
PHYSICAL REVIEW B 108, 195401 (2023)

Thermoelectric phenomena in an antiferromagnetic helix: Role of electric field
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The charge and spin-dependent thermoelectric responses are investigated on a single-stranded helical system
possessing a collinear antiferromagnetic spin arrangement with zero net magnetization in the presence of a
transverse electric field. Both the short and long-range hopping scenarios are considered. Nonequilibrium
Green’s function formalism is employed following the Landauer-Buttiker prescription to study the thermoelectric
phenomena. The dependence of the thermoelectric quantities on electric field, temperature, parameters associated
with the helical geometry, coupling of the helix to electrodes, system size, etc., are elaborately discussed. The
charge and spin figure of merits are computed and compared critically. For a more accurate estimation, the
phononic contribution towards thermal conductance is also included. The present proposition shows a favorable
spin-dependent thermoelectric response compared to the charge counterpart.

DOI: 10.1103/PhysRevB.108.195401

I. INTRODUCTION

Achieving a favorable thermoelectric (TE) response is a
long-sought goal in the material science community to over-
come the dilemma of the global energy crisis. This is due
to the fact that heat-to-energy conversion potentially can be
an effective mechanism for scavenging waste heat [1,2] by
developing efficient devices. Even after persistent efforts and
investments, designing efficient thermoelectrics is reaching
a plateau. The obtained efficiency is not up to the mark
and hence is far from commercialization. The efficiency of
TE material is characterized by a dimensionless parame-
ter, namely figure of merit (FOM), denoted by ZT , which
explicitly depends on the Seebeck coefficient, electrical con-
ductance, temperature, and total thermal conductance [3].
For bulk systems, electrical and thermal conductances are
correlated by the Wiedemann-Franz (W-F) law [4], which
essentially restricts to have an efficient energy conversion.
However, it is possible to achieve better TE performance in
the nanoscale regime than the bulk ones, overshadowing the
W-F law [3,5,6]. Extensive efforts have been made to study
the thermoelectric phenomena exploring the charge degrees
of freedom in the nanoscale regime with systems like quan-
tum dots [7–11], nanowires [12–15], topological insulators
[16,17], and also organic molecular junctions [18–21] includ-
ing DNAs, protiens [22–26], etc.

On the other hand, compared to charge-based devices,
spintronic devices are usually faster, more efficient, and have
smaller dimensions where the electron’s spin allows us to per-
form more work providing much less effort [27–31]. A recent
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development in the field of thermoelectric has been the entry
of spin degrees of freedom, and magnetic order provides a
“green” strategy to enhance the thermoelectric figure of merit
[32]. This is due to the fact that the TE efficiency is directly
proportional to the square of the Seebeck coefficient [33], and
for a spin TE, it is defined as the difference between the contri-
butions from the up and down spins. Interestingly, for the spin
TE case, it is possible to achieve different signs of the spin-
Seebeck coefficient, which can add up to produce a favorable
TE response. Precisely, the spin-Seebeck effect (SSE) [34,35]
is the charge analog of the Seebeck effect, where one can gen-
erate a net spin current from the temperature gradient and can
potentially reduce the thermal dissipation induced by the total
charge current [36–38]. One of the remarkable features of the
spin-Seebeck device is that it possesses a scalability different
from that of usual charge-based Seebeck devices, where the
output power is proportional to the length perpendicular to
the temperature gradient. Not only that, the heat current and
charge current follow separate paths in the spin-based Seebeck
device compared to the charge-based Seebeck device, which
prompts us to think about that the spin Seebeck device as
a possible route to enhance the thermoelectric FOM [39].
These salient features have invigorated spintronic research to
develop spin-based TE devices [40–42].

The primary requirement of a spintronic device is to look
for an efficient mechanism that sets apart the charge carriers
based on their spin quantum number, which essentially means
achieving polarized spin current from a completely unpolar-
ized electron beam. Among several propositions [43–45], the
most studied one is the use of ferromagnetic material as a
functional element [46]. However, there are several limitations
to overcome in that case, like a large resistivity mismatch
is induced across the junction formed by ferromagnetic and
nonmagnetic materials, which acts against the flow of the
injected electrons [46,47]. Another major issue is the tuning of
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spin-selective junction currents under the application of exter-
nal magnetic fields. Experimentally, it is hard to achieve such
strong confinement of magnetic fields within the quantum
regime. Due to the above-mentioned limitations, in the recent
past, the focus is shifted towards spin-orbit (SO) coupled
systems instead of ferromagnetic materials. The investigation
along the line is dominated by Rashba SO coupled system
over the Dresselhaus one, as the strength of the former one
can be tuned externally by suitable setups [48,49]. Extensive
efforts have been made in this regard to explore a range of
different geometries using inorganic and organic molecules
[50–52]. But it turns out that, especially in molecular systems,
the strength of the SO coupling is significantly weak com-
pared to the hopping strength, differing by order of magnitude
[53]. In addition to that, the tuning of SO coupling strength is
also restricted by external means. As a result, it is difficult to
obtain a high degree of spin separation and its possible tuning
in a wide range in those spin-orbit coupled systems.

Due to the aforementioned issues with ferromagnetic
systems, there is a growing inclination towards antiferro-
magnetic materials for future spintronic applications [54–56].
Antiferromagnets are magnetically ordered, with the nearest-
neighbor spins aligning in the opposite direction resulting
in net zero magnetic moments. Thus these types of mag-
netic structures are robust against external perturbations like
magnetic fields, produce no stray fields, display ultrafast dy-
namics, and are capable of generating large magnetotransport
effects [57]. Intensive efforts have been made to unravel
the spin transport properties in antiferromagnetic materials,
and antiferromagnetic spintronics remains an active area of
cutting-edge research [58–61].

Recent experiments have made significant progress along
this line, considering different kinds of helical molecules [62].
It has been established that the helicity plays the central
role for efficient spin filtration and the phenomenon is com-
monly referred to as chiral-induced spin selectivity (CISS)
effect. This unconventional CISS effect [63–68] led us to
think about exploring chiral molecules in different spintronic
applications.

In the present communication, we propose a new pre-
scription for efficient thermoelectric response, considering
an antiferromagnetic helix as a functional element in the
presence of the transverse electric field. To the best of our
knowledge, no effort has been made to understand ther-
moelectric physics in such systems. We extensively study
the charge and spin-dependent thermoelectric responses on
a single-stranded antiferromagnetic helix system connected
by two one-dimensional (1D) nonmagnetic, reflectionless,
semi-infinite leads in the presence of a transverse electric
field (see Fig. 1). We simulate the whole system using the
tight-binding framework. We employ nonequilibrium Green’s
function (NEGF) formalism following the Landauer-Buttiker
prescription to study the thermoelectric phenomena [69–72].
It is a well-known fact that no spin separation is possible for
antiferromagnetic systems with zero net magnetization, but it
is possible to generate spin filtration under the application
of a transverse electric field. The physics of spin filtration
solely depends on the interplay between the helicity of the
antiferromagnetic helix (AFH) and the applied electric field.
For a precise estimation of the TE response, we include the

FIG. 1. Schematic diagram of an antiferromagnetic right-handed
helix. Each red ball corresponds to a magnetic site and the arrow on
the ball represents the direction of magnetic moment. Perpendicular
to the helix axis, an external electric field is applied, which plays a
central role in our investigation.

phonon contribution in the present case. In the pursuit of a
more profound theoretical comprehension of the influence of
various factors, including the strength and orientation of the
electric field, as well as several geometric parameters inherent
to helical systems, etc., we conduct a meticulous and critical
examination of their impact on the thermoelectric behavior. To
prove the robustness of our analysis, we compute the results
by varying the physical parameters in a wide range. All the re-
sults are critically explained with proper physical arguments.
For the sake of completeness of our study, we also provide ex-
perimental possibilities of our chosen antiferromagnetic helix.
Our prescription shows a favorable spin-dependent thermo-
electric response as compared to the charge counterpart at
room temperature.

The rest part of the present communication is organized
as follows. In Sec. II, we discuss the system along with
the relevant interactions considered in the model and present
the theoretical framework. In Sec. III, we have meticulously
scrutinized all the results obtained while considering both
short-range and long-range hoppings in the presence of an
electric field. Finally, in Sec. IV, we conclude our essential
findings.

II. THEORETICAL FORMULATION

A. Description of the system

Let us first introduce the system to study the thermoelec-
tric phenomena. Figure 1 depicts the schematic diagram of
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TABLE I. Geometrical parameters for the helical systems.

System Radius Stacking Twisting Decay
type (R) distance (�z) angle (�φ) constant (lc )

SRH 7 Å 3.4 Å π/5 rad 0.9 Å
LRH 2.5 Å 1.5 Å 5π/9 rad 0.9 Å

our proposed single-stranded antiferromagnetic helix which
contains N magnetic sites. The helix is coupled to two 1D non-
magnetic, reflectionless, semi-infinite leads, namely source
(S) and drain (D) (not shown in Fig 1) at site 1 and site N
respectively. These two leads are operating at two different
temperatures, T + �T and T − �T , where T is the equilib-
rium temperature and �T is infinitesimally small. Thus we
restrict ourselves within the linear response regime throughout
the analysis.

We use helical system as a functional element to study
the TE response. In general, a helical system is described by
two important parameters like stacking distance and twisting
angle, denoted by �z and �φ, respectively [63,64]. These
two parameters play a crucial role in determining whether
the hopping is short-range or long-range and also determine
the structure of the magnetic helix. When �z is very small,
the atomic sites are closely spaced, and the electrons can hop
to higher-order neighbor sites, yielding a long-range hopping
(LRH) helix. On the other hand, when �z is quite large, the
hopping of the electrons is restricted mostly to a few neighbor-
ing sites, and we have short-range hopping (SRH) helix. Here,
we present the parameter values for a typical case of SRH and
LRH systems in Table I (for the details of the helical geometry
and relevant parameters, one may look at the pioneering work
[64]).

These geometrical parameters are inspired by DNA and
α-proteins, respectively, and are the most suitable examples
where the short-range hopping and long-range hopping can
be explored. Here it is relevant to mention that these pa-
rameters are not directly involved with DNA and α-protein
molecules.

In our chosen antiferromagnetic helix system, the succes-
sive magnetic moments are aligned along ±z directions, and
thus the resultant magnetization becomes zero. Each magnetic
site i is associated with a net spin 〈Si〉. The general orientation
of any such spin vector can be described by the usual polar
angle θi and the azimuthal angle ϕi. Now, the incoming elec-
tron will interact with these local magnetic moments through
the usual spin-moment exchange interaction J . To include this
interaction, we introduce a spin-dependent scattering (SDS)
parameter at each site i as hhi = J〈Si〉 [53]. The strength of the
SDS parameter |hh| is assumed to be isotropic, i.e., hhi = h ∀ i.
For the present investigation, the interaction between neigh-
boring magnetic moments is ignored, and it is a subject of
future study.

The central region, i.e., the AFH, is exposed to an electric
field, having strength Eg, perpendicular to the helix axis (ẑ)
as shown in Fig. 1. The incorporation of electric field in our
theoretical formalism is described in the forthcoming section.

B. Model Hamiltonian

The tight-binding Hamiltonian representing the total sys-
tem comprises four parts, which are given by [73–76]

H = HAFH + HS + HD + HC, (1)

where, HAFH,HS,HD, and HC represent the subparts of the
Hamiltonian, associated with the AFH, source, drain, and the
coupling between the leads and the AFH, respectively.

The Hamiltonian for the AFH is given by [68,77]

HAFH =
∑

n

c†
n(εn − hhn · σ )cn

+
N−1∑

n

N−n∑
m

(c†
ntncn+m + H.c.), (2)

where cn denotes the two-component fermioninc operator at

site n, given by cn = (
cn↑
cn↓

) and its hermitian counterpart c†
n

is defined accordingly. σ is the well-known Pauli matrices, tn

and εn are the 2 × 2 diagonal matrices given by

tn =
(

tn 0
0 tn

)
and εn =

(
εn 0
0 εn

)
, (3)

where εn is the on-site energy in the absence of any spin-
dependent scattering and tn represents the hopping amplitude
from the site n to n + m. The inclusion of SDS leads to the
effective site energy matrix (εn − hhn · σ). Now, the presence
of an external electric field Eg, perpendicular to the helix axis,
modifies the on-site energy in the following way [68,77]:

εeff
n = εn + eVg cos(n�φ − β ), (4)

where e is the electronic charge, Vg (= 2EgR) is the applied
gate voltage, and β is the angle between the incident electric
field and the positive x̂ axis, R is the radius of the helix.

Due to the helical shape of the physical system, the
hopping term becomes quite tricky, unlike the usual nearest-
neighbor hopping (NNH) case. The summations over the site
indices are to be taken carefully. The expression for the hop-
ping integral tn is given by

tn = t1 exp [−(ln − l1)/lc], (5)

where t1 and l1 are the nearest-neighbor hopping amplitude
and the distance among the nearest-neighbor sites, respec-
tively. lc is the decay constant and ln is the spatial separation
between the sites n and n + m. The expression of ln is given
by

ln = [(2R sin (n�φ/2))2 + (n�z)2]1/2, (6)

where �z and �φ are the stacking distance and twisting angle,
respectively.

The contributions from the leads and the coupling between
the leads and the central region to the total Hamiltonian
read as

HS =
∑
m<1

a†
mε0am +

∑
m<1

(a†
mt0am−1 + H.c.), (7a)

HD =
∑
m>N

b†
mε0bm +

∑
m>N

(b†
mt0bm+1 + H.c.), (7b)

HC = a†
0τSc1 + c†

NτDbN+1 + H.c. (7c)
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Here, an, bn are used for the source and the drain in the
same way like the cn operator. ε0 and t0 are 2 × 2 diagonal
matrices where the on-site potential ε0 and hopping amplitude
t0 are taken to be the same for both the leads. The coupling
between the source (drain) and the AFH is denoted by τS (τD),
defined in the same footing as t0.

C. Two-terminal transmission probability

We employ NEGF formalism to evaluate the two-terminal
transmission probability through the helix system. The stan-
dard way to put up the retarded Green’s function for the
present case is as follows:

Gr = [(E + i 0+)I − HAFH − 
σS − 
σD]−1, (8)

where σ, σ ′ are the spin indices, 
σS and 
σD represent the
contact self-energies of the source and drain, respectively, I is
the identity matrix with dimension 2N × 2N . The rest of the
other symbols have the usual meaning.

Now, the transmission probability can be expressed in
terms of retarded (Gr) and advanced (Ga(= Gr )†) Green’s
functions as

Tσσ ′ = Tr[�σS Gr �σ ′D Ga], (9)

where �σS and �σD are the coupling matrices that describe
the rate at which particles scatter between the leads and the
AFH. Tσσ ′ indicates the probability of a transmitted electron
with spin σ ′ injected with spin σ . We must mention that if
σ = σ ′, then we get pure spin transmission, otherwise we get
a spin-flip transmission. We define the net up and down spin
transmission probabilities as

Tσ =
∑
σ ′

Tσ ′σ , (10)

where σ and σ ′ can be either ↑ or ↓. These are fundamental
entities to calculate different thermoelectric quantities as de-
scribed in the next section.

D. Thermoelectric quantities

In the linear response regime, all the spin-resolved thermo-
electric quantities like the electrical conductance Gσ , Seebeck
coefficient (thermower) Sσ , and electrical conductance kσel

can be extracted using Landauer’s integrals as [78,79]

Gσ = e2

h
L0σ , (11a)

Sσ = − 1

eT

L1σ

L0σ

, (11b)

kσel = 1

hT

(
L2σ − L2

1σ

L0σ

)
, (11c)

where spin-resolved Landauer’s integral Lnσ (n = 0, 1, 2)
is given by

Lnσ = −
∫

Tσ (E )(E − EF )n ∂ fFD

∂E
dE , (12)

where, h, fFD, and EF denote Planck’s constant, equilibrium
Fermi-Dirac occupation probability, and Fermi energy, re-
spectively. Here, Tσ (E ) is the spin-resolved two-terminal
transmission probability as defined earlier.

Now, we define the charge (c) and spin (s) electrical con-
ductances in the following way [80]:

Gc = G↑ + G↓ and Gs = G↑ − G↓. (13)

The charge and spin Seebeck coefficients (thermopowers)
are defined by [80,81]

Sc = 1
2 (S↑ + S↓) and Ss = (S↑ − S↓). (14)

Similarly, the charge and spin thermal conductances are
given by [80]

kcel = ksel = (k↑ + k↓). (15)

The charge and spin figure of merits can be expressed in a
compressed form in the following way [80]:

ZαT = |Gα|S2
α T

kα

, (16)

where α (= c, s) stands for the charge and spin degrees
of freedom. kα = kαel + kph, where kph is the phonon con-
tribution to the total thermal conductance. Typically, a
thermoelectric response of the order of unity is often regarded
as favorable TE response. However, for an economically com-
petitive response, ZαT ∼ 3 is often prescribed [82]. For a
precise estimation of ZαT , one needs to consider the contribu-
tion of kph in thermal conductance. The method for calculating
kph is given in the forthcoming section.

E. Calculation of phonon thermal conductance

When the temperature difference between the two contact
leads is infinitesimally small, the phonon thermal conductance
in the NEGF formalism can be evaluated from the expression
[83–86]

kph = h̄

2π

∫ ωc

0
Tph

∂ fBE

∂T
ωdω. (17)

Here, ω is the phonon frequency and ωc the phonon cutoff
frequency, respectively. We consider only elastic scattering in
the present case. fBE denotes the Bose-Einstein distribution
function. Tph is the phonon transmission probability across the
central region, evaluated through the NEGF formalism as

Tph = Tr
[
�

ph
S Gph�

ph
D (Gph)†]. (18)

�
ph
S/D = i[
̃S/D − 
̃

†
S/D] is known as the thermal broadening.


̃S/D is the self-energy matrix for the source/drain lead. The
phononic Green’s function for the AFH reads as

Gph = [Mω2 − K − 
̃S − 
̃D]. (19)

Where M is a diagonal matrix that describes the mass matrix
of the helix. Each element of the mass matrix Mnn denotes
the mass of the nth atom in the helical system and K is the
matrix of spring constants. The diagonal element Knn denotes
the restoring force of the nth atom due to its neighboring
atoms, while the element Knm represents the effective spring
constant between nth and mth neighboring atoms. The self-
energy matrices 
̃S and 
̃D have the same dimension as M
and K and can be computed by evaluating the self-energy term

S/D = −KS/D exp[2i sin−1( ω

ωc
)], where KS/D is the spring

constant at the lead-helix contact interface.
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The spring constants are determined from the second
derivative of Harrison’s interatomic potential [87]. Since a
1D system does not allow any transverse interaction [88], the
spring constant for the 1D lead is given by K = 3dc11/16. For
a 3D system like helix, the spring constant is K = 3d (c11 +
2c12)/16. Here d denotes the interatomic spacing and c11 and
c12 are the elastic constants. The cutoff frequency for the 1D
lead is determined from the relation ωc = 2

√
K/M, in terms

of the mass and spring constant.

III. NUMERICAL RESULTS AND DISCUSSION

The interplay between the transverse electric field and the
helicity plays the central role to have spin-dependent TE phe-
nomena in our chosen antiferromagnetic helix which we are
going to discuss in this section. In the absence of any of these
two parameters viz. the helicity and the electric field, there
will be no mismatch between up and down spin channels, and
therefore, we cannot expect any spin-dependent transport phe-
nomena. The underlying physical mechanism is as follows. As
all the magnetic moments are aligned along ±ẑ directions, the
Hamiltonian of the antiferromagnetic helix can be decoupled
as a sum of up and down spin Hamiltonians (viz. H↑ + H↓). In
the absence of electric field, these two sub-Hamiltonians are
symmetric to each other, because of the antiparallel configu-
ration of the successive magnetic moments, resulting identical
set of energy eigenvalues. The symmetry can be broken quite
easily by applying an electric field in the helix system. Under
that condition, we have a finite mismatch between the two
different spin-dependent energy channels.

In presence of transverse electric field, the site energies
get modulated in a cosine form as mentioned in Eq. (4).
The site energy expression looks identical to the well-known
Aubrey-André-Harper (AAH) model [89]. In the AAH model,
the on-site term reads as εn = W cos (2πbn + φν ) (n being the
site index), where W is the AAH modulation strength, b is an
irrational number, and φν is the AAH phase. The one-to-one
mapping is obvious in view of Eq. (4), where one identifies
the term eVg as the AAH modulation strength W , 2πb as the
twisting angle �φ, and β as the AAH phase factor φν . Thus
one can capture the essential physics of the AAH model using
the above formulation through our helical system.

Before discussing the results, let us first mention that the
present communication focuses on the right-handed helices.
All the energies are measured in the units of eV. In the absence
of any electric field, the on-site energies εn in the AFH are
fixed to zero, and we choose the NNH strength t1 = 1 eV. For
the leads, we choose ε0 = 1 eV and t0 = 2.5 eV. To work in
the wide-band limit [90], we set t0 > t1. The reason behind
the consideration of wide-band limit is that no allowed energy
channel of the helix which is clamped between the contact
leads is missed. So the basic requirement is that the allowed
energy window (ε0 − 2t0 � E � ε0 + 2t0) of the leads must
be always higher than the available energy region of the helix
system. Here we would like to point out that the choice of ε0 =
1 eV is not unique, any other value of ε0 can be taken into ac-
count satisfying the above mentioned condition. The coupling
strengths between the central region to the source and drain
leads, characterized by the parameters τS and τD, are fixed at
0.8 eV. For any other choices of the tight-binding parameter

values (except the coupling constants), the physical pictures
qualitatively remain the same, which we confirm through our
exhaustive numerical calculation. Now we present our results
one by one as follows.

A. Energy eigenvalues and transmission spectra

Let us begin our discussion by examining the spectral
behavior of the AFH in the presence of an electric field. In
Fig. 2(a), we present the eigenspectra of a typical short-range
hopping AFH considering N = 20, where we set h = 0.5,
Vg = 1, and β = 0. The energy spectra for the up and down
spins are depicted in red and black, respectively. Notably,
the spectra for the up and down spins are nondegenerate.
Similarly, in Fig. 2(b), we display the eigenspectrum of a long-
range AFH while keeping the parameters the same as in the
short-range case. Once again, we observe that the spectrum for
the two opposite spin states are nondegenerate. Furthermore,
in each of these spectra, a noticeable energy gap is observed at
multiple regions, and this is the generic feature of a correlated
disordered system. What is particularly noteworthy is that in
both scenarios, a nonzero spin separation is observed in the
presence of an electric field and a spin-dependent scattering
parameter. It is essential to emphasize that when the electric
field strength is set to zero, such a separation among the en-
ergy eigenvalues for up and down spins does not occur. This is
owing to the fact that the up and down spin sub-Hamiltonians
are symmetric to each other for the field-free case.

The observed channel separation implies that there exists
a finite disparity between the transmission probabilities for
up and down spins, which is a crucial prerequisite for the
emergence of spin FOM. To illustrate this phenomenon, in
Fig. 3, we depict the spin-resolved transmission probabilities
as a function of energy. The transmission probabilities for up
and down spin channels are represented by the red and black
curves, respectively, as shown in Fig. 3(a) for the SRH and
Fig. 3(b) for the LRH. The system size and other parameters
are kept identical to those in Fig. 2. The transmission spectra
for both up and down spins in the SRH and LRH helices are
distinct from each other. These transmission spectra exhibit
a gapped nature [77,91] due to the presence of the electric
field, which acts as a correlated disorder within the system, as
discussed earlier.

To achieve a favorable spin TE response, the spin-resolved
transmission spectrum must satisfy two critical conditions.
Firstly, the transmission spectrum should display asymmetry
around a fixed energy [92,93]. This first criterion is a general
requirement applicable to both charge and spin TE responses.
Secondly, it is desirable to have crossings between the up and
down spin transmission spectra. In Figs. 3(a) and 3(b), we
have highlighted some of these crossings with blue-dotted el-
lipses and provided insets for clarity. For instance, in Fig. 3(a),
around the energy of 1.4 eV, a sharp peak is observed in
the down-spin transmission on the left side of the crossing,
while the up-spin transmission spectrum exhibits a sharp peak
on the right side. This sharp peak creates an asymmetry in
the transmission function, and the presence of such crossings
guarantees a substantial spin thermopower. We will delve into
this aspect in greater detail in the context of thermopower in
the next section.
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FIG. 2. Eigenvalue spectrum in presence of the electric field in case of (a) short-range hopping and (b) long-range hopping with h = 0.5,
Vg = 1, and β = 0. The horizontal axis represents the eigenvalues of the AFH and the vertical axis denotes the energy labels. The energy labels
of the eigenvalues corresponds to sorting them in ascending order and then assigning sequential numbers. The number of sites in the helix is
N = 20. The eigenvalues for the up and down spins are represented by red and black colors, respectively.

B. Thermoelctric quantities

Now, let us proceed to analyze various TE quantities, such
as electrical conductance, thermopower, thermal conductance,
and the FOM, at room temperature (T = 300 K). We explore
both the charge and spin TE properties for the SRH and LRH
helices. The TE phenomena are critically discussed under
different input conditions, by varying the physical parameters
associated to the systems in a wide range, to check the robust-
ness of our analysis.

The variation of electrical conductance Gα (in units of
e2/h) with Fermi energy EF is illustrated in Figs. 4(a) and 4(d)
for the SRH and LRH helices, respectively, where α represents
charge and spin. In Fig. 4(a), we observe that both charge and
spin-dependent electrical conductances (represented by the
red and green curves, respectively) exhibit nearly symmetric
behavior around the Gα = 0 line for the short-range helix.
The maximum value of |Gα| is approximately 0.46, and it
diminishes significantly beyond EF ∼ 1.4 eV. This behavior
can be elucidated by referring to the transmission profile of
the SRH case [Fig. 3(a)].

It is important to note that the total charge electrical con-
ductance is defined as the sum of contributions from the
up and down spin channels, whereas the spin counterpart is
calculated as the difference between the two. The opposite
signs of charge and spin Gα below EF ∼ 1.4 eV imply that the
contribution from the up-spin channel is exceedingly small in

this Fermi energy range. This phenomenon arises from the fact
that the up-spin transmission probability is negligibly small
compared to the down-spin transmission probability, as evi-
dent from Fig. 3(a). Moving into the Fermi energy range from
∼1.4 to ∼2, we observe that both up and down transmission
probabilities become small, resulting in nearly negligible Gα

values, as depicted in Fig. 4(a).
The LRH helix, under the same set of parameters, exhibits

somewhat analogous behavior, as observed in Fig. 4(d), mir-
roring the characteristics of the up and down spin transmission
spectra depicted earlier.

As TE efficiency is directly proportional to the square of
thermopower, a large thermopower (S) is always desirable. In
the case of spin TE, it is possible to achieve two different signs
of thermopower associated with up and down spin electrons,
which can algebraically sum up to produce a larger value of
the figure of merit. Therefore a proper selection of the Fermi
energy becomes a critical consideration. To attain different
signs of thermopower, one should seek a narrow Fermi energy
window where the transmission function exhibits asymmetry.
Moreover, the up and down spin channels must have slopes of
opposite signs around this selected Fermi energy.

Thermopower is calculated using Eq. (11b) and the cor-
responding Landauer’s integral L1, where the transmission
function is multiplied by (E − EF ) and ∂ fFD

∂E . The latter
term introduces thermal broadening, and the product of the

FIG. 3. Spin-resolved transmission probability as a function of energy for (a) short-range hopping and (b) long-range hopping. All the
parameters and color conventions are the same as described in Fig. 2. The blue dotted ellipses mark the cross-over regions between up and
down spin transmissions. In the insets, the crossover is more visible and also shows that the transmission probabilities are small but finite.
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FIG. 4. Behavior of different thermoelectric quantities at room temperature T = 300 K as a function of Fermi energy. The upper panel
shows the results for the SRH helix and the lower panel for the LRH one. In (a) and (d), electrical conductance (Gα), [(b) and (e)] thermopower
(Sα), and [(c) and (e)] thermal conductance due to electrons (kel) are shown. All the parameters are the same as described in Fig. 2. The subscript
α represents the charge (c) and spin (s) degrees of freedom and their corresponding results are shown by red and green curves, respectively.

two is antisymmetric about the chosen EF . Consequently,
if the transmission function is symmetric around EF , the
thermopower will be zero, regardless of the values of the
transmission probabilities. However, if the slopes of the spin-
resolved transmission functions have opposite signs around
the chosen Fermi energy, the thermopower acquires a distinct
sign and large values due to the asymmetric nature of T (E ).
This results in a significantly larger spin thermopower.

In Figs. 4(b) and 4(e), we depict the variation of ther-
mopower with Fermi energy within the same energy window
discussed earlier for electrical conductance in the cases of
SRH and LRH, respectively. For the SRH helix, it is evi-
dent from the transmission profile [see Fig. 3(a)] that around
E ∼ 1.4, the up and down spin channels exhibit slopes of
opposite signs, marked by the blue dotted ellipse in Fig. 3.
This results in a large value of spin thermopower, as observed
in Fig. 4(b). In contrast, the charge thermopower becomes
very small at this Fermi energy since it is the algebraic sum
of the up and down spins.

Similarly, the large value of spin thermopower in the LRH
case, shown in Fig. 4(e), can be explained by the transmission
profile. Here as well, the up and down spin channels display
slopes of opposite signs at EF ∼ 1.38 eV, leading to a substan-
tial spin thermopower compared to its charge counterpart. The
maximum thermopower reaches approximately 600 μV/K for
the SRH helix and 550 μV/K for the LRH helix.

The behavior of thermal conductance due to electrons as a
function of Fermi energy is illustrated in Figs. 4(c) and 4(f)
for the SRH and LRH helices, respectively. Within the spec-
ified Fermi energy range, the maximum thermal conductance
reaches approximately ∼135 pW/K, as depicted in Fig. 4(c),
and decreases significantly beyond EF ∼ 1.5 eV. In the case
of the LRH helix, thermal conductance is observed to have

lower values compared to SRH, with the maximum value
reaching approximately 33 pW/K at around EF ∼ 1.38 eV.

The system sizes under consideration in this study are
relatively small, typically on the order of a few nanometers.
Consequently, it is expected that the thermal conductance
due to phonons should have lower values compared to its
electronic counterpart. However, for a precise estimation
of the FOM, it is crucial to include the contribution from
thermal conductance due to phonons, which we will now
discuss.

C. Phonon contribution to thermal conductivity

Before we discuss the behavior of kph, one needs to men-
tion the spring constants of the leads and the central helix
molecule. The 1D leads are considered Au leads, whose spring
constant is 14.68 N/m [94]. For the helix molecule, we con-
sider the spring constant about 5.1 N/m, which is considered
as same as the single-crystal benzene [95]. Here we assume
that two different atoms are adjacent to each other at the inter-
face, one type of atom accounts for the Au lead and the other
type for the helix molecule. By averaging the spring constants
of the leads and helix molecule, and the masses, the cutoff
frequency for Au lead comes out to be ωc = 13.7 Trad/s.
Here it should be noted that the spring constant for the helix
molecule is chosen for a light molecule. However, if one
works with heavy molecules, the phonon vibrations will be
less than our case and therefore, kph is expected to have lower
values, and hence larger ZT .

In Fig. 5(a), the phonon transmission probability is plot-
ted as a function of phonon frequency. We observe a few
Fabry-Pérot-like peaks [85]. The behavior of phonon thermal
conductance with temperature is shown in Fig. 5(b). Within
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FIG. 5. (a) Phonon transmission probability Tph as a function of phonon angular frequency ω. (b) Phonon thermal conductance kph as a
function of temperature T .

the temperature window 50 to 150 K, kph increases rapidly
with temperature, and then it tends to saturate. The saturated
value is about 29 pW/K.

D. Thermoelectric efficiency

After conducting a comprehensive analysis of various
thermoelectric properties, including the consideration of
phonon contributions, we calculate the change and spin
FOMs. These FOM values are plotted as a function of
the Fermi energy for two distinct helix molecules, SRH
and LRH, at room temperature. The results are depicted
in Figs. 6(a) and 6(b) for the SRH and LRH helices,
respectively.

Remarkably, our findings reveal that both SRH and LRH
molecules exhibit highly favorable responses in spin FOM,
significantly outperforming their charge counterparts. The
maximum spin-ZT to be approximately 7 for SRH and around
4.5 for LRH cases. These peak values occur at Fermi en-
ergies of approximately 1.35 eV for SRH and 1.45 eV for
LRH. These compelling results underscore the efficacy of our
approach, demonstrating a remarkably favorable spin thermo-
electric response.

So far, we have studied the TE results using specific pa-
rameter values for both the SRH and LRH molecules. Now,
our focus shifts to investigating how various parameters,
such as the spin-dependent scattering factor, electric field,
helix characteristics, TB parameters, temperature, etc., influ-
ence the spin TE behavior. Notably, both the SRH and LRH

molecules have demonstrated promising spin TE responses.
However, for the sake of the brevity of the presentation, we
will concentrate solely on the LRH molecule in the following
discussion. We have also observed analogous dependencies in
the case of the SRH molecule, which we have duly confirmed
through comprehensive numerical calculations. Consequently,
we omit the results for the SRH molecule.

E. Role of spin-dependent scattering parameter

The dependence of the spin-dependent scattering parame-
ter h, is examined in Fig. 7 for two distinct values, namely
h = 0.25 and 0.75 eV. We also include the previously consid-
ered value of h (h = 0.5 eV) for the purpose of comparison.
The maximum spin FOM is observed to be around 2.3 for
h = 0.25 eV and 3 for h = 0.75 eV, which is lower in
comparison to the result corresponding to h = 0.5 eV. It is
important to note that the effective on-site potential at site n is
the difference between the potential due to the applied electric
field and the spin-dependent scattering parameter. We have set
Vg = 1 V, which is the previously chosen value. In the case
of h = 0.25 eV, the spin-splitting effect is less pronounced,
leading to a decrease in the spin FOM value. Conversely,
when the spin-dependent factor is larger, that is, h = 0.75 eV,
the effective on-site potential is reduced. Consequently, this
does not yield a favorable response. As we further increase h,
the net on-site potential begins to act as a stronger source of
disorder in the system, eventually leading to the diminishing
of the favorable response. This conclusion has been validated

FIG. 6. Behavior of ZcT and ZsT as a function of Fermi energy at room temperature for (a) SRH and (b) LRH helices. All the parameters
are considered as the same as in Fig. 2. The red and green curves represent the results for charge and spin FOMs, respectively.
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FIG. 7. Charge and spin thermoelectric FOMs as a function of
Fermi energy for different h values as shown by the red and green
colors, respectively for LRH helix. The considered h values are 0.25,
0.5 (included for comparison), and 0.75 eV. All the other parameters
are identical with Fig. 2.

through our comprehensive analysis. In general, the spin TE
response appears to be favorable for the selected values of h.

F. Role of electric field

There are two factors concerning the electric field, namely,
the intensity of the electric field, which corresponds to the
applied gate voltage Vg, and the orientation of the field relative
to the axis of the helical molecule β.

1. Effect of Vg

The behavior of charge and spin FOMs are illustrated with
respect to the Fermi energy across two distinct gate voltages:
Vg = 0.5 and 1.5 V, as depicted in Fig. 8.

For the sake of comparison, the plot includes the case of
Vg = 1 V as well. The remaining parameters are identical with
the description provided in Fig. 2 for the LRH molecule. No-
tably, for Vg = 0.5 and 1.5 V, the spin FOM displays favorable
trends, with ZsT ∼ 3, confined within the Fermi energy range
spanning from 1 to 2 eV.

It is important to note that, as previously mentioned, the
gate voltage operates analogously to the strength of the AAH

FIG. 8. Charge and spin FOMs as a function of Fermi energy for
different values of Vg as shown by red and green colors, respectively
for LRH helix. All the other parameters are identical to those in
Fig. 2. Considered gate voltages are Vg = 0.5, 1 (included for com-
parison) and 1.5 V.

FIG. 9. Variation of charge and spin FOMs as a function of Fermi
energy for different values of β as shown by red and green colors,
respectively for LRH helix. All the parameters are identical to those
in Fig. 2. β values are considered as β = π/6, π/3, and π/2. β = 0
is included for comparison.

disorder. Consequently, an anticipated outcome is that as the
gate voltage increases, the system localization will intensify.
Thus, beyond a certain threshold value of Vg, the observed
favorable spin response will diminish. This is also true for the
charge counterpart.

2. Effect of β

Till now, the direction of the electric field was assumed
to be parallel to the positive x̂ axis, that is β = 0. To study
the effect of β on TE performance, we consider other three
different angles, namely, β = π/6, π/3, and π/2. The result
for β = 0 is also included for comparison. Figure 9 shows the
variation of charge and spin FOMs in the case of LRH at room
temperature as a function of Fermi energy for different values
of β. All other parameters are kept fixed, as stated earlier. The
variation of ZαT as a function of Fermi energy varied from
−2.5 to 3.5 eV, which is the full energy window as shown
in Fig. 2. Mostly, in all the cases, spin-ZT shows favorable
response at different Fermi energies. Maximum spin-ZT is
noted about 4.5, 1.75, 0.8, and 6.58 for β = 0, π/6, π/3, and
π/2, respectively. Interestingly, maximum values of spin-ZT
dominate over the charge-ZT for all the β values considered
here.

G. Effect of helix parameters

The helical configuration is influenced by several key pa-
rameters: the radius R, twisting angle �φ, stacking distance
�z, and the decay constant lc. We will now examine the
impact of each of these parameters on the TE properties in-
dividually.

1. Role of R

Figure 10 illustrates the influence of the helix radius on
both the charge and spin FOMs. We consider the cases of
R = 2 and 3 Å, along with 2.5 Å for the purpose of
comparison. It is important to note that altering the radius
leads to variations in the distances between neighboring sites,
consequently impacting the associated hopping integrals. In-
terestingly, across all the radius values considered here, the
spin FOM consistently outperforms its charge counterpart
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FIG. 10. Charge and spin thermoelectric FOMs as a function of
Fermi energy for different radius of the LRH helix, as shown by
the red and green colors, respectively. The considered radius values
are R = 2, 2.5 (included for comparison), and 3 Å. All the other
parameters are identical with Fig. 2.

within the Fermi energy window of 0 to 1 eV. The highest
achieved spin FOM for radii of 2, 2.5, and 3 Å are notably
impressive, reaching approximately 3.6, 4.5, and 3.4, respec-
tively. It is worth noting that the charge ZT also remains above
unity for all the different radius values considered. Overall,
altering the radius of the helix continues to yield a highly
favorable response in our study.

2. Role of �φ

The impact of the twisting angle �φ on the TE behavior
is investigated in Fig. 11. Our analysis considers two distinct
twisting angles: �φ − δ and �φ + δ, in addition to the previ-
ously examined case of

�φ = 5π/9. Here δ is fixed at a smaller value of 5◦. It is
important to note that even a slight alteration in the twisting
angle can result in significant geometrical changes within
the helix structure. Therefore we limit our investigation to
slight modifications in �φ to effectively observe its effects,
while minimizing any substantial distortion to the geometric
configuration. For both �φ − δ and �φ + δ cases (where δ =
5◦), we consistently observe favorable responses. Notably, the

FIG. 11. Charge and spin thermoelectric FOMs as a function
of Fermi energy at different twisting angle �φ, represened by the
red and green colors, respectively for LRH helix. The considered
�φ values are �φ − δ, �φ, and �φ + δ. Here �φ = 5π/9 and
δ ∼ 0.087 rad, which is equivalent to 5◦. All the other parameters
are identical with Fig. 2.

FIG. 12. Charge and spin thermoelectric FOMs as a function of
Fermi energy at different stacking distances as shown by the red and
green colors, respectively for LRH helix. The considered �z values
are �z = 1.25, 1.5 (included for comparison), and 1.75 Å. All the
other parameters are identical with Fig. 2.

maximum spin FOM reaches approximately 1.3 for the case
�φ − δ, and it is around 1.9 for �φ + δ. Additionally, the
charge FOM remains consistently above unity in both cases.
This demonstrates that an advantageous outcome can still be
achieved even with slight to moderate adjustments in �φ.

3. Role of �z

The stacking distance �z significantly influences the geo-
metric structure of the helix, and as a result, the FOM should
be sensitive to its variations. A smaller value of �z indicates
a tendency towards long-range hopping, while a larger value
of �z suggests a preference for short-range hopping. Previ-
ously, �z was fixed at 1.5 Å. Here we consider two different
stacking distances, namely �z = 1.25 and 1.75 Å. The results
are shown in Fig. 12 including the result for the previously
chosen value of �z for comparison. We see that the spin FOM
for both the cases are lower than the previous case but greater
than unity. The maximum spin FOMs are about 4.3 and 2.7 for
�z = 1.25 and 1.75 Å, respectively. In general, the spin FOM
is more favorable than the charge FOM for all the stacking
distances considered in the present work.

4. Role of lc

The decay constant lc, significantly influences the pace
at which successive higher order hopping integrals evolve.
When lc is set to a high value, the rate of decline in these
successive higher order hopping integrals becomes compar-
atively slower than when lc is set to a small value. As a
result, the parameter lc may play a critical role in shaping
the TE response. To investigate the impact of varying lc on
TE behavior, we examine two distinct values: 0.8 and 1 Å.
Figure 13 displays the corresponding results. Additionally, we
include the TE results for lc = 0.9 Å to aid comparison. It
appears that the TE response for spin FOM is quite good for
the considered values of lc within the Fermi energy window 1
to 2 eV. The maximum spin FOM are about 4.2 and 4.4 for
lc = 0.8 and 1 Å, respectively, which are comparable to that
for lc = 0.9 Å.
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FIG. 13. Charge and spin thermoelectric FOMs as a function of
Fermi energy at different values of the decay constant lc as shown by
the red and green colors, respectively for LRH helix. The considered
lc values are 0.8, 0.9 (included for comparison), and 1 Å. All the
other parameters are identical with Fig. 2.

H. Size dependence

The impact of helix size on the TE response is investigated
in Fig. 14. We choose the number of sites of the helix in such
a way that it approximates an integer multiple of complete
helical turns. For instance, to achieve a total of five complete
turns in the LRH helix, we require 19 sites. In the current
analysis, we approximate this as 20 sites for the LRH configu-
ration to maintain a zero net magnetization for the AFH. Here,
we also examine two additional helix sizes, characterized by
30 and 38 sites, corresponding to approximately eight and
ten complete helical turns, respectively, in order to have a
comparative analysis. The result for N = 20 is included here
to provide a basis for comparison. Upon examining the plot,
it becomes evident that there is a noticeable downward trend
in the spin FOM as the system size increases. For N = 20,
the maximum spin FOM was approximately 4.5. For larger
helix sizes such as N = 30 and 38, the spin FOM decreases to
approximately 3 and 1.9, respectively. Despite this decreasing
trend, it is noteworthy that the spin FOM consistently exhibits
a favorable response across all the selected helix sizes. The
declining trend of spin FOM can be attributed to the fact that

FIG. 14. Charge and spin thermoelectric FOMs as a function of
Fermi energy for different helix sizes N as shown by the red and
green colors, respectively for LRH helix. The considered number of
sites in the helix are N = 20 (included for comparison), 30, and 38.
All the other parameters are identical with Fig. 2.

FIG. 15. Charge and spin thermoelectric FOMs as a function of
Fermi energy for different coupling strengths τ as shown by the red
and green colors, respectively for LRH helix. The chosen τ values
are τ = 1, 0.8 (included for comparison), and 0.6 eV. All the other
parameters are identical with Fig. 2.

the increase in the helix size introduces more transmission
peaks and reduces the degree of asymmetry about the center of
the allowed band. What is particularly intriguing is that, while
the charge FOM may not be as impressive as the spin FOM, it
still consistently remains above unity for all the chosen helix
sizes.

I. Effect of lead-helix coupling

In this section, we concentrate on the role of coupling
between the helix and the contact leads. This coupling might
have a significant effect on energy conversion efficiency as
it directly controls the electron flow from the leads to the
helix system. Strong coupling results in broader transmis-
sion peaks, whereas weaker coupling sharpens them [96,97].
Any sharp transmission peak introduces greater asymmetry
in the transmission function, leading to a more favorable TE
response. To illustrate this, we consider two different coupling
strengths: τS = τD = τ = 1 and 0.6 eV, in addition to the
previously mentioned value of 0.8 eV for comparison. The
results are depicted in Fig. 15. The maximum spin FOM
is approximately 3.8, 4.5, and 4.7 for coupling strengths
of 1, 0.8, and 0.6 eV, respectively. Hence, the spin FOM
increases as we reduce the coupling strength, as explained
earlier.

J. Effect of temperature

All the results discussed so far are at room temperature
T = 300 K. To study the effect of temperature, we have plot-
ted ZαT as a function of Fermi energy for three other different
temperatures, namely, T = 150, 250, and 350 K, as shown
in Fig. 16 for the LRH helix. The other parameters are kept
fixed, as mentioned in Fig. 2. The spin ZT and the charge
ZT are shown by the green and red colors, respectively. The
temperature profile indicates that the maximum value of the
spin FOM tends to increase with the increase in operating
temperature. The maximum ZsT , in this case, is found to be
around 4.7 at temperature 350 K.
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FIG. 16. Charge and spin thermoelectric FOMs as a function of
Fermi energy at different temperatures as shown by the red and green
colors, respectively for LRH helix. All the parameters are identical
with Fig. 2.

Experimental feasibility of AF helix system

The experimental feasibility of antiferromagnetic (AF) he-
lix structures has been successfully demonstrated in various
materials, combining experimental techniques with theoret-
ical studies. Notably, the metallic spiral antiferromagnet
SrFeO2.95 has been experimentally realized [98]. In poly-
crystalline samples of Lu1−xScxMnSi, long-range helical
antiferromagnetic ordering has been observed at temperatures
close to room temperature [99]. Recent studies using single-
crystal neutron diffraction have reported an incommensurate
antiferromagnetic spiral-like structure in EuNi2As2[100], as
well as in EuCo2As2 based on nuclear magnetic resonance
results [101]. Additionally, helical antiferromagnetic ordering
has been reported in a single crystal of EuNi1.95As2[102].
Spin-canted antiferromagnetism with helical topology has
been observed in [M(mtpo)2(H2O)]n systems, where M rep-
resents Co2+ or Ni+, exhibiting canted antiferromagnetic
ordering [103]. Furthermore, a recent work has discussed the
possibility of curvilinear one-dimensional antiferromagnets
[104]. In this work, the authors showed that even an intrin-
sically achiral one-dimensional curvilinear antiferromagnet
can exhibit chiral helimagnetic behavior with geometrically
tunable Dzyaloshinskii-Moriya interaction and Néel vector
orientation. These experimental demonstrations and many
others highlight the diverse range of materials where AF helix
structures have been observed, providing strong evidence for
their existence.

Taking into account various instances of antiferromag-
netic helical systems, we have confidence that our proposed
AF helix system can be engineered utilizing contemporary

technology and an appropriate laboratory configuration to
study the spin TE response.

It is worth noting that the experimental references men-
tioned above all involve heavy magnetic elements, which may
raise the question of whether the tight-binding Hamiltonian
presented in Eq. (2) can accurately describe our helix systems.
However, the theoretical study by Takahashi and Igarashi
[105] provides us with reassurance that Eq. (2) is a suitable
description. In their work, they also utilized a similar tight-
binding Hamiltonian to describe materials such as La2CuO4

and Sr2CuO2Cl2. Additionally, there are several other refer-
ences [106,107] where tight-binding Hamiltonians have been
employed to model heavy magnetic elements of this type.
Therefore we can confidently use the tight-binding Hamilto-
nian in Eq. (2) to describe our helix systems, despite the heavy
magnetic elements present.

IV. CONCLUSIONS

In this present work, we have proposed a scheme to achieve
a favorable spin TE response in a typical helical geometry
with a spin configuration of antiferromagnetic texture. We
have considered both the short-range and long-range hopping
scenarios. We have considered the spin-dependent scatter-
ing phenomena and also a transverse electric field to study
thermoelectric physics in the helical system. In the absence
of electric field or helicity, spin-dependent phenomena is
no longer observed. We have used the NEGF formalism
following the Landauer-Buttiker prescription to study the
thermoelectric phenomena. Both the charge and spin TE re-
sponses have been studied. For a precise estimation of the
TE figure of merit, we have computed the phonon contribu-
tion to the total thermal conductance. We have achieved a
highly favorable spin TE response compared to the charge
counterpart at room temperature for both the SRH and LRH
molecules. The role of spin-dependent scattering factor, elec-
tric field, helix characteristics, TB parameters, temperature,
etc., have also been examined on the spin TE behavior. From
our extensive numerical analysis, we have clearly seen that the
favorable thermoelectric response persists over a broad range
of physical parameters and under different input conditions,
which proves the robustness of our analysis.

To the best of our concern, spin-dependent TE phenomena
in antiferromagnetic helix have not been studied so far in the
literature. All the results have been explained with proper
physical arguments, that might be helpful for the readers
along this line. Our proposition may provide a new route of
achieving efficient energy conversion using similar kinds of
other fascinating antiferromagnetic systems as well.
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