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Quasicrystalline second-order topological semimetals
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Three-dimensional higher-order topological semimetals in crystalline systems exhibit higher-order Fermi
arcs on one-dimensional hinges, challenging the conventional bulk-boundary correspondence. However, the
existence of higher-order Fermi arc states in aperiodic quasicrystalline systems remains uncertain. In this paper,
we present the emergence of three-dimensional quasicrystalline second-order topological semimetal phases by
vertically stacking two-dimensional quasicrystalline second-order topological insulators. These quasicrystalline
topological semimetal phases are protected by rotational symmetries forbidden in crystals, and are characterized
by topological hinge Fermi arcs connecting fourfold degenerate Dirac-like points in the spectrum. Our findings
reveal an intriguing class of higher-order topological phases in quasicrystalline systems, shedding light on their
unique properties.
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I. INTRODUCTION

Symmetry-protected topological phases of matter have
emerged as a major new theme in modern condensed-matter
physics in the past nearly two decades. While the discov-
ery of topological insulators initially sparked interest in this
field, recent focus has shifted towards exploring higher-order
topological insulators [1–5]. Unlike traditional topological
insulators, higher-order topological insulators exhibit uncon-
ventional bulk-boundary correspondence, allowing for the
existence of gapless boundary excitations of higher codi-
mensions. For example, a second-order topological insulator
(SOTI) in two dimensions hosts robust gapless boundary
modes localized at its zero-dimensional corners, dubbed cor-
ner modes [1], while three-dimensional (3D) SOTIs support
gapless boundary modes confined to their one-dimensional
hinges [2]. In addition to higher-order topological insulators,
higher-order topological semimetals have also been identified.
These semimetals, including higher-order Dirac semimetals
and higher-order Weyl semimetals, exhibit exotic hinge Fermi
arcs that connect the projected nodes on the hinges, distin-
guishing them from conventional Dirac and Weyl semimetals
[6–18].

Initially, topological phases were observed in crystalline
materials. However, more recently, researchers have extended
these phases to aperiodic quasicrystalline systems, which
lack discrete translational symmetry [19–54]. The absence
of translational symmetry allows for the presence of rota-
tional symmetries that are prohibited in crystals. This property
enables the existence of new topological phases without
crystalline counterparts, such as two-dimensional (2D) SO-
TIs protected by eightfold [33,34] and twelvefold [26,35]
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rotational symmetries. Moreover, a 3D time-reversal sym-
metry (TRS) breaking gapless topological phase hosting
Weyl-like points has been proposed in a quasicrystal stack of
Chern insulators [55]. However, gapless phases with higher-
order topology in quasicrystalline systems have yet to be
discovered. This knowledge gap motivates us to explore the
possibility of gapless quasicrystalline higher-order topologi-
cal phases using a stacking approach with 2D quasicrystalline
SOTIs. It has been demonstrated that stacking 2D topological
materials provides a natural way of realizing 3D topologi-
cal phases. This approach has been successful in achieving
various topological phases, including Weyl semimetals [56],
axion insulators [57–61], hinged quantum spin Hall insulators
[62,63], and high-Chern number quantum anomalous Hall
insulators [64].

In this paper, we present the discovery of a quasicrystalline
second-order topological semimetal (SOTSM) phase obtained
by stacking 2D quasicrystalline SOTIs along the vertical di-
rection (Fig. 1). The distinctive feature of the quasicrystalline
SOTSM is the presence of rotation-symmetry-protected topo-
logical hinge Fermi arcs that terminate at fourfold degenerate
Dirac-like points in the spectrum. The Cz

n-symmetric qua-
sicrystalline SOTSM can support n topological hinge Fermi
arcs (see the second column in Fig. 1), inheriting their
topological nature from Cz

n-symmetric quasicrystalline SOTI
hosting n corner modes (see the first column in Fig. 1). The
number n can be four [Figs. 1(a) and 1(b)], as allowed in crys-
talline systems [9–13,16], but it can also be eight [Figs. 1(c)
and 1(d)] and twelve [Figs. 1(e) and 1(f)], which are typ-
ically forbidden in crystalline systems. The hinge Fermi
arcs associated with eightfold and twelvefold rotational sym-
metries make SOTSMs distinct from crystalline higher-order
Dirac [10,13] and Weyl semimetals [17,18]. Furthermore,
we present the phase diagram of the stacked systems and
identify a 3D quasicrystalline SOTI phase in addition to the
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FIG. 1. Schematic illustrations of (a) AB-tiling square, (c) AB-
tiling octagonal, and (e) Stampfli-tiling dodecagonal quasicrystals.
AB-tiling quasicrystal consists of two types of primitive tiles: square
tiles (yellow) and rhombus tiles (green) with a small angle 45◦.
Stampfli-tiling quasicrystal consists of three types of primitive tiles:
square tiles (yellow), regular triangle tiles (red), and rhombus tiles
(green) with a small angle 30◦. In (a), (c), and (e), the side lengths
(the white lines) of the polygons are taken as the length unit with
a = 1. 2D quasicrystalline SOTIs support (a) four, (c) eight, and (e)
twelve rotation-symmetry-protected zero-energy corner modes (the
cyan points). A simple stack of the 2D quasicrystalline SOTIs gives
rise to 3D quasicrystalline SOTSMs with (b) four, (d) eight, and
(f) twelve rotation-symmetry-protected hinge Fermi arc states (the
cyan lines) connecting the Dirac-like points (the red points) in the
spectrum.

quasicrystalline SOTSM phase. Finally, we show that the
disclination-induced bound states can further reveal the topo-
logical nature of the quasicrystalline SOTSM phase.

This paper is organized as follows. We first give a sim-
ple review of 2D quasicrystalline SOTI in Sec. II and show
a stack of it gives rise to the 3D quasicrystalline SOTSM
phase with Dirac-like points in the spectrum in Sec. III.
A detailed discussion on Dirac-like points is presented in
Sec. IV. Subsequently, we illustrate the phase diagram of the
stacked quasicrystalline system in Sec. V and investigate the
disclination-induced bound state in Sec. VI. We summarize
our conclusions and discuss possible experimental schemes
for the quasicrystalline SOTSM phase in Sec. VII.

II. REVIEW OF 2D QUASICRYSTALLINE SOTIS

2D quasicrystalline SOTIs had been proposed in eightfold
symmetric Ammann-Beenker-tiling (AB-tiling) quasicrystal
[33,34] [Figs. 1(a) and 1(c)] and twelvefold symmetric
Stampfli-tiling quasicrystal [35] [Fig. 1(e)]. The AB-tiling
quasicrystal consists of two types of primitive tiles: square
tiles (yellow) and rhombus tiles (green) with a small angle
45◦. The Stampfli-tiling quasicrystal consists of three types
of primitive tiles: square tiles (yellow), regular triangle tiles
(red), and rhombus tiles (green) with a small angle 30◦.

In the tight-binding model, the lattice sites are placed on
the vertices of each tile. The Hamiltonian of the 2D quasicrys-
talline SOTI contains two parts, H (M ) = H1st(M ) + Hm [33].
The first part denotes a 2D first-order topological insulator
protected by TRS

H1st(M ) = −
∑

j �=k

Z (r jk )

2
[it1(s3τ1 cos φ jk + s0τ2 sin φ jk )

+ t2s0τ3]c†
j ck +

∑

j

(M + 2t2)s0τ3c†
j c j, (1)

where c†
jα = (c†

jα↑, c†
jα↓) are electron creation operators at site

j with the orbital α. t1 and t2 are hopping amplitudes, and M
denotes the Dirac mass, together with t2, determining the first-
order topology. s1,2,3 and τ1,2,3 are the Pauli matrices acting
on the spin and orbital spaces, respectively. s0 is the 2 × 2
identity matrix. φ jk is the azimuthal angle of the bond between
site j and k with respect to the horizontal direction. Z (r jk ) =
e1−r jk/ξ is the spatial decay factor of hopping amplitudes with
the decay length ξ . The second part is a TRS breaking Wilson
mass term, which is

Hm(η) = g
∑

j �=k

Z (r jk )

2
cos(ηφ jk )s1τ1c†

j ck, (2)

where g and η describe the magnitude and varying period
of the Wilson mass, respectively. Hm(η) are responsible for
higher-order topology [33,65]. In the subsequent calculations,
we fix the side length of the tiles as a = 1 (white lines con-
necting the vertices in Fig. 1) and ξ = t1 = 1.

For η = 2, 4, 6, the Wilson mass gives rise to the SOTI
phases in quasicrystals hosting four, eight, and twelve corner
modes protected by the combined symmetry Cz

4U [33,65],
Cz

8U [33], and Cz
12U [35], respectively, where Cz

n is the n-
fold rotational operation, and U could be the TRS operation
T = is2τ0K or the mirror symmetry operation mz = s3τ0. K is
the complex conjugation operator. Additionally, these corner
modes are pinned to zero energy due to the existence of
particle-hole symmetry.

To demonstrate the higher-order topological boundary
states, we choose symmetry-compatible edges in our calcu-
lations. The emergence of the zero-energy corner modes can
be simply understood as follows [33,37,66]: g opens a gap in
the first-order topological edge states and then induces Wilson
mass kinks near the boundary. The effective Wilson mass on
the edge is determined by both the factor η and the edge
orientation. A corner mode appears when the adjacent two
edges host opposite Wilson masses. If one corner mode |ψc〉
appears at rc, where the Wilson mass flips the sign, then the

195306-2



QUASICRYSTALLINE SECOND-ORDER TOPOLOGICAL … PHYSICAL REVIEW B 108, 195306 (2023)

Cz
nU symmetry ensures that the number of corner modes is n.

This is because Cz
nU |ψc〉 is also the eigenstate of the system,

which is localized at another corner by rotating rc by an angle
of 2π/n.

III. 3D QUASICRYSTALLINE SOTSMs

3D crystalline SOTSMs have been constructed by stacking
2D crystalline SOTIs along the vertical direction [6–16]. 3D
quasicrystalline SOTSM phases can be achieved in a similar
manner, i.e., by periodically staking 2D quasicrystalline SO-
TIs with an orbital-dependent hopping tzs0τ3 on each site [55].
After Fourier transformation applied to the vertical direction
z, the 3D stacked Hamiltonian can be expressed as

H3D =
∑

kz

H (M − 2tz cos kz ). (3)

The conduction and valence bands of in this model have
double degeneracy because of the presence of the combination
of TRS and inversion symmetry PT [12,67], where P = s0τ3

is the inversion-symmetry operator. It is necessary to point
out that when η = 2, applying the stacked Hamiltonian to pe-
riodic cubic lattices will give birth to a 3D crystalline SOTSM
[12,67] (see Appendix A) with four hinge Fermi arcs connect-
ing the projection of fourfold degenerate Dirac points that are
well defined in the momentum space. Next, we investigate the
situation where the Hamiltonian is defined on a stack of 2D
quasicrystals.

A. η = 2

We first consider a 3D quasicrystal [Fig. 1(b)] by stacking
2D AB-tiling quasicrystals with the square-shaped boundary
[Fig. 1(a)] and set the varying period of Wilson mass η = 2.
Figure 2(a) shows the spectral function A(EF , kz ) of the 3D
quasicrystalline system with open-boundary condition in the
xy plane. We can see that the bulk conduction and valence
bands touch at two discrete points kz = ±k1

z where the energy
gap is closed, indicating a semimetal phase. Importantly, four-
fold degenerate zero-energy flat band boundary states emerge
in the region |kz| > k1

z , describing hinge Fermi arc states in
this semimetal phase. Figure 2(c) displays the probability den-
sity distribution of the zero-energy states at kz = −2 [marked
by the green star in Fig. 2(a)].

Figure 2(b) illustrates the spectral function of the qua-
sicrystalline system with periodic boundary conditions along
all the directions. The periodic boundary condition in the xy
plane is achieved by treating the system as a crystal with
a supercell periodicity. Moreover, we observe no significant
change in the results as the system size continues to grow.
Therefore, we expect that the supercell approximation can
capture the essential feature of the bulk states in the qua-
sicrystalline system. Comparing to the spectral function under
open boundary condition in Fig. 1(a), the zero-energy flat
band boundary states disappear, further confirming that the
zero-energy modes in between ±k1

z are hinge Fermi arc states.
Moreover, for crystalline topological Dirac semimetals with
hinge Fermi arcs, there are already several studies showing
that the bulk topology can be characterized by the Wilson
loop [10] or filling anomaly based on symmetry indicators

FIG. 2. Spectral function of the stacked AB-tiling quasicrystal
with square-shaped disk [see Fig. 1(b)] as a function of kz, under
(a) open boundary condition in xy plane and periodic boundary
condition along the z direction, and (b) periodic boundary conditions
along all the three directions. (c) The probability distribution of the
zero-energy modes with kz = −2 [marked by the green star in (a)].
(d) The quadrupole moment as a function of kz, calculated under
periodic boundary conditions along all the three directions. The
parameters are taken as M = −2, t2 = 1, g = 1, and tz = 1.5. The
lattice site number is 1257.

[9]. However, these indicators calculated in the momen-
tum space are no longer applicable in quasicrystals due to
the absence of the transitional symmetry. We find that the
higher-order topology of the hinge Fermi arcs is revealed
by the quantized quadrupole moment Qxy = 0.5 for |kz| > k1

z
[Fig. 2(d)]. Therefore, the system is identified as a quasicrys-
talline SOTSM.

The bulk spectral function versus kz exhibits a linear
dispersion near the gap-closing points at ±k1

z [Fig. 2(b)].
Meanwhile, the density of states around the gap-closing points
is parabolic, as shown in the inset of Fig. 2(b), which identifies
the well-known bulk signatures of Dirac points in crystalline
systems [68,69]. These features suggest that the gapless points
in the present system are Dirac points in quasicrystals. How-
ever, as discussed in Sec. IV, a more detailed analysis reveals
that the situation is complex.

B. η = 4 and η = 6

Now, we come to the case of η = 4 and η = 6, which
can give rise to 2D quasicrystalline SOTIs without crystalline
counterpart [33,35]. Here, the 3D quasicrystalline systems are
stacked by the AB-tiling octagonal quasicrystal [Figs. 1(c)
and 1(d)] and the Stampfli-tiling dodecagonal quasicrystal
[Figs. 1(e) and 1(f)], respectively. Figures 3(a) and 3(b) show
the spectral function A(EF , kz ) of the two 3D quasicrystalline
systems with open boundary condition in the xy plane and
periodic boundary condition along the vertical direction. The
spectral functions look similar to that shown in Fig. 2(a);
however, the degeneracy of zero-energy modes is different.
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FIG. 3. Spectral function of the quasicrystalline octagonal sys-
tem [see Fig. 1(d)] as a function of kz with (a) open boundary
conditions along the in-plane x and y directions and periodic bound-
ary condition along the z direction, and (c) periodic boundary
conditions along all the three directions. The lattice site number is
4713. (e) The probability distribution of the zero-energy modes in
the quasicrystalline octagonal system with kz = −2 [marked by the
green star in (a)]. (b), (d), and (f) are the same as (a), (c), and (e),
except that they describe the quasicrystalline dodecagonal system
[see Fig. 1(f)] with the lattice site number is 4105. The parameters
are M = −2, t2 = 1, g = 1, tz = 1.5 in (a), (c), and (e), and M = −3,
t2 = 2, g = 2, tz = 2 in (b), (d), and (f).

These zero-energy flat-band boundary modes in the region
|kz| > k1

z are hinge Fermi arc states traveling on the hinges
of 3D octagonal/dodecagonal quasicrystals. This can be
observed more clearly in Figs. 3(e) and 3(f), which show the
energy spectra and the probability distributions of the zero-
energy modes for fixed kz marked by the green stars shown in
Figs. 3(a) and 3(a), respectively. Apparently, the hinge Fermi
arc states are inherited from the Cz

n-symmetric corner modes in
quasicrystalline SOTIs, where n = 8 in the AB-tiling octago-
nal quasicrystal and n = 12 in the Stampfli-tiling dodecagonal
quasicrystal.

To diagonalize the electronic structure of bulk state, we
plot the spectral function under periodic boundary conditions
along all the three directions in Figs. 3(c) and 3(d). As seen in
the case with η = 2, similar phenomena are observed, such as
the disappearance of zero-energy hinge arcs, a linear disper-
sion along kz, and the quadratic density of states around the
gap-closing points.

Therefore, our study demonstrates that stacking 2D qua-
sicrystals can result in the emergence of an exotic topological

phase of matter, i.e., the quasicrystalline SOTSMs, which
possesses eight and twelve hinge Fermi arcs protected by
forbidden rotation symmetries in crystalline systems. Our
findings highlight the potential for stacking 2D quasicrystals
and expand our understanding of condensed-matter physics.

IV. DIRAC-LIKE POINTS

Upon initial inspection, the gap-closing points near kz =
±k1,2,3

z shown in Figs. 2(b), 3(c), and 3(d) are reminiscent
of the Dirac point characterized by the massless Dirac equa-
tion. They both exhibit a linear dispersion along kz and a
unique quadratic density of state near the gap-closing points.
However, a closer inspection of the spectrum reveals that
the gap-closing points in quasicrystalline SOTSMs are dis-
tinct from those in crystalline second-order topological Dirac
semimetals (SODSMs).

Figure 4(a) shows the spectrum near the gap-closing point
k1

z in the SOTSM of η = 2 under periodic boundary condi-
tions along all the directions [see Fig. 2(b)]. There appear
three band-crossing points, which is quite different from the
crystalline SODSM phase that hosts only one band-crossing
point [Fig. 7(e)]. Figures 4(b) and 4(e) show the wave function
of the states marked by the red and green stars in Fig. 4(a),
respectively. One of the band crossing is dominated by the
local patch containing three square tiles and two rhombus tiles
[Figs. 4(b) and 4(c)], and the other band crossing is dominated
by the local patch containing six rhombus tiles [Figs. 4(d)
and 4(e)]. The appearance of multiple band-crossing points
is because gap closes at different kz for distinct kinds of
local patches. This phenomenon is attributed to the absence of
discrete translational symmetry in quasicrystalline systems.

For the AB-tiling octagonal quasicrystal with η = 4, the
spectrum lacks multiple band-crossing points, but exhibits
a tiny energy gap [Fig. 4(f)]. The tiny energy gap persists
even with larger system sizes [Fig. 4(g)]. The tiny energy gap
remains persistent and does not diminish even with further in-
creases in size. The reason for this energy gap remains elusive
and warrants additional investigation. For the Stampfli-tiling
quasicrystal with η = 6, the spectrum is similar to the case
with η = 2, except that there appear more band crossings.
This is because there are more different patterns of local
patches in Stampfli-tiling quasicrystal.

Although the gap-closing points in quasicrystalline
SOTSMs manifest several similarities compared to the Dirac
points in crystalline SODSMs. However, we found the fine
structure of the gap-closing points due to the absence of
translational symmetry by further checking the spectrum.
Therefore, we dub these gap-closing points in the quasicrys-
talline SOTSM phase as Dirac-like points.

V. PHASE DIAGRAM

We present the topological phase diagram of the stacked
quasicrystal system in this section. Figures 5(a) and 5(b)
show ln Eg and Qxy as functions of the momentum kz and
the parameter M for the AB-tiling quasicrystalline square
system with η = 2. Eg is the value of the energy gap
obtained under periodic boundary conditions along all the
three directions. Each point along the white line corresponds
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FIG. 4. (a) Energy spectrum vs kz of the quasicrystalline system near −k1
z with η = 2 [see Fig. 2(b)]. The lattice number is 1257. (b) and

(e) correspond to the probability distributions of the states marked by the red and green stars in (a), respectively. (c) and (d) show that the
probability distributions in (b) and (e) are mainly distributed at two different kinds of local patches. (f) Spectrum of the quasicrystalline system
for kz is near −k2

z [see Fig. 3(c)] with η = 4. The lattice number is 4061. (g) The energy gap Eg as a function of kz for different system size
with η = 4. (h) Spectrum of the quasicrystalline system as a function of kz near −k3

z with η = 6 [see Fig. 3(d)]. The lattice number is 2569.
The parameters in (a)–(e), (f)–(g), and (h) are the same as those in Figs. 2(b), 3(c), and 3(d), respectively.

to the gap-closing point shown in Fig. 2(b). For about
−5.7 < M < 0.3, the existence of the gap closure with the
accompanying topological phase transition between Qxy = 0
and Qxy = 0.5 indicates that the system corresponds to the
SOTSM phase. For about M > 0.3, the system corresponds
to a 3D quasicrystalline SOTI phase with a topological gap
characterized by a quantized quadrupole moment Qxy = 0.5
for any kz. For about M < −5.7, the system is a normal
insulator (NI) with a topologically trivial gap.

FIG. 5. (a) The logarithm of the energy gap ln Eg and (b) the
quadrupole moment Qxy as functions of the parameter M and the mo-
mentum kz. In (a), each point in the white line depicts the gap-closing
point. In (b), the red and white areas host a quantized quadrupole
moment Qxy = 0.5 and a zero quadrupole moment Qxy = 0, respec-
tively. Depending on M, the system can be divided into three phases:
the SOTI phase, the SOTSM phase, and the normal insulator (NI)
phase. The three phases are separated by the dashed cyan lines.
The results are obtained in the AB-tiling quasicrystalline square
systems with periodic boundary conditions along all the directions.
The lattice site number is 1257. The parameters are η = 2, t2 = 1,
g = 1, and tz = 1.5.

Above we only consider the case of η = 2 in the AB-
tiling quasicrystal. In the cases of the AB-tiling octagonal
quasicrystal with η = 4 and the Stampfli-tiling dodecagonal
quasicrystal with η = 6, we find similar results by adjusting
the parameter M, i.e., the systems also support the quasicrys-
talline SOTSM phase, the 3D quasicrystalline SOTI phase,
and the NI phase (see Appendix B).

VI. DISCLINATION-INDUCED BOUND STATES

Disclination-induced bound states provide a potential
probe of crystalline topology, which has been widely inves-
tigated in different topological systems [34,70–75]. Recently,
disclination-induced bound states have been observed in
topological crystalline insulators [76], acoustic topological
insulators [77–80], and acoustic Weyl semimetals [81]. In this
section, we study the disclination-induced bound states in the
quasicrystalline SOTSM phase.

The disclination is introduced by cutting out a specific
segment [the first column in Fig. 6] and then glue the lattice
back together [the second column in Fig. 6]. The two sides of
the cut are glued together by identifying sites on the two sides
of the cut related by rotational symmetry, which is called a
Volterra process [34,72,82]. The defects break the rotational
symmetry locally at the center of lattice, but the rest preserves
the rotational symmetry and is indistinguishable from the bulk
of the original system without the cut.

The corresponding spectral function of sample geometries
in Figs. 6(a) and 6(b), Figs. 6(c) and 6(d), and Figs. 6(e)
and 6(f) are similar to Fig. 2(a), Fig. 3(a), and Fig. 3(b),
respectively, except that the spatial probability distributions
are different for the zero-energy modes. The colored points
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FIG. 6. Probability distributions of the zero-energy modes in the
different systems with kz = −2. [(a),(c),(e)] Systems with a certain
segment being cut out. [(b),(d),(f)] Disclination systems where the
two sides of the cut is glued together [the red lines in (a), (c), and
(e)]. The parameters in [(a),(b)], [(c),(d)], and [(e),(f)] are the same
as that in Fig. 2(b), Fig. 3(c), and Fig. 3(d), respectively.

in Fig. 6 display the probability distributions of the zero-
energy modes in these systems with kz = −2. For the three
different disclination systems in Figs. 6(b), 6(d), and 6(f),
they both host one zero-energy mode at the disclination
core, and three, seven, and eleven zero-energy modes at
the hinges of the systems, respectively. Moreover, similar to
the zero-energy hinge modes, the disclination modes only
appear for |kz| > k1/2/3

z , and disappear in the regions of |kz| <

k1/2/3
z . This further reveals that the disclination-induced bound

states and the hinge Fermi arc states are the consequence of
nontrivial bulk topology, which cannot be removed without
topologically trivializing the bulk of systems [34]. Moreover,
the kz-dependent disclination-induced bound states provide
an experimental probe for the quasicrystalline SOTSM
phase.

Usually, the fractional charge will appear around the de-
fect core in the curved crystalline Chern insulators [83].
Fractional charges have been investigated in crystalline sys-
tems [83], and recent efforts have extended these concepts
to quasicrystalline systems [26,37], by deriving the effec-
tive model for the low-energy state. The disclination-induced
quasicrystalline SOTSM state may also exhibit a unique frac-
tional hinge charge, and this will be studied in our future
works.

VII. CONCLUSIONS AND DISCUSSION

In conclusion, this study has demonstrated that a stack of
2D quasicrystalline SOTIs can give rise to 3D quasicrystalline
SOTSM phases. These 3D phases exhibit rotation-symmetry-
protected hinge Fermi arcs, which are forbidden in crystalline
systems. Additionally, our calculations have shown that the
stacked systems also support the 3D quasicrystalline SOTI
phase, as evidenced by the phase diagram. We have proposed
that the dependence of kz on disclination-induced bound states
can serve as an experimental probe for the quasicrystalline
SOTSM phase. Furthermore, considering the fivefold rota-
tional symmetric SOTI had also been proposed [36,37], we
expect that the fivefold rotational symmetric SOTSM may also
be constructed by vertically stacking the fivefold rotational
symmetric SOTI in a proper way.

While the quasicrystalline SOTSM shares similarities with
the crystalline SODSM [9–13,16], there are three main dis-
tinctions between them. Firstly, the number of Cz

n-symmetry
protected hinge Fermi arcs in the quasicrystalline SOTSM is
not limited to four, as observed in crystalline SODSM, but can
be eight or twelve as well. Secondly, in the quasicrystalline
SOTSM, the lack of translational symmetry renders the in-
plane momentum ineffective as a quantum number, making
it impossible to define Dirac points in momentum space, un-
like in crystalline SODSM where the Dirac equation applies.
Lastly, the spectrum of the quasicrystalline SOTSM exhibits
a higher number of band-crossing points compared to the
crystalline SODSM, a consequence of the absence of in-plane
translational symmetry in the stacked quasicrystals.

Moreover, recent experiments investigating the stack
of Ta1.6Te quasicrystal layers [54], along with first-
principles calculations and symmetry analysis, have revealed
a symmetry-protected semimetal phase and explored the topo-
logical properties of the material. This suggests that the
quasicrystalline SOTSM phase can be experimentally real-
ized in real materials. Furthermore, considering the successful
experimental realization of the 2D quasicrystalline SOTI
phase in electrical circuit systems [41], we believe that
the quasicrystalline SOTSM holds promise in metamateri-
als. These unique features and possibilities offer exciting
prospects for the future implementation of our proposal.

Note added. Recently, we became aware of a complemen-
tary study [84], which focuses on higher-order topological
insulators and semimetals in a stack of Ammann-Beenker
tiling quasicrystalline lattices.
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FIG. 7. (a) Schematic illustrations of the crystalline SOTI in a
square lattice. The 2D crystalline system supports four rotation-
symmetry-protected zero-energy corner modes (the cyan points).
(b) A simple stack of the 2D crystalline system can lead to the
3D crystalline SODSM phase with four rotation-symmetry-protected
hinge Fermi arc states (the cyan lines). [(c),(d)] Spectral function of
the crystalline square system as a function of kz with (c) open bound-
ary conditions along the in-plane directions and periodic boundary
condition along the z direction and (d) periodic boundary conditions
along all the directions. (e) Energy spectrum of the quasicrystalline
system for kz is near −k4

z . (f) Probability distribution of the states
marked by the green star in (e). The parameters are taken as η = 2,
M = −2, t2 = 1, g = 1, and tz = 1.5. The lattice number is 400.

innovation group project of the natural science foundation of
Hubei Province of China (under Grant No. 2022CFA012).

APPENDIX A: CRYSTALLINE SODSM

To make a comparative study, we investigate the 3D crys-
talline SODSM phase [Fig. 7(b)], modeled by staking 2D
crystalline SOTIs along the vertical direction [Fig. 7(a)].

FIG. 8. The logarithm of the energy gap ln Eg as functions of the
parameter M and the momentum kz for (a) η = 4 and (b) η = 6. Each
point in the white line depicts the gap-closing point. Depending on
M, the system can be divided into three phases: the SOTI phase, the
SOTSM phase, and the NI phase. The three phases are separated by
the dashed cyan lines. The results are obtained in (a) the AB-tiling
quasicrystalline and (b) Stampfli-tiling quasicrystalline systems with
periodic boundary conditions along all the directions. The lattice site
number is 1257 in (a) and 2569 in (b). The parameters are t2 = 1,
g = 1, and tz = 1.5 in (a) and t2 = 2, g = 2, and tz = 2 in (b).

Figures 7(c) and 7(d) show the spectral function of the crys-
talline system with open and periodic boundary conditions in
xy plane, respectively. Hinge Fermi arcs appear and connect
the band-closing points at kz = ±k4

z . The results are similar to
those in Figs. 2(a) and 2(b). Figure 7(e) shows the spectrum
near the band-closing point −k4

c . Only one band-crossing
point is observed because of the existence of transitional sym-
metry in crystalline systems. This is observed more clearly in
Fig. 7(f). The probability distribution of the state labeled by
green star [Fig. 7(e)] is uniformly distributed and all the local
patches undergo the topological phase transition simultane-
ously when kz varies. Moreover, we find that the low-energy
effective Hamiltonian can be described by the massless Dirac
equation. Therefore, the system is identified as the crystalline
SODSM phase.

APPENDIX B: PHASE DIAGRAM FOR η = 4 AND 6

Figures 8(a) and 8(b) show the phase diagram for the
cases of the AB-tiling octagonal quasicrystal with η = 4 and
the Stampfli-tiling dodecagonal quasicrystal with η = 6, re-
spectively. We find similar results by adjusting the parameter
M, except that there appear more white regions in Fig. 8(b)
because it hosts more band-crossing points [see Fig. 4(f)].
Furthermore, well-defined topological numbers for the sys-
tems with η = 4 and η = 6 are both intriguing and demanding
to ascertain. Therefore, we are unable to provide topological
numbers for the phase diagrams.
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Soljačić, Quasicrystalline Weyl points and dense Fermi-Bragg
arcs, Phys. Rev. B 108, L121109 (2023).

[56] A. A. Burkov and L. Balents, Weyl semimetal in a topological
insulator multilayer, Phys. Rev. Lett. 107, 127205 (2011).

[57] M. Mogi, M. Kawamura, R. Yoshimi, A. Tsukazaki, Y. Kozuka,
N. Shirakawa, K. S. Takahashi, M. Kawasaki, and Y. Tokura, A
magnetic heterostructure of topological insulators as a candi-
date for an axion insulator, Nat. Mater. 16, 516 (2017).

[58] M. Mogi, M. Kawamura, A. Tsukazaki, R. Yoshimi, K. S.
Takahashi, M. Kawasaki, and Y. Tokura, Tailoring tricolor
structure of magnetic topological insulator for robust axion
insulator, Sci. Adv. 3, eaao1669 (2017).

[59] Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen,
and Y. Zhang, Quantum anomalous Hall effect in intrinsic mag-
netic topological insulator MnBi2Te4, Science 367, 895 (2020).

[60] A. Gao, Y.-F. Liu, C. Hu, J.-X. Qiu, C. Tzschaschel, B. Ghosh,
S.-C. Ho, D. Bérubé, R. Chen, H. Sun et al., Layer Hall effect in
a 2D topological axion antiferromagnet, Nature (London) 595,
521 (2021).

[61] R. Chen, S. Li, H.-P. Sun, Q. Liu, Y. Zhao, H.-Z. Lu, and
X. C. Xie, Using nonlocal surface transport to identify the axion
insulator, Phys. Rev. B 103, L241409 (2021).

[62] Y.-R. Ding, D.-H. Xu, C.-Z. Chen, and X. C. Xie, Hinged quan-
tum spin Hall effect in antiferromagnetic topological insulators,
Phys. Rev. B 101, 041404(R) (2020).

[63] N. Shumiya, M. S. Hossain, J.-X. Yin, Z. Wang, M. Litskevich,
C. Yoon, Y. Li, Y. Yang, Y.-X. Jiang, G. Cheng et al., Evidence

of a room-temperature quantum spin Hall edge state in a higher-
order topological insulator, Nat. Mater. 21, 1111 (2022).

[64] Y.-F. Zhao, R. Zhang, R. Mei, L.-J. Zhou, H. Yi, Y.-Q. Zhang, J.
Yu, R. Xiao, K. Wang, N. Samarth et al., Tuning the Chern num-
ber in quantum anomalous Hall insulators, Nature (London)
588, 419 (2020).
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