

2h̄2

∫ t

t0

dτ

[ ∫ τ

t0

dτ ′(ξ∗(τ ) + ξ′∗(τ ) ξ(τ ) + ξ′(τ ))g+(τ, τ ′)
(

ξ(τ ′)
ξ∗(τ ′)

)

−
∫ t

τ

dτ ′(ξ′∗(τ ) ξ′(τ ))g+(τ, τ ′)
(

ξ(τ ′) + ξ′(τ ′)
ξ∗(τ ′) + ξ′∗(τ ′)

)

+
∫ t

t0

dτ ′(ξ∗(τ ) + ξ′∗(τ ) ξ(τ ) + ξ′(τ ))g̃+(τ, τ ′)
(

ξ(τ ′) + ξ′(τ ′)
ξ∗(τ ′) + ξ′∗(τ ′)

)]}
. (A37)
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The path integrals in the A-operator associated propagating function of Eq. (A35a) can be exactly carried out by using the
stationary-path approach [45–47,52,78], and the result is

KA(ξ∗
t , ξ′

t , t ; ξ0, ξ
′∗
0 , t0) =

[(
ξ̇(t )
ξ̇∗(t )

)
+ i

h̄

(
ε 0
0 −ε

)(
ξ(t )
ξ∗(t )

)]
K(ξ∗

t , ξ′
t , t ; ξ0, ξ

′∗
0 , t0). (A38)

Its solution obtained by the stationary-path approach is given by [45–47,52,78]

K(ξ∗
t , ξ′

t , t ; ξ0, ξ
′∗
0 , t0) = N (t ) exp

{
1
2 [ξ∗

t ξ(t ) + ξ∗(t0)ξ0 + ξ′∗(t )ξ′
t + ξ′∗

0 ξ′(t0)]
}
, (A39)

where N (t ) is the renormalized constant, and ξ(t ), ξ∗(t0), ξ′∗(t ), and ξ′(t0) are determined by the stationary path

d

dτ

(
ξ(τ ) + ξ′(τ )

ξ∗(τ ) + ξ′∗(τ )

)
+ i

h̄

(
ε 0
0 −ε

)(
ξ(τ ) + ξ′(τ )

ξ∗(τ ) + ξ′∗(τ )

)
− 1

h̄2

∫ t

τ

dτ ′g+(τ, τ ′)
(

ξ(τ ′) + ξ′(τ ′)
ξ∗(τ ′) + ξ′∗(τ ′)

)
= 0, (A40a)

d

dτ

(
ξ(τ )
ξ∗(τ )

)
+ i

h̄

(
ε 0
0 −ε

)(
ξ(τ )
ξ∗(τ )

)
+ 1

h̄2

∫ τ

t0

dτ ′g+(τ, τ ′)
(

ξ(τ ′)
ξ∗(τ ′)

)
= − 1

h̄2

∫ t

t0

dτ ′g̃+(τ, τ ′)
(

ξ(τ ′) + ξ′(τ ′)
ξ∗(τ ′) + ξ′∗(τ ′)

)
.

(A40b)

The above equations can be solved by introducing the following transformation [52,54,78]:

(
ξ(τ ) + ξ′(τ )

ξ∗(τ ) + ξ′∗(τ )

)
= U†(t, τ )

(
ξ(t ) + ξ′

t
ξ∗

t + ξ′∗(t )

)
, (A41a)

(
ξ(τ )
ξ∗(τ )

)
= U (τ, t0)

(
ξ0

ξ∗(t0)

)
+ VD(τ, t )

(
ξ(t ) + ξ′

t
ξ∗

t + ξ′∗(t )

)
, (A41b)

then Eq. (A40a) is reduced to the differential-integral equation of Eq. (10), and Eq. (A40b) is reduced to

d

dτ
VD(τ, t ) + i

h̄

(
ε 0
0 −ε

)
VD(τ, t ) + 1

h̄2

∫ τ

t0

dτ ′g+(τ, τ ′)VD(τ ′, t ) = 1

h̄2

∫ t

t0

dτ ′g̃+(τ, τ ′)U†(t, τ ′). (A42)

One can find clearly that the retarded Green function U (t, t0) is exactly the same as that of the initial correlated state defined in
Eq. (A13), while the noise-induced correlation Green function of the initially correlated state VD(t, τ ) differs from that of the
initial decoupled state VC (t, τ ) of Eq. (A14) in the integral kernel

VD(τ, t ) = 1

h̄2

∫ τ

t0

dτ1

∫ t

t0

dτ2U (τ, τ1)g̃+(τ1, τ2)U†(t, τ2). (A43)

Combining Eqs. (A34), (A38), (A39), and (A41), we can obtain the solution of Eq. (A33):

〈ξt |
(

A(t )
A†(t )T

)
|ξ′

t 〉 =
[
K(t, t0)

(− ∂
∂ξ∗

t

ξ∗
t

)
+ �D(t, t0)

(
− ∂

∂ξ∗
t

− ξ′
t

ξ∗
t − ∂

∂ξ′
t

)]〈
ξt |ρS (t )|ξ′

t

〉
, (A44)

where K(t, t0) is exactly the same as that in Eq. (A25a), while �D(t, t0) is given by

�D(t, t0) = U̇ (t, t0)U−1(t, t0)VD(t, t ) − V̇D(t, t ). (A45a)

With the D algebra of the fermionic creation and annihilation operators ai|ξ ′
i 〉 = ξ ′

i |ξ ′
i 〉, a†

i |ξ ′
i 〉 = − ∂

∂ξ ′
i
|ξ ′

i 〉, 〈ξi|a†
i = 〈ξi|ξ ∗

i , and

〈ξi|ai = ∂
∂ξ∗

i
〈ξi|, Eq. (A44) becomes

(
A(t )

−A†(t )T

)
= −K(t, t0)

(
aρS (t )
a†ρS (t )

)
− �D(t, t0)

(
ρS (t )a + aρS (t )

ρS (t )a† + a†ρS (t )

)
. (A46)

On the other hand, the total transient transport current flowing out of the system to the leads is defined as

IT (t ) = −e
d

dt

∑
αk

〈b†
αk (t )bαk (t )〉 = e

ih̄

∑
jαk

[η∗
αkκ

∗
α j〈a†

j (t )bαk (t )〉 + ηαkκ
′
α j〈a†

j (t )b†
αk (t )〉]. (A47)
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Using the Heisenberg equation of motion, we have

i

h̄

∑
α

(
η∗

ακ
∗
α −ηακ

′
α

η∗
ακ

′∗
α −ηακα

)(
〈a†(t )bα(t )〉 〈a(t )bα(t )〉
〈a†(t )b†

α(t )〉 〈a(t )b†
α(t )〉

)

= i

h̄

(
ε 0

0 −ε

)(
〈a†(t )a(t )〉 〈a(t )a(t )〉
〈a†(t )a†(t )〉 〈a(t )a†(t )〉

)
+ U̇ (t, t0)

(
〈a†(t0)a(t0)〉 〈a(t0)a(t0)〉
〈a†(t0)a†(t0)〉 〈a(t0)a†(t0)〉

)
U†(t, t0) + V̇D(t, t )

= K(t, t0)

(
〈a†(t )a(t )〉 〈a(t )a(t )〉
〈a†(t )a†(t )〉 〈a(t )a†(t )〉

)
+ �D(t, t0). (A48)

Combining Eqs. (A46), (A47), (A48), and (A2a), we can obtain

IT (t ) = e TrS[L+(t )ρS (t )] = −e TrS[L−(t )ρS (t )]

= − e

h̄2

∑
α

Tr

[∫ t

t0

dτg−
α (t, τ )ρ̃(τ, t ) −

∫ t

t0

dτ g̃−
α (t, τ )U†(t, τ ) + H.c.

]
, (A49)

which is exactly the same with the result for initially correlated state of Eq. (A30), except that the reduced density matrix contains
no terms of initial-correlation integral kernel ḡ(τ1, τ2):

ρ̃(τ, t ) = U (τ, t0)ρ̃(t0, t0)U†(t, t0) + 1

h̄2

∫ τ

t0

dτ1

∫ t

t0

dτ2U (τ, τ1)g̃+(τ1, τ2)U†(t, τ2). (A50)

Because the only difference between the two cases is the presence or absence of ḡ(τ1, τ2) which will vanish after taking the
differential of bias μ, the differential conductance of initially decoupled state is exactly the same with that of initially correlated
state shown as

dIα (t )

dμ
= e2

h̄

∑
β

Tr

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ t
t0

dτ
∫

dω
2π

[
∂nα (ω)

∂μ
J α (ω) + ∂nα (−ω)

∂μ
J ′

α (−ω)
]
e−iω(t−τ )U†(t, τ )

− ∫ t
t0

dτ
∫ τ

t0
dτ1
∫ t

t0
dτ2

∫
dω
2π

∫
dω′
2π

[J α (ω) − J ′
α (−ω)]e−iω(t−τ )U (τ, τ1)

×[ ∂nβ (ω′ )
∂μ

J β (ω′) − ∂nβ (−ω′ )
∂μ

J ′
β (−ω′)

]
e−iω′(τ1−τ2 )U†(t, τ2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ H.c. (A51)
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