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Measuring the arrival time of an electron wave packet using a dynamical potential barrier
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A time-dependent potential barrier has been used to probe the arrival-time distribution of the wave packet of
a hot electron by raising the barrier to block the packet upon arrival of the packet at the barrier. To see whether
the barrier precisely detects the distribution, it is necessary to study an error caused by a finite rising speed of
the barrier. For this purpose, we study transmission of an electron wave packet through the dynamical barrier,
and identify two regimes, the semiclassical regime and the quasistatic regime. In each regime, we calculate the
arrival-time distribution reconstructed by using the barrier and quantify the error in the detection, the difference
of the temporal uncertainty between the wave-packet distribution and the reconstructed distribution. Our finding
suggests that for precise detection, the timescale, in which the barrier height rises over the energy distribution
of the wave packet and the tunneling energy window of the barrier, has to be much shorter than the temporal
uncertainty of the wave packet. The analytical results are confirmed with numerical calculations.
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I. INTRODUCTION

Measuring a single-electron state in nanoelectronic devices
is an important task in electron quantum optics [1–3] and
quantum technology. For low-energy single-electron sources
such as the mesoscopic capacitor [4] and the Leviton [5], a
quantum homodyne tomography [6,7] has been demonstrated.
The tomography is based on Hong-Ou-Mandel–type collision
of the low-energy excitations on the Fermi sea.

On the other hand, single-electron sources of hot electrons
such as a quantum-dot pump [8,9] generate hot electrons of
energy of typically ∼100 meV above the Fermi sea [10].
Unlike the electrons near the Fermi energy, the hot electrons
are effectively isolated from the other electrons in the Fermi
sea and phonons, with the mean-free path larger than microm-
eters in the strong magnetic field condition [11–14]. For such
hot electrons, a continuous-variable tomography [15,16] was
recently suggested. This is based on time-energy filtering by
a tunable potential barrier. Depending on whether the barrier
height remains static or rises, the potential barrier provides
either a detector for energy spectroscopy or an arrival-time
detector for the hot electrons [10,17,18].

The time resolution of the arrival-time detection by the
dynamical potential barrier is nontrivial. For example, the
electron can be excited through a photoassisted process [19]
while transmitting through the barrier. Moreover, there is the
traversal time [20] during the transmission. It is hence de-
sirable to have a quantitative theoretical study in which the
shape, rising speed, and tunneling time of a realistic potential
barrier are taken into account. We note that the rising speed
is often limited in experimental situations [10], as the dynam-
ical potential barrier can induce side effects diminishing the
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accuracy of a single-electron source nearby via heating effects
or crosstalks through other electronic gates [21].

The goal of this study is to clarify the resolution of the
arrival-time detection. We introduce the measurement proto-
col [17]; see Figs. 1(a) and 1(b). The height of the potential
barrier, which detects the arrival time at the position of the
barrier, quickly rises in time while the wave packet propagates
towards the barrier. The transmission probability PT of the
packet through the barrier depends on the barrier height at
the moment of the arrival. The height at the arrival is tuned
by applying a delay T which shifts the time-dependent volt-
age V (t ) operating the barrier to V (t − T ). The wave-packet
transmission probability PT is read out for different values
of the delay in experiments by measuring electric currents
through the barrier. Then, one approximately reconstructs the
arrival-time distribution by calculating the derivative of the
transmission probability with respect to the delay, P̃ATD ≡
∂PT /∂T . In the limit where the rising speed of the barrier goes
to infinity, the reconstructed arrival-time distribution (R-ATD)
P̃ATD becomes identical to the arrival-time distribution (ATD)
PATD [22].

In this work, we analytically and numerically study the
dynamics of a single-electron wave packet injected to a dy-
namical potential barrier. We quantify the error in detecting
the ATD that originates from a finite rising speed of the barrier
height, comparing the R-ATD at a finite rising speed and the
ATD. We find the condition for successful reconstruction of
the ATD that the timescale max(�b, σε )/u̇ for the barrier to
block the wave packet energetically should be much shorter
than the temporal uncertainty of the wave packet, where �b

is the energy scale over which the transmission probability
of a plane wave through the barrier changes from 0 to 1,
σε is the wave-packet energy uncertainty, and u̇ is the rate
of rise of the barrier height. Furthermore, we identify two
regimes of the transmission of the wave packet through the

2469-9950/2023/108(19)/195309(10) 195309-1 ©2023 American Physical Society

https://orcid.org/0000-0002-0424-4366
https://orcid.org/0000-0002-1678-874X
https://orcid.org/0000-0003-1587-9372
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.195309&domain=pdf&date_stamp=2023-11-30
https://doi.org/10.1103/PhysRevB.108.195309


WANKI PARK, H.-S. SIM, AND SUNGGUEN RYU PHYSICAL REVIEW B 108, 195309 (2023)

(a) wave packet

≈ 50%̇

= 0

= | ̅0|/

wave packet

̇

= 0

Quasi-sta�cQuasi-sta�cΔ

Semi-classical

(b)

(c) (d)

1

Δ

fro ( , ; )

= ̅0

= ̅0

≈ 100%

≫ | ̅0|/

FIG. 1. (a), (b) Protocol for measuring the arrival-time distribu-
tion PATD of a single-electron wave packet. A wave packet propagates
towards a potential barrier (the ATD detector) with group velocity
vg. The barrier height increases with rate u̇. Depending on the height
at the moment of the arrival, the wave packet transmits through the
barrier with transmission probability PT ≈ 50% [case (a)], or with
PT ≈ 100% [case (b)]. The height at the arrival is tuned by applying
a delay T to the time-dependent voltage operating the barrier. The
derivative ∂PT /∂T , which is measurable in experiments, reconstructs
PATD under certain conditions. (c) Transmission probability Tfro of
a plane wave of energy ε through a static barrier with the height
u(t ;T ). (d) Quasistatic and semiclassical regimes.

dynamical potential barrier, the semiclassical regime and the
quasistatic regime, and find a simple relation between the time
uncertainties of the ATD and the R-ATD, as a quantitative
indicator of the error, in each regime.

This paper is organized as follows. In Sec. II, we introduce
a model for the dynamical potential barrier, the arrival-time
distribution, and the two regimes. In Sec. III, we study trans-
mission of a wave packet through the dynamical potential
barrier in the semiclassical regime. Applying an approxima-
tion suitable for the regime, we obtain an analytic relation
between the ATD and the R-ATD. In Sec. IV, we obtain the
corresponding relation in the quasistatic regime. The conclu-
sion and discussion are given in Sec. V.

II. MODEL

In this section, we explain the model for the dynamical
potential barrier, the arrival-time distribution, and the two
regimes of the transmission of a hot-electron wave packet
through the barrier.

A. Dynamical potential barrier

In the ATD measurement of Refs. [10,17,23], a hot-
electron wave packet is generated by a quantum-dot pump

formed in a two-dimensional electron system under a strong
perpendicular magnetic field. It travels along a quantum Hall
edge, and it is detected at an ATD detector which is a time-
dependent potential barrier formed on the edge. The scattering
of the emitted electron at the barrier is well described by
the saddle-point constriction model due to the strong mag-
netic field [24,25]. According to the model, the transmission
probability of the emitted electron is determined by the tunnel-
ing through an inverse harmonic potential barrier. Hence, we
consider a one-dimensional Hamiltonian [see Fig. 1(a)] (see
Appendix A for its relation to the two-dimensional electron
system)

H (x, t ) = − h̄2

2m∗
∂2

∂x2
+ U (x, t ;T ). (1)

Here m∗ is the effective electron mass and U (x, t ;T ) is an
inverse harmonic potential with a barrier smoothing away
from the top,

U (x, t ;T ) = fs(x)
[
u(t ;T ) − 1

2 m∗ω2
bx2

]
. (2)

u(t ;T ) ≡ (t − T )u̇ + ε̄ is the barrier height at the barrier cen-
ter position x = 0. The barrier height linearly increases over
time t with a rate u̇, T is the time delay applied to the barrier
[Figs. 1(a) and 1(b)]. ε̄ is the mean energy of the wave packet.
The term of −(1/2)m∗ω2

bx2 dictates that the barrier near the
top is in the form of the inverse harmonic potential of energy
scale h̄ωb, or equivalently length scale lb = √

h̄/(m∗ωb). The
parameter ωb determines the transmission probability Tfro,

Tfro(ε, t ;T ) = 1

1 + exp[−π{ε − u(t ;T )}/(
√

3�b)]
(3)

of a plane wave of energy ε through a static barrier whose
potential shape is identical to that of the dynamical barrier
frozen at time t , where �b = h̄ωb/(2

√
3) [Fig. 1(c)]. fs(x)

is the smoothing factor which makes the potential U vanish
in the region of |x| � ls far away from the barrier center
with the smoothing length ls. As long as the factor fs does
not alter the inverse harmonic behavior around the barrier top
within the length scale lb, the detailed choices about fs do not
affect our result about R-ATD because the packet transmission
probability is only determined by the potential near the barrier
top [24]. To achieve this condition, ls should be much larger
than lb, and the Taylor expansion of fs at x = 0 should be
1 + O(x/ls)4. For the numerical results below, we use fs(x) =
1/cosh[(2x/ls)4] and ls ∼ 10lb. Note that the smoothing factor
fs satisfies the above condition. The choice for ls is based on
the experimental situations. The distance between the two-
dimensional electron system and the top gates is ∼100 nm,
which tends to smooth out [26] the electrostatic potential
induced by the gates by the same length scale. The length
scale of the inverse harmonic confinement lb is in the order
of the magnetic length (typically ∼10 nm for magnetic field
of 10 T).

B. Arrival-time distribution

The single-electron wave packet is emitted from the pump
to the one-dimensional channel described by Eq. (1). We de-
scribe this state as |ψ0〉 which has mean energy ε̄ and position
x̄0 (located far away from the barrier) at time t = 0. Then,

195309-2



MEASURING THE ARRIVAL TIME OF AN ELECTRON … PHYSICAL REVIEW B 108, 195309 (2023)

the wave packet propagates toward the barrier with group
velocity vg = √

2ε̄/m∗ [18]. We apply the condition that the
mean energy is much larger than the energy uncertainty of
the wave packet since the mean energy and the energy un-
certainty are typically ∼100 meV and ∼1 meV, respectively,
in experiments [17]. This condition allows us to use the lin-
ear dispersion relation ε = ε̄ + vg(p − p̄) between the kinetic
energy ε and momentum p around the mean momentum p̄
in the analytic calculations below. We focus on the case that
the emitted electron is in the pure state of the Gaussian wave
packet of energy uncertainty (i.e., the standard deviation)
σε and temporal uncertainty σt . The Gaussian form is ex-
pected when the quantum-dot pump is operated in the strong
magnetic field and with the fast emission protocol [22]. In
Appendix B, we discuss the case where the initial wave packet
is not Gaussian [10,15] and show that the conclusion about
the condition for successful ATD reconstruction remains the
same.

It is convenient to describe the initial state by the Wigner
distribution. It can be represented in position x and momentum
p as

W0(x, p) = 1

π h̄

∫ ∞

−∞
dx′ ψ∗

0 (x + x′)ψ0(x − x′)e2ipx′/h̄, (4)

where ψ0(x) is the wave function of the initial state at position
x. Using the linear dispersion relation, the Wigner distribution
can be also represented in energy ε and time of arrival ta at
x = 0,

W0(ta, ε) ≡ 1

π h̄

∫ ∞

−∞
dε′φ∗

0 (ε + ε′)φ0(ε − ε′)e2iε′ta/h̄, (5)

where φ0(ε) is the amplitude of the initial state at kinetic
energy ε. The two representations are related as W0(ta, ε) =
W0(−vgta, ε/vg). For Gaussian wave packet, W0 becomes

W0(ta, ε) = 1

π h̄
exp

[
− (ta − t̄a)2

2σ 2
t

− (ε − ε̄)2

2σ 2
ε

]
, (6)

where σε = h̄/(2σt ) and t̄a = −x̄0/vg.
The ATD at the detector (x = 0) is determined by the

marginal distribution of Wigner distribution,

PATD(t ) =
∫ ∞

−∞
dε W0(t, ε). (7)

Note that Eqs. (5) and (7) give PATD(t ) = vg|ψ0(−vgt )|2,
namely, the ATD is determined by the spatial distribution of
the initial packet.

On the other hand, the R-ATD P̃ATD, obtained using the
time-dependent detector barrier with a delay T , is obtained as

PT (T ) = lim
t ′→∞

∫ ∞

0
dx |ψ (x, t ′;T )|2, (8)

P̃ATD(t ) = ∂PT

∂T

∣∣∣∣
T→t

, (9)

where ψ (x, t ;T ) is the transmitted wave packet at position
x > 0 and time t > 0 through the detector with the delay T
and PT (T ) is the transmission probability of such packet.

Note that the R-ATD is the result of the indirect measure-
ment of the ATD through the protocol of Fig. 1. In other

words, R-ATD is analogous to the reconstructed density ma-
trix in quantum tomography which indirectly measures the
density matrix by a chosen protocol. Below we compare
R-ATD and ATD quantitatively to find the condition for a
successful ATD measurement protocol in which R-ATD ap-
proaches ATD.

C. Regimes

To analyze P̃ATD, we identify two regimes, the semiclas-
sical regime and the quasistatic regime. For this purpose, we
first explain two timescales characterizing the detector barrier,
h̄/�b and �b/u̇. The timescale h̄/�b characterizes the traver-
sal time of the barrier [27,28]. It is the largest traversal time
of the static situation of the barrier, namely, the maximum of

τtra(ε, t ;T ) = h̄

∣∣∣∣ ∂

∂ε
ln dfro(ε, t ;T )

∣∣∣∣ (10)

over different values of ε and t , where dfro(ε, t ;T ) is the
transmission amplitude of a plane wave of energy ε through
the barrier frozen at t . The largest traversal time ∼h̄/�b is
found when the energy ε is almost aligned with the barrier
height. See Appendix C for the details. The timescale �b/u̇
characterizes the time during which the transmission proba-
bility Tfro = |dfro|2 changes significantly over t .

We classify the regimes of the ATD-measurement protocol
in the parameter space of �b and u̇ which characterizes the
detector barrier [see Fig. 1(d)]. Comparison between u̇ and
�2

b/h̄ indicates whether the rise of the barrier height induces
the photoassisted tunneling or not. The quasistatic regime is
achieved when u̇ � �2

b/h̄; the time evolution of an electron
during its scattering with the barrier follows the quasistatic
evolution [29,30] as the barrier does not change significantly
during the traversal time, namely, u̇τtra � �b at any instance
during the wave-packet transmission and τtra is upper bounded
by h̄/�b. On the other hand, it is also useful to compare
between the energy uncertainty σε of the emitted wave packet
and the energy broadening �b of the barrier. When �b � σε ,
the time evolution is well described by the semiclassical dy-
namics since only a small portion ∼O(�b/σε ) of the wave
packet undergoes probabilistic quantum tunneling through the
barrier. We focus on the quasistatic and the semiclassical
regimes and discuss the other case in the Conclusion.

III. SEMICLASSICAL REGIME

Here we compare the R-ATD to the ATD in the semi-
classical regime, i.e., �b � σε . We use the semiclassical
approximation [31] for the packet transmission probability
(see Appendix D for the validity of the approximation), which
is determined by the initial Wigner distribution and the classi-
cal trajectories as

PT (T ) �
∫ ∞

−∞
dx0

∫ ∞

−∞
d p0 W0(x0, p0) �

(
lim

t→∞ xcl(t )
)
. (11)

xcl(t ) is the position at time t classically evolved from
the initial position x0 and momentum p0. The term
�[limt→∞ xcl(t )], where �(· · · ) denotes the Heaviside step
function, describes whether a classically evolved particle
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ultimately passes over the barrier or not; it is 1 when the
particle passes and 0 otherwise.

To specify the behavior of the term �[limt→∞ xcl(t )], we
explain the condition

lim
t→∞ xcl(t ) = 0. (12)

In a classical trajectory satisfying the condition, the kinetic
energy of the electron vanishes when it arrives at the center
of the barrier; otherwise, the electron ends up being away the
barrier over further time evolution. Hence, the initial kinetic
energy equals the total work done by the electron, Eq. (12) is
equivalent to

p2
0

2m∗ =
∫ 0

x0

dx
∂

∂x
U (x, t ;T )

∣∣∣∣
t=tcl (x)

(13)

=
∫ 0

x0

dx
dfs(x)

dx
u(tcl(x);T ), (14)

where tcl(x), defined by the inverse function of xcl(t ), is
the arrival time at position x for a given initial position x0

and momentum p0, that satisfy Eq. (12). In the second line,
we use Eq. (2), an integration by part ∫0

x0
dx x2 dfs/dx =

−∫0
x0

dx 2x fs(x), and fs(x0) = 0. We simplify Eq. (14) us-
ing that (i) there is no potential inside x ∈ [x0,−ls], hence,
tcl(−ls) = (−ls − x0)/vg, and (ii) the linearity of u(t ;T ) over
time, u(t ;T ) = u̇(t − T ) + ε̄,

p2
0

2m∗ = u(−x0/vg − C;T ), (15)

where C = ∫0
−ls dx [ls/vg − tcl(x) + tcl(−ls)]dfs/dx is con-

stant independent of x0 and p0 as tcl(x) − tcl(−ls) is indepen-
dent of x0 and p0. Using Eqs. (11) and (15), and ignoring C
which only induces the R-ATD to be horizontally shifted from
the ATD, we obtain the packet transmission probability PT (T )
in terms of the Wigner distribution

PT (T ) =
∫ ∞

−∞
dta

∫ ∞

−∞
dε W0(ta, ε) �(ε − u(ta;T )). (16)

We finally obtain the R-ATD by using Eqs. (9) and (16):

P̃ATD(t ) =
∫ ∞

−∞
dε W0

(
t + ε − ε̄

u̇
, ε

)
. (17)

P̃ATD is determined by the line integral of the Wigner func-
tion W0(ta, ε) along the line ta = t + (ε − ε̄)/u̇. For the ideal
detector barrier satisfying u̇ → ∞, the integration gives the
marginal distribution in time, hence, P̃ATD(t ) → PATD(t ). For
a finite value of u̇, a successful reconstruction of the ATD
requires that the term (ε − ε̄)/u̇ should be small in the
time and energy window of the Wigner distribution, namely,
σε/u̇ � σt .

Plugging the initial Gaussian wave packet of Eq. (6) into
Eq. (17), Eq. (17) becomes a Gaussian distribution whose
standard deviation σ̃t is broadened compared to that of PATD

as

σ̃t =
√

σ 2
t + (σε/u̇)2. (18)

The equation shows that R-ATD has a larger width than ATD
of σt because of the finite rising time σε/u̇ of the barrier over
the packet energy width.

FIG. 2. The R-ATD P̃ATD(t ) in the semiclassical regime.
(a) P̃ATD(t ) with various barrier speeds u̇ (blue to green). P̃ATD(t ) ap-
proaches PATD(t ) (dashed) when u̇ > σε/σt . t̄ ≡ −x̄0/vg is the mean
arrival time. (b) The standard deviation of P̃ATD(t ), σ̃t , as a function
of u̇. For both (a) and (b), the solid line denotes the results obtained
from the numerical simulation and the circle denotes the semiclas-
sical approximation (16). Parameters: σε = 0.6 meV (σt = 0.55 ps,
respectively) for the energy (time) uncertainty of the initial Gaussian
wave packet, and �b = 0.1 meV for the barrier.

The numerical simulations (see Appendix E for the
method) confirm the analytical analysis with the semiclassical
approximation. Figure 2(a) shows the R-ATD P̃ATD(t ) for vari-
ous barrier speeds u̇ (blue to green). The results obtained from
the numerical simulations (solid lines) and the semiclassical
approximation (17) (circle) show a good agreement. P̃ATD(t )
approaches to PATD(t ) (dashed line) as the barrier speed be-
comes larger than σε/σt . Figure 2(b) shows that the standard
deviation of the R-ATD, σ̃t , approaches to that of the ATD as
u̇ increases, following the relation (18).

IV. QUASISTATIC REGIME

Now we compare the R-ATD to the ATD in the quasistatic
regime, i.e., u̇ � �2

b/h̄. To describe the wave packet transmit-
ted through the barrier, we first describe the solution �ε (x, t )
of the time-dependent Hamiltonian (1), when the incoming
state is a plane wave of energy ε coming from the left side
of the barrier. Focusing on the incoming part and transmitted
part, and using the quasistatic (also called as adiabatic) ap-
proximation [28], we obtain

�ε (x, t ) =
⎧⎨
⎩e− i

h̄ ε(t− x
vg

) + (reflected part), x < 0

dfro(ε, t − x/vg;T )e− i
h̄ ε(t− x

vg
)
, x > 0.

(19)

We expand the initial packet [see Eq. (6)] by using the
solutions �ε (x, t ). Noting that the overlap between the initial
packet and �ε (x, t ) is determined by the incoming part of
�ε (x, t ), we obtain the transmitted part of the time-evolved
wave packet for x, t � 0:

ψT (x, t ;T ) = 1√
2π h̄vg

∫ ∞

−∞
dε φ0(ε)

× dfro(ε, t − x/vg;T )e− i
h̄ ε(t− x

vg
)
. (20)

Here φ0(ε) is the initial wave function in energy domain ε,
satisfying the normalization ∫∞

−∞ dε|φ0(ε)|2 = 1.
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The packet transmission probability PT is obtained when
using Eqs. (8) and (20), and a change of variable from x to
ta = t − x/vg:

PT (T ) = 1

π h̄

∫ ∞

−∞
dta

∫ ∞

−∞
dε

∫ ∞

−∞
dε′ φ∗

0 (ε + ε′)φ0(ε − ε′)

× e2iε′ta/h̄d∗
fro(ε + ε′, ta;T )dfro(ε − ε′, ta;T ). (21)

To describe Eq. (21) in terms of Wigner distribution W0, we
expand transmission amplitudes around the energy ε (with
conventions that 0! ≡ 1 and the zeroth-order derivative of a
function is defined as the function itself),

dfro(ε ± ε′, ta;T ) =
∞∑

n=0

(±1)n

n!
(ε′)n ∂ndfro(ε, ta;T )

∂εn
, (22)

and use a property of the Wigner distribution [see Eq. (5)]( h̄

2i

)n ∂nW0(ta, ε)

∂t n
a

=
∫

dε′

π h̄
(ε′)nφ∗

0 (ε + ε′)φ0(ε − ε′)e2iε′ta/h̄. (23)

Further using the integration by parts which eliminate the time
derivatives applied to the Wigner distribution, we find that
Eq. (21) becomes

PT (T ) =
∞∑

n,m=0

(−1)m

(2i)n+mn!m!

∫ ∞

−∞
dta

∫ ∞

−∞
dε W0(ta, ε)

× h̄n+m ∂n+m

∂t n+m
a

[
∂nd∗

fro(ε, ta;T )

∂εn

∂mdfro(ε, ta;T )

∂εm

]
.

(24)

The order of each term with n, m follows O[(h̄u̇/�2
b)n+m]

because the transmission amplitude changes significantly in
the timescale of �b/u̇ and energy scale of �b. Hence, in the
quasistatic regime of h̄u̇/�2

b � 1, only the term with n = m =
0 contributes, and the packet transmission probability follows:

PT (T ) =
∫ ∞

−∞
dta

∫ ∞

−∞
dε W0(ta, ε)Tfro(ε, ta;T ). (25)

We note that Eq. (25) is the energy-time filtering equa-
tion derived in Ref. [16] under the assumption that the time
dependency of the barrier potential is linear. Our derivation is
easily generalized to the case of nonlinear time dependence
as long as the quasistatic condition of ∂u/∂t � �2

b/h̄ is sat-
isfied at all time. Hence, our result shows that the quasistatic
condition is another sufficient condition for the validity of the
filtering form, Eq. (25).

We finally obtain the R-ATD, by plugging Eq. (25) into
Eq. (9), and using a change of variable ta → ta + (ε −
ε̄)/u̇, Tfro[ε, ta + (ε − ε̄)/u̇; t] = Tfro(ε̄, t̄a; t̄a + t − ta), and
t̄a = −x̄0/vg is the mean arrival time at x = 0 in the absence
of the barrier,

P̃ATD(t ) = P̃ATD,�b→0(t ) ∗ ∂Tfro(ε̄, t̄a; t̄a + t )

∂t
, (26)

where ∗ denotes the convolution in time t , f (t ) ∗ g(t ) =
∫∞

−∞ dt ′ f (t ′)g(t − t ′). P̃ATD,�b→0(t ) is the R-ATD if the de-
tector barrier had vanishing energy broadening. Therefore,

FIG. 3. The R-ATD P̃ATD(t ) in the quasistatic regime. The repre-
sentation and the parameters are the same as Fig. 2 except that the
barrier speed u̇ is compared with �b/σt where �b = 6 meV � σε ,
and circles denote the quasistatic approximations (26) and (27).

this distribution is given by Eqs. (17) and (18) and deter-
mined semiclassically, i.e., in a way that the quantum effect
is only considered in the initial Wigner function, as discussed
in Sec. III. The term ∂t Tfro(ε̄, t̄a; t̄a + t ) is the sensitivity of
the transmission probability with respect to the time delay
evaluated at the mean energy and arrival time of the packet;
it is a normalized distribution in time t in a form of peak of
width �b/u̇ located around t = 0. Using the property of the
convolutional form and Eq. (18), the standard deviation of the
R-ATD satisfies

σ̃t =
√

σ 2
t + (σε/u̇)2 + (�b/u̇)2. (27)

Therefore, the R-ATD reproduces the ATD well when
max(�b, σε )/u̇ � σt .

The numerical simulations confirm the quasistatic approx-
imations. Figure 3(a) shows the R-ATD P̃ATD(t ) for various
speeds u̇ of the barrier. The result of the numerical simulation
(solid lines) is in a good agreement with the approximation
(26) (circle). The R-ATD P̃ATD(t ) approach the ATD (dashed)
as the barrier speed becomes larger than �b/σt , while satisfy-
ing Eq. (27) as shown in Fig. 3(b).

Note that in the regime both satisfying the quasistatic and
semiclassical conditions [see Fig. 1(d)], the results (26) and
(27) are equivalent to Eqs. (17) and (18), respectively.

V. CONCLUSION

We studied the tunneling of the electron through the dy-
namical potential barrier which operates to reconstruct the
ATD. We focus on quasistatic and semiclassical regimes and
obtain analytical relation between the ATD and the R-ATD, as
well as the relation between the standard deviations between
the two distributions. The results suggest that the condition
for a successful reconstruction of the ATD is that the times
for the barrier to rise its height by amounts of tunneling
energy window of the barrier and packet energy uncertainty
should be smaller than time uncertainty of the packet, namely,
max(�b, σε )/u̇ � σt .

In experimental situations, a successful reconstruction of
the ATD can be achieved either in semiclassical or qua-
sistatic regimes. The semiclassical regime can be achieved
using a wide barrier so that �b � σε . The successful
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reconstruction of the ATD requires a barrier speed to be fast
as u̇ � σε/σt . The lower bound is ∼1 meV/ps for the Gaus-
sian wave packet of σε ∼ 0.6 meV [22], which is realistic
[15]. In the quasistatic regime, the issue is whether a barrier
slow enough for the quasistatic condition can be fast enough
for the reconstruction of the ATD, i.e., whether one can
achieve max(�b, σε )/σt � u̇ � �2

b/h̄. This condition can
be achieved, e.g., max(�b, σε )/σt ∼ 10 meV/ps, �2

b/h̄ ∼ 60
meV/ps for �b ∼ 6 meV [32], and σε = 0.6 meV [22].

We comment that the semiclassical regime �b � σε may
offer a merit over the opposite regime �b � σε , in a practi-
cal view in experimental situations. Because, for given wave
packet, the required barrier speed max(�b, σε )/σt is small for
the former regime. Moreover, in the semiclassical regime, the
same barrier can be used as an energy detector when operated
statically with small measurement error ∼ O(�b/σε ) [22].
Therefore, this regime is optimal for measuring the minimum
Heisenberg uncertainty product for Gaussian wave packet in
experiments [22].

Our work complements previous works of Ref. [16], fo-
cusing on the measurement of the ATD. Our work suggests the
analytic relation between the R-ATD with the ATD, and quan-
tifies the error, while Ref. [16] suggests the relation between
the packet transmission probability and a modified Wigner
distribution which only equals the Wigner distribution when
the height of the detector barrier increases linearly in time.

Note that the traversal time does not play a role on the
error of ATD reconstruction in the quasistatic or semiclassical
regime; in the former regime, the effect of the photoassisted
tunneling is weak and, in the latter regime, it lacks the quan-
tum tunneling effect.

In the regime which is neither quasistatic nor semiclassical,
the traversal time can generally affect the time evolution of the
wave packet during the tunneling. Unexpectedly, our numeri-
cal results suggest that the R-ATD is still well described by the
results (26) and (27), obtained in the quasistatic regime. This
is demonstrated by the good agreement between the numer-
ical result and quasistatic approximation in Fig. 3(b) for the
parameters of u̇σt/�b > 5. We attribute these behaviors to the
fact that the effect of the photoassisted tunneling for the packet
is negligible because the maximum tunneling time h̄/�b is
much smaller than the temporal uncertainty of the packet σt .

Hence, the deviation from the quasistatic approximation
occurs only in restricted parameter space in which h̄/�b ∼ σt ;
note that when h̄/�b � σt the photoassisted tunneling effect
does not affect the packet much (we recall that h̄/�b is the
maximum traversal time), and when h̄/�b � σt the quantum
tunneling effect is weak as being in the semiclassical regime.
Indeed, we observe that the packet tunneling behavior can
deviate from the quasistatic approximation in the restricted
parameter space (see Appendix F). However, the degree of
the deviation from the quasistatic approximation is not large.
With these observations, we conclude that a condition for the
successful reconstruction of the ATD is max (�b, σε )/u̇ � σt ,
generally.
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APPENDIX A: EFFECTIVE 1D HAMILTONIAN

Here we present the details about how the effective
one-dimensional Hamiltonian of Eq. (1) describes the two-
dimensional electron system (2DES) under a strong perpen-
dicular magnetic field, following the approach of Sec. III D in
Ref. [33].

We consider a 2DES under a strong perpendicular mag-
netic field of �B = ±|B|ẑ such that the electrostatic potential
V2D changes smoothly over the magnetic length lB (=√

h̄/e|B|) and slowly over the cyclotron frequency ωc. Then,
the Landau level index n becomes a constant of motion and
the Hamiltonian of 2DES is written as [33]

H2D = (
n + 1

2

)
h̄ωc + V2D(X,Y ; t ), (A1)

where X and Y are the guiding-center position operators,
satisfying the canonical commutation relation

[X,Y ] = ±il2
B. (A2)

Here the upper signs in the ± and ∓ factors shown in this
Appendix are for the magnetic field �B = |B|ẑ, while the lower
signs are for the opposite direction �B = −|B|ẑ.

We describe the electrostatic potential as the sum of the
harmonic edge confinement (∼ m∗

eω
2
yY 2/2) and the potential

barrier which is inverse harmonic with a barrier smoothing by
the gate,

V2D(X,Y ; t ) = 1
2 m∗

eω
2
yY 2 + fs(X )

(
u(t ;T ) − 1

2 m∗
eω

2
x X 2

)
.

(A3)
m∗

e is the 2DES effective electron mass. fs(X ), u(t ;T ), and
T are the barrier smoothing factor, the height of the barrier,
and the time delay, respectively, as introduced in Sec. II A.
Note that a previous experiment [18] has shown that the
harmonic edge confinement well describes the quadratic dis-
persion relation between the energy and momentum of the
hot electrons (whose energy is typically ∼100 meV above
the Fermi energy) propagating along the edge. In the linear
response regime, where the charge transport is determined by
the electrons of energy near the Fermi energy (typically within
0.1 meV for a temperature below 1 K), the dispersion relation
effectively reduces to the linear one.

Due to the canonical commutation relation between X and
Y , the Hamiltonian can be written only in terms of X by
substituting Y → ∓il2

B∂X ,

H2D =
(

n + 1

2

)
h̄ωc − h̄2

2m∗
∂2

∂X 2
+ U (X, t ;T ), (A4)

U (X, t ;T ) = fs(X )

(
u(t ;T ) − 1

2
m∗ω2

bX 2

)
, (A5)

where m∗ = m∗
eω

2
c/ω

2
y , ωb = ωxωy/ωc, and ωc = e|B|/m∗

e .
Equation (A4) is the one-dimensional Hamiltonian which de-
scribes the time evolution of the guiding center by the Heisen-
berg equation of motion (when interpreting ±h̄Y/l2

B as the

195309-6



MEASURING THE ARRIVAL TIME OF AN ELECTRON … PHYSICAL REVIEW B 108, 195309 (2023)

momentum)

Ẋ = ± h̄Y

m∗l2
B

= ± l2
B

h̄

∂U

∂Y
, (A6)

Ẏ = ∓ l2
B

h̄

∂U

∂X
. (A7)

These equations describe the E -cross-B drift motion. When
measuring the energy from the bottom of Landau level sub-
band, Eq. (A4) corresponds to Eq. (1).

APPENDIX B: CORRELATED ENERGY-TIME
DISTRIBUTION

Here we discuss how the relation (18) is modified for
non-Gaussian wave packet. Let us consider a packet corre-
lated in the energy-time space which can be generated in the
quantum-dot pumps with slow emission protocol [10,15]. The
pure-state initial Wigner distribution can be described as

W0(ta, ε) = 1

π h̄
exp

[
− (ta − t̄a)2

2σ 2
t

− [ε − ε̄ − α(ta − t̄a)]2

2[h̄/(2σt )]2

]
,

(B1)

where α describes the correlation between the time and en-
ergy, σt is the temporal uncertainty, and the energy uncertainty
follows:

σε =
√

[h̄/(2σt )]2 + (ασt )2. (B2)

We choose positive α as in the experimental situation [10].
We calculate an analytical form of the standard deviation

σ̃t of the R-ATD in the semiclassical regime �b � σε . Using
Eqs. (17) and (B1), we find that

σ̃t =
√

σ 2
t (1 − 2α/u̇) + (σε/u̇)2. (B3)

σ̃t approaches the standard deviation σt of ATD when u̇ �
σε/σt because this condition also guarantees u̇ � α due to
Eq. (B2).

We confirm Eq. (B3) by direct numerical computation (see
Appendix E for the method) of the time evolution of the wave
packet (see Fig. 4). Note that σ̃t can be smaller than σt [with
minimum occurring at u̇ = σ 2

ε /(ασ 2
t )] due to the correlation

in the energy-time space, as demonstrated in experiments [10].

APPENDIX C: BARRIER TRAVERSAL TIME

We consider a static barrier of the inverse harmonic shape
with barrier height u(t ;T ) = u0 in Eq. (2), and show that the
traversal time [see Eq. (10)] for transmission of an electron in
a plane wave through the barrier is maximal when the energy
ε of the electron is almost aligned with the barrier height
and that the maximal value is ∼h̄/�b. For this purpose, we
calculate the transmission amplitude and the traversal time by
obtaining a single-particle Green function numerically [34].

Figure 5(a) shows the traversal time τtra(ε, u0) as a function
of the barrier height u0. The traversal time becomes maximal
at u0 � ε. The behavior can be understood as follows. When
u0 < ε, the traversal time decreases as u0 decreases since the
electron velocity increases near the barrier. When u0 > ε, the
traversal time decreases as u0 increases because the imaginary
momentum in the tunneling increases [20]. Figure 5(b) shows

FIG. 4. The time uncertainty σ̃t of the R-ATD as a function of the
barrier speed u̇ in the case of the correlated energy-time distribution,
Eq. (B1). The analytic result (dashed-dotted curve), Eq. (B3), is
compared with the numerical simulation (solid) in the semiclassical
regime. Parameters: σt = 2.5 ps and α = 1 meV/ps, which gives
σε ∼ 2.5 meV in consistency with Ref. [10]. �b = 0.1 meV, t̄a =
10 ps, and ε̄ = 100 meV.

that the maximum traversal time follows h̄/�b up to a factor
of order 1.

APPENDIX D: VALIDITY OF THE SEMICLASSICAL
APPROXIMATION

We show the validity of the semiclassical approximation
used in Sec. III by showing that the second-order quantum
correction in the semiclassical approximation is negligible.

The semiclassical approximation of the packet transmis-
sion probability, Eq. (11), is the leading-order term in the
path-integration formulation and the expansion in the powers
of h̄. The next-order correction δPT to the packet transmission
probability PT in Eq. (11) is determined by a nonharmonicity

FIG. 5. Traversal time of the static potential barrier of the inverse
harmonic shape with u(t ;T ) = u0 in Eq. (2). The incident plane
wave has the energy of ε = 100 meV. (a) The traversal time as
a function of the barrier height u0. Two different values of �b =
0.5 meV (solid line) and 1 meV (dashed-dotted line) are chosen. The
traversal time is maximal around u0 = ε. (b) The maximum traversal
time τMT over u0 is drawn as a function of �b. The numerical simu-
lation (solid line) is in good agreement with 1.4h̄/�b (dashed-dotted
line). Note that ls = 10lb is chosen; the choice of ls does not alter the
maximum traversal time since the transversal time is determined by
electron motion near the top of the barrier. Inset: τMT as a function
of 1/�b.
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of the potential U as [31]

δPT =
∫ ∞

0
dτ

∫ ∞

−∞
dx

∫ ∞

−∞
d pW (sc)

τ (x, p)

× h̄2

24

∂3U (x, τ )

∂x3

∂3PT,cl(x, p, τ )

∂ p3
. (D1)

W (sc)
τ (x, p) is the Wigner distribution at position x, momentum

p, and time τ , which follows the classical Liouville equation.
PT,cl(x, p, τ ) describes whether a particle classically evolved
from the position x, momentum p, and time τ ultimately
passes over the barrier after a long-time evolution or not; it
is 1 when the particle passes and 0 otherwise. The second
line of Eq. (D1) describes the change of the transmission
probability due to the quantum fluctuation induced by the
nonharmonicity of the potential at position x, momentum p,
and time τ . PT,cl can be written as �[p − p∗(x, τ )], where
p∗(x, τ ) is the threshold value for the momentum above which
the particle at position x and time τ passes the barrier. Using
the derivative of the Heaviside step function �[· · · ], and the
integration by parts, Eq. (D1) is written as

δPT =
∫ ∞

0
dτ

∫ ∞

−∞
dx

h̄2

24

∂3U (x, τ )

∂x3

∂2

∂ p2
W (sc)

τ (x, p)

∣∣∣∣
p=p∗(x,τ )

.

(D2)

Now we estimate the order of Eq. (D2). The time (re-
spectively position) interval for nonvanishing integrand is
O(ls/vg) [O(ls)] because the nonharmonicity of the potential
only exists over the length scale ls. The third-order derivative
of the potential is determined by the barrier parameters as
∂3U (x, τ )/∂x3 = O(�b/l3

s ). The second-order derivative of
the Wigner function is determined by the initial energy un-
certainty σε as ∂2W (sc)

τ /∂ p2 = O[v2
g/(h̄σ 2

ε )]. Multiplying all
the factors, we obtain

δPT = O

(
�b

σε

h̄vg

lsσε

)
. (D3)

�b/σε describes the portion of the wave packet which un-
dergoes probabilistic quantum tunneling through the barrier,
as discussed in Sec. II C. h̄vg/σε is the length scale of the
wave packet and ls is the length scale of the nonharmonic
potential. Hence, h̄vg/(lsσε ) describes the strength of quan-
tum fluctuation which may arise due to nonharmonicity of
the potential. This term is typically in the order of 1 in
the experimental situations, e.g., vg = 105 m/s [18], σε =
0.6 meV [23], ls ∼ 100 nm (roughly estimated as the depth
of 2DES), hence h̄vg/(lsσε ) ∼ 1. Therefore, we confirm that
the condition �b � σε indeed guarantees the validity of the
semiclassical approximation.

APPENDIX E: NUMERICAL TIME
EVOLUTION OF PACKET

Here we present the method for the numerical simulations
used to obtain results of Figs. 2–4 and 6. To numerically solve
the time evolution of the wave function according to the time-
dependent Hamiltonian (1), we discretize the Hamiltonian in
position and time [34].

FIG. 6. Wigner distributions W (x, p) of the transmitted electron
in the quasistatic regime (a) and the nonquasistatic regime (b). The
results from the numerical simulation (left) are compared with the
quasistatic approximation (20) (right). Parameters: u̇h̄/�2

b = 0.18
for (a) and 1.46 for (b). For both (a) and (b), �b = σε = 0.6 meV,
T = −x̄0/vg, and the incident wave packet is Gaussian.

The lattice constant a is chosen such that the energy band is
well described by a quadratic relation ε(k) = h̄2k2/(2m∗). We
choose a = 0.2 nm which satisfies the quadratic relation well
within the energy of the packet. For the chosen value of a, the
energy of the wave packet ∼100 meV is much smaller than
the maximum energy of the discretized band 2h̄2/(m∗a2) ∼
1180 meV.

The time evolution of the wave function is then obtained
by numerically solving the time-dependent Schrödinger equa-
tion using fourth-order Adams-Bashforth algorithm [35]. For
an accurate result, we choose the time step δ = 10−4 ps
so that it becomes much smaller than the fastest timescale
of the discretized model, i.e., 2m∗a2/(2h̄) ∼ 10−3 ps. We
simulate the time evolution until the moment that the prob-
ability that the electron on the right side of the barrier
converges.

We choose m∗ ∼ 50m∗
e and ε̄ = 100 meV so that the

group velocity vg = 105 m/s becomes similar to experimen-
tally reported value [18]. The choice is also consistent with
the parameters of the two-dimensional situation, e.g., m∗ =
m∗

eω
2
c/ω

2
y ∼ 50m∗

e and h̄ωc ∼ 20 meV give h̄ωy ∼ 3 meV in
consistency with the experiment. Note that the detailed values
for the choices do not change our results about the relation
between the ATD and the R-ATD. The distance between the
center of the initial wave packet and the top of the potential
barrier is chosen as |x̄0| = 1 μm so that the travel time to the
barrier center |x̄0|/vg = 10 ps is sufficiently larger than packet
temporal width but sufficiently small to suppress the nonlinear
dispersion effect.

APPENDIX F: BREAKDOWN OF QUASISTATIC
APPROXIMATION

In this Appendix, we show that the quasistatic approx-
imation (20) breaks down when u̇ > �2

b/h̄ and σε = �b.
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Figure 6 shows Wigner distributions of transmitted wave
packets for the quasistatic regime and nonquasistatic regime.
In the quasistatic regime [Fig. 6(a)], the numerical simulation
shows a good agreement with the quasistatic approxima-
tion. In the nonquasistatic regime [Fig. 6(b)], the numerical
simulation differs from the quasistatic approximation. In
the numerical simulation, we observe (i) larger transmission

probability, i.e., ∫∞
0 dx ∫∞

−∞ d pW (x, p, t ), and (ii) longer
tail of the packet, compared to those in the semiclassical
approximation. These differences occur since the frozen trans-
mission amplitude dfro in the semiclassical approximation
does not describe the photoassisted tunneling; such tunneling
can enhance the packet transmission in the nonquasistatic
regime.
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