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Influence of quadrupolar interaction on magnetic field dependence of the
revival amplitude in periodically pulsed quantum dots
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Optically driven electron spins coupled in quantum dots to nuclear spins show a prepulse signal (revival
amplitude) after having been brought to a specific nonequilibrium stationary state by long periodic sequences
of pulses. The effect bears similarity to the spin Hahn echo in nuclear magnetic resonance. The size of this
revival amplitude depends on the external magnetic field in a specific way due to the varying commensurability
of the nuclear Larmor precession period with the time Trep between two consecutive pulses. In theoretical
simulations, sharp dips occur at fields when an integer number of precessions fits in Trep; this feature could
be used to identify nuclear isotopes spectroscopically. But these sharp and characteristic dips have not (yet) been
detected in experiment. We study whether the nuclear quadrupolar interaction is the reason for this discrepancy
because it perturbs the nuclear precessions. But our simulations show that the absolute width of the dips and their
relative depth are not changed by quadrupolar interactions. Only the absolute depth decreases. We conclude that
quadrupolar interaction alone cannot be the reason for the absence of the characteristic dips in experiment.
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I. INTRODUCTION

Exploiting the quantum properties of an electron spin for
quantum information processing represents a very attractive
route since more than two decades [1–3]. One promising kind
of realization uses localized electron spins in nanostructures
of semiconductors [4–6]. The manipulation by laser pulses
has turned out to be a fruitful way to control these spins [7–9]
on very long time scales and with high temporal resolution
[10–14].

A particularly intriguing phenomenon is nuclei-induced
frequency focusing (NIFF) of the electron spins in quantum
dots [10,15–20]. This effect occurs when an electron spin
is repeatedly excited by long periodic trains of short laser
pulses, which orient the electron spin. The latter is generically
coupled to many nuclear spins of the isotopes of the semi-
conductor. The long periodic train of pulses imprints a certain
pattern on the distribution of the overall magnetization of the
nuclear spins (Overhauser field) [15–17,19]. This comb-like
pattern favors the Larmor precessions of the electron spin,
which are commensurate with the repetition time Trep of the
pulses. This means that an integer number of precessional rev-
olutions takes place between two consecutive pulses [16–18].
The patterned Overhauser field in turn acts similar to a spin
Hahn echo in nuclear magnetic resonance (NMR). Even an
ensemble of slightly different quantum dots shows a collec-
tive response prior to the next pulse, which can be detected,
for instance, by Faraday rotation. This collective response is
called revival amplitude or prepulse signal because it seems
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to be revived from no signal very analogous to the spin
Hahn echo. It is visualized in Fig. 1. The revival amplitude
is large for an integer number of nuclear Larmor preces-
sions within Trep and small for an half-integer number of spin
revolutions.

This intriguing phenomenon depends on the strength of the
applied magnetic field. Clearly, the magnetic field modified by
the Overhauser field determines the Larmor frequency of the
electron or hole spin. In addition, a second commensurability
plays a crucial role, namely the number of nuclear Larmor
precessions fitting into the interval between two pulses. This
commensurability influences the degree of revival. If the
number of half-revolutions of the nuclear spins within the
repetition period is odd, a broad minimum of the revival
amplitude is observed. If the number of half-revolutions is
even, i.e., the number of nuclear spin revolution is an integer, a
very sharp minimum is observed. For small spin baths it could
be shown that the interplay of the commensurabilities can be
used to purify disordered quantum mixtures by reducing their
entropy close to zero [21].

In any case, a strongly nonmonotonic dependence of the
revival amplitude on the applied field results. Shallow min-
ima and sharp dips alternate upon increasing magnetic field
[18,20]. In experiment, however, only shallow minima occur
[18]. The absence of the sharp dips is not understood so far.
First results from fully quantum mechanical calculations [18]
did not reproduce the sharp dips suggesting that they only
occur in semiclassical treatments based on truncated Wigner
approximation [18,20,22]. Yet, recent numerical data from the
quantum simulation of significantly larger baths of nuclear
spins revealed that the quantum mechanical results approach
the semiclassical ones if the considered nuclear spin baths are
large enough [23].
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FIG. 1. Schematic illustration of the revival amplitude that oc-
curs after a certain number of pulses prior to the next pulse. Blue
curve, fast Larmor precessions; orange curve, envelope.

If the bath of nuclear spins consists of various different iso-
topes with different nuclear Larmor frequencies the magnetic
fields at which minima occur also vary [24,25]. In particular,
the sharp dips at integer nuclear precessions within Trep can
be distinguished because each isotopes induces such dips.
This has been simulated in Ref. [25] for up to four differ-
ent isotopes and it has been proposed to use these dips to
analyze the content of these isotopes in the quantum dots by
scanning the revival amplitudes. This idea was named NMR
spectroscopy. An experimental verification of this approach is
still lacking due to the absence of sharp dips in the so far mea-
sured data [18]. The question arises which mechanism may
destroy the sharp dips. Since they stem from nuclear Larmor
precessions any coupling of the nuclear spins is a candidate to
smear out the resonances responsible for the sharp dips. The
nuclear gyromagnetic ratios of the isotopes are a feature of
the nuclei themselves and thus very robust against external in-
fluences. Thus, we are looking for further mechanisms prone
to influence nuclear Larmor precessions, except the explicitly
considered hyperfine coupling to the electron spins.

Candidates for further detrimental couplings are (i) the
quadrupolar interactions of nuclear spins to the gradients of
the electric field if the nuclear spins are larger than I = 1/2
[26–30] and (ii) dipole-dipole interactions among the nuclear
spins [31,32]. It was shown that the measured spin noise
can be understood by including the quadrupolar interaction
[28,29]. It is found that the effects of quadrupolar couplings
set in at about 1 µs while the dipolar effects are estimated to
be relevant at the time scale of 10 to 100 µs [31,32]. Thus, we
will consider the quadrupolar coupling and its influence on
the sharp dips in NMR spectroscopy. An investigation of the
weaker dipole-dipole interactions is left to future studies.

Since the quadrupolar interaction breaks the spin rotation
invariance it is a good candidate to perturb the Larmor preces-
sions. Hence, the question we are posing and answering here
is whether the inclusion of quadrupolar effects can explain the
absence of sharp dips in experiment.

The article is set up as follows. After this Introduction, the
model for describing a quantum dot is introduced in Sec. II.
Particularly, the quadrupolar interaction is discussed and two
scenarios for the electric potential are presented. Then, Sec. III
briefly explains the truncated Wigner approach (TWA) used to
solve the equations of motion and an extension for quadratic
terms. This includes the effective treatment of the polarizing
laser pulses as well as details of the employed numerics. Sub-
sequently, in Sec. IV the spin noise in absence and presence
of the quadrupolar interaction is studied to make sure that our

approach reproduces known results. In the subsequent Sec. V
we examine the magnetic field dependence of the revival
amplitude for two scenarios of the electrical potential. It turns
out that they yield almost the same results. Finally, we analyze
the shape of the dips at integer numbers of the nuclear spin
revolutions. In the Conclusions (Sec. VI), we argue that the
quadrupolar coupling reduces the absolute values of the depth
and the width of the sharp dips. But the depth relative to the
total signal does not change significantly. In other words,
the actual shape does not change very much upon inclusion
of the quadrupolar coupling so that the absence of the sharp
dips in experiment cannot be related to the quadrupolar inter-
actions. At least, it cannot be the only reason.

II. MODEL

There exists a large variety of methods to create a
quantum dot (QD) [33]. Here, we focus on self-assembled
(In,Ga)As/GaAs QDs fabricated by molecular beam epitaxy
[10,34]. The QDs are grown such that each dot in an ensemble
contains a single electron (or hole) on average relative to its
stoichiometry. While the diameter of one QD is about 20–
80 nm, the height is only 2–10 nm [33,35] so that they are
rather flat. In the following, we discuss the theoretical model
to describe these QDs as two dimensional traps for single
elementary charges.

A. Central Spin Model

Due to the strong localization of the electron in the QD,
the hyperfine interaction is the dominant interaction between
the electron and the nuclear spins [31,32,36]. If N nuclei are
considered, we can describe this system by the Hamiltonian

ĤCSM =
N∑

k=1

AkŜ · Îk, (1)

which is referred to as the central spin model (CSM) [37,38].
Operators are marked with a hat and vectors are printed in
bold. The spin quantum numbers are S = 1/2 for the electron
spin and I = 3/2 for the nuclear spins of the relevant isotopes
of Ga and As [39].

The coupling constants Ak are proportional to the probabil-
ity that the electron is present at the spot where the nucleus
resides. Assuming that the confining potential of the quantum
dots is roughly parabolic it is natural to conclude that the
electronic wave function is a Gaussian. Thus, the distribution
of the couplings constants Ak also follows a Gaussian depen-
dence

Ak ∝ exp[−(rk/l0)2], (2)

where l0 is the characteristic oscillator length. Since there are
about 104 to 106 nuclear spins [31,32,36] coupled sizeably to
the electron a direct quantum mechanical calculation is out
of the question. Even a semiclassical simulation (see below)
is beyond reach for realistic values of N . Much smaller bath
sizes are used in the simulations. In order to properly address
the characteristic energy and thus time scales, we normalize
the coupling to capture the experimental time scales of the
electron spin. Due to the disordered state of the nuclear spin
ensemble the normalization needs to be done by the root mean
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square [40–42]

AQ :=
√√√√ N∑

k=1

A2
k . (3)

Keeping this energy scale fixed, it is possible to compare time
scales for different sets of nuclear spins differing in number
and in the distribution of their couplings.

We focus on rather flat QDs so that we can assume them
to be two-dimensional. To describe a uniform distribution of
nuclear spins one can draw random numbers for the radii rk

and random angles φk for each given radius. We introduce a
cutoff radius rcut as an upper limit to keep the distribution of
coupling normalizable. If the exact position of the nucleus is
not relevant for the simulations, the angles φk are not needed.
Then, in two dimensions, the couplings are distributed accord-
ing to the exponential parametrization [19,43–46]

Ak ∝ exp (−γ k) (4)

with γ ≈ 2/Neff . The effective number Neff of coupled nuclear
spins is the number of significantly coupled spins and can be
defined by [45]

Neff := (
∑

k Ak )2

A2
Q

. (5)

In our calculations we use a slightly different definition
including the radius rk in units of l0,

Ak ∝ exp
(−r2

k

)
with rk ∈ [ 0, rcut], (6)

where the cutoff radius is chosen to be
√

Nγ to be able to
compare with previously mentioned method [19,46].

The Zeeman splitting stems from the coupling of the mag-
netic moment to an external magnetic field Bext. For the
electron spin, it reads

ĤeZ = γeBextnB · Ŝ, (7)

where nB = ex is the direction of the applied magnetic field
and γe = geμBh̄−1 is the electronic gyromagnetic ratio. The
g factor ge for an electron in a self-assembled GaAs QD is
approximately given by |ge| ≈ 0.555 [47]. For the nuclear
spins we analogously obtain

ĤnZ =
N∑

k=1

γnBextnB · Îk . (8)

The gyromagnetic ratio γn = γe/z is several orders of mag-
nitude smaller due to the much larger nuclear mass in
comparison to the electron mass. In GaAs z takes a value of
about 800 [17,24].

B. Quadrupolar Interaction

A nuclear spin with a spin larger than 1/2 interacts with
the local electric field gradients caused by the strain fields
present in QDs because of its quadrupolar moment [26,27,30].
In GaAs quantum dots, all nuclear spins fulfill I > 1/2 [39].
The interaction with the electric field gradient is described by

the Hamiltonian [30]

Ĥquad =
∑

α,β∈{x,y,z}
Vαβ

|e|Q
12I (2I − 1)

[3(Îα Îβ + Îβ Îα )

− 2I (I + 1)] (9)

where we used the shorthand

Vαβ := ∂2V

∂rα∂rβ
. (10)

Furthermore, e is the elementary charge and Q the strength
of the quadrupolar moment of the nucleus. By diagonalizing
the Hessian matrix Vαβ , the Hamilton operator [26,48] can be
recast in the form

Ĥ ′
quad = q

[(
3Î2

z − I2
) + η

(
Î2
x − Î2

y

)]
, (11)

where x, y, and z are the principal axes of the electric field
gradient at the given site of a nucleus and all nondiagonal
elements of the tensor Vαβ are zero. Here, q embodies the
prefactors in (9) and η is given by

η = Vxx − Vyy

Vzz
. (12)

For each of the N nuclear spins we introduce the vectors nα
k

with α ∈ {x, y, z} for the principal axes at site k. Eventually,
we obtain [28,49]

Ĥ ′
quad =

N∑
k=1

qk

3

[(
3
(
Îk · nz

k

)2 − I2)

+ ηk
((

Îk · nx
k

)2 − (
Îk · ny

k

)2)]
. (13)

The direction nz
k refers to the normalized principal axis cor-

responding to the largest eigenvalue of the quadrupolar Hesse
matrix [28].

We do not have precise knowledge of the form of V at each
nuclear site. Furthermore, calculations with an exact V would
be extremely demanding. Hence, we consider two opposing
scenarios for V .

(a) Simple model:
The way quantum dots are produced and the resulting
strain [4,35] suggest a quadratic behavior in a coarse-
grained average increasing from the center of the flat
QD in the xy plane to its boundary. This suggests the
assumption of a quadratic dependence

V = ax2 + by2 + cz2 (14)

with c = 0 and a = b. In this approach, all qk have the
same value and all nuclear sites experience the same
Hesse matrix with the same principal axes since the
Hesse matrix is formed from the second derivatives of
V .

(b) Stochastic model:
To construct a set of potentials V that is close to the
situation in real QDs we use the results from first-
principle calculations [26,27]. The distributions of the
parameters qk , ηk , and of the angle θk computed in
Ref. [27] are used to randomly draw numbers from
them and to assign these numbers to the spin at rk.
The angle θk measures the angle of nz

k to the normal of
the substrate surface on which the QD is formed. This
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is done for all spins. Thereby, the overall distribution
of the quadrupolar parameters it taken into account.
Possible correlations between the distributions of the
parameters are neglected. But we find evidence, see
below, that they hardly matter.

Before simulating the quadrupolar interaction, we first fix
its energy scale relative to the hyperfine couplings Ak . In
Ref. [28]

Qr =
∑

k qk∑
k Ak

(15)

was introduced. We will use this parameter for comparisons
with the results in Ref. [28]. But since in other studies, such
as the one in Refs. [26,27], individual values are given instead
of sums, we also introduce

Q =
√

q2
k

Amin
k

, (16)

where Amin
k is the minimum value of the Ak used in the simu-

lation and
√

q2
k is the root mean square of qk . For given values

of Q and Qr, respectively, the value a = b in the simple model
for V follows.

The individual couplings qk in experiment are of the order
neV [26] and the hyperfine couplings Ak are of the order
0.1 − 1 µeV [31,36]. This means that the values of Q range be-
tween 0.01 and 0.1. As stated before, due to the constraints on
runtime it is no possible to use the experimental parameters.
Hence, we reduce the effective number of nuclear spins by a
factor λ = 100, but the energy scale AQ has to stay the same,
which means that the Ak need to be increased by the factor√

λ = 10. To be concrete, we treat Neff = 200 instead of 104

to 105. The relative parameters Q and Qr are kept constant so
that the quadrupolar coupling are also scaled up by

√
λ.

In addition, the quadratic scaling of the runtime with the
strength of the external magnetic field makes the simulations
very time consuming [19,46]. In order to observe the intri-
cate interplay between the electronic and the nuclear Larmor
precessions at lower values of the magnetic fields, one has
to rescale the z factor down as well. This means that one
increases the nuclear gyromagnetic ratio so that lower values
of the magnetic fields yield the desired odd and even number
of half-turns of the nuclear spins. If we use z → zeff = z/

√
λ

we have the additional advantage that the ratio of the nuclear
Zeeman energy to the hyperfine coupling and the quadrupolar
interactions does not change. But we will also study larger
values of zeff.

The reason for the above mentioned scalings of the param-
eters is that the calculation would take far too long otherwise.
We perform the scalings such that the experimentally relevant
time and energy scales are conserved as described in the
previous paragraphs. However, the scalings should be kept
in mind and their effect will be examined in the following
sections by changing the scaling factors, in particular the one
for the z factor. Different scalings will be considered to be able
to estimate the behavior for realistic values.

In summary, there is a large parameter range to be covered:
The number of nuclear spins N and the number of nuclear
spins effectively coupled to the central spin Neff ≈ 2/γ . The

parameter z defining the ratio between the gyromagnetic ratio
of the central spin and of the nuclear spins. The parameter Q
introduced above for the quadrupolar couplings and the mag-
netic field B. All these parameters are varied, only N = 100
(unless denoted otherwise), AQ = 1.19 and Trep = 13.2 ns will
be kept fixed in the following. The values for AQ and Trep are
chosen because they are the ones corresponding to generic
experiments [17,18].

III. METHODS

We briefly introduce the approaches that we are using in the
sequel to unveil the spin dynamics and the revival amplitudes
in particular.

A. Truncated Wigner Approximation

We use the truncated Wigner approximation (TWA), which
is a semiclassical approach [41,50]. In this approach, the spin
operators are expressed by classical vectors, which obey clas-
sical equations of motion. The quantum character is captured
by averaging over distributions of the initial conditions. These
are given by Wigner functions, which are only quasidistribu-
tions because they also take negative values. In leading order
for the quantum dynamics of angular momenta [22], it is
sufficient to assume the initial distributions to be Gaussian.
Then the mean values and the variance suffice to fully de-
termine the initial distribution. Mean value and variance are
computed from the quantum mechanical expectation values
of the corresponding operators. Concretely, we solved the
equations of motion for 104 − 106 different initial conditions
drawn from the thus determined normal distributions. The
obtained time-dependent averages approximate the quantum
expectation values. Note that any TWA is exact for systems,
which are bilinear in bosonic variables and linear in spin
variables [50] as is implied by Ehrenfest’s theorem. In all
other cases, the TWA represents an approximation, which
only captures leading quantum effects. By construction, its
use is best justified if the dynamics is close to a classical one.

The classical equations of motion are given by [22]

∂

∂t
Scl

α = εαβγ

∂HW

∂Scl
β

Scl
γ (17)

with εαβγ being the tensor elements of the Levi-Civita tensor
and HW the Weyl symbol of H . Note that only the three spin
operators occur; we refer to this approach as the SU(2) TWA
for short. Below, we will also consider extensions of the SU(2)
TWA denoted SU(n) TWA. Their advantage is to capture the
dynamics induced by nonlinear Hamiltonians exactly as well.

The classical equations of motion in SU(2) TWA for the
Hamilton function

H = HCSM + HeZ + HnZ (18)

read

d

dt
S =

(
N∑

k=1

AkIk + h

)
× S, (19a)

d

dt
Ik = (AkS + hn) × Ik, k ∈ 1, .., N . (19b)
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The vector h is given by

h = (−h, 0, 0)T with h = γeBext (20)

and its nuclear counterpart hn by h/z. The initial conditions
are drawn from Gaussian distributions resulting from the
quantum mechanical expectation values. The applied method
is only an approximation for our discussed model due to the
hyperfine spin-spin interactions.

B. Extended Truncated Wigner Approximation

For the quadrupolar interaction, even the local part of the
Hamilton operator at a given nucleus k comprises quadratic
terms in (13) so that SU(2) TWA is not exact. We consider
this a serious caveat. It is known that nonlocal terms tend to
average out because the influence of many interaction partners
justifies this averaging. Generically, mean-field approaches
become exact for large coordination numbers for this reason.
Thus, the quantum fluctuations of nonlocal term tend to be
small and a semiclassical approach is appropriate. In contrast,
the local dynamics does not experience averaging effects for
given spin. For this reason, we aim at an extension of SU(2)
TWA such that the local dynamics is represented faithfully.
Indeed, such an extension is possible at the expense of in-
creasing the number of relevant observables [22].

The idea is to represent the quadratic terms as linear combi-
nations of the generators of the respective SU(n) group where
n = 2I + 1 is the dimension of the local spin Hilbert space.
For spin I = 1/2 the SU(2) TWA is locally exact. For spin
I = 1 we would need to consider SU(3) TWA and for the
relevant case of I = 3/2 we should use SU(4) TWA. In this
way, one can express the local Hamiltonian as linear sum of an
extended set of operators. For SU(3) one needs eight operators
in total while SU(4) needs 15 operators. In general, n2 − 1
operators are sufficient because any matrix of dimension n
can be represented as linear sum of n2 operators including the
identity. Hence, the extended SU(n) will be locally exact. We
emphasize, however, that the interactions between different
spins are not exactly represented. Here, we again refer to
the justification that a large number of interaction partners
reduces the influence of fluctuations and thus renders the
dynamics more classical and less quantum. The reduction of
relative fluctuations allows one to derive a dynamic mean-field
theory of dense spin systems [51].

The equations of motion in the extended SU(3) version
read [22]

∂

∂t
X cl

α = fαβγ

∂HW

∂X cl
β

X cl
γ , (21)

where X are the generators of the respective SU(n) group.
The structure constants fαβγ can be calculated to fulfill the
relations [

X cl
α , X cl

β

] = i fαβγ X cl
γ . (22)

In the comparisons of various approaches, we also in-
clude results obtained from the equations of motion derived
in Ref. [49] using a path integral formalism. This derivation
yields an additional prefactor (1 − 1/(2I )) in front of the
classical equations of motion of the SU(2) TWA, which result
from local bilinear interaction terms such as the quadrupolar

FIG. 2. Comparison of SU(2) TWA, SU(3) TWA, and SU(2)
TWA including the additional prefactor (denoted “w/pref.”), and
the quantum mechanical result (denoted “quant. mech.”) for the
quadrupolar Hamiltonian (23) with I = 1 considering the correlation
(top) and the expectation value (bottom) of the x component. The
parameters are set to η = 0.5 and h = √

6q. The TWA results are
averaged over 106 configurations drawn from normal distributions.

interaction. The prefactor nicely captures the fact that no local
bilinear terms occur for I = 1/2.

As a generic example, we apply the two SU(2) TWA ap-
proaches and the SU(3) TWA to the quadrupolar Hamiltonian

Ĥquad = q
[(

3Î2
z − I2

) + η
(
Î2
x − Î2

y

)] + h · Î (23)

with h = h√
3
(1, 1, 1)T and I = 1. The specific equations of

motion based on Ref. [22] are given in Appendix A. The
results are shown in Fig. 2 for the parameters η = 0.5, and
h = √

6q. The energy scale is q and thus the time scale is
given by 1/q since we set h̄ to unity for simplicity. One
clearly sees that the SU(2) TWA without and with prefactor
rather quickly deviate from the exact quantum mechanical
results for the autocorrelation 〈Ŝx(t )Ŝx(0)〉 as well as for the
expectation value 〈Ŝx(t )〉. The prefactor derived by Fischer
et al. yields some improvement, but only for very short times.
But the extended TWA, here SU(3) TWA, yields a perfect
match to the quantum mechanical results as expected for
I = 1. This supports the chosen approach.

This idea can be further extended to a SU(4) TWA required
for a spin I = 3/2 and generally to SU(2I + 1) TWA for spin
I . For our model, we need I = 3/2 so that we focus on this
case. Figure 3 depicts the comparison of various approaches
for the simple Hamiltonian

Ĥsimpl = q

2
(Îz2 − 2Îz ) (24)

for I = 3/2. The lengthy equations of motion for 15 observ-
ables can be found in Appendix B. The details of the extension
to SU(4) are explained in the Supplemental Material [52].

The extended TWA approaches are applied to the central
spin model supplemented by nuclear quadrupolar interactions.
For the simple model (A) for the potential V , the equations of
motion for both the SU(2) TWA and the SU(4) TWA are set
up and simulated. In these simulations, we observe, see below,
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FIG. 3. Comparison of SU(2) TWA, SU(3) TWA, and SU(2)
TWA including the additional prefactor (denoted “w/pref.”), and
the quantum mechanical result (denoted “quant. mech.”) for the
quadrupolar Hamiltonian (24) with I = 3/2 considering the corre-
lation (top) and the expectation value (bottom) of the x-component.
The TWA results are averaged over 106 configurations drawn from
normal distributions.

that there is only a factor between the results from SU(2) TWA
and the SU(4) TWA so that one does not need to redo all
calculations with SU(4) TWA. For the stochastic model (B)
for the potential V the runtime is significantly larger due to
the increased number of dynamic variables to be followed.
Thus, only the SU(2) TWA is simulated in this case because
these results are sufficient to draw conclusions up to the above
mentioned factor.

For the simple model (A) for V given in (14), the equa-
tions of motion for the nuclear spins are given by

d

dt
Ik = (AkS + hn + bQ,k ) × Ik , k ∈ 1, . . . , N (25)

in SU(2) TWA according to Eq. (17). The vector bQ,k is
given by

bQ,k = 2|e|Q
I (2I − 1)

⎛
⎝aIx,k

bIy,k

cIz,k

⎞
⎠. (26)

The equations of motion for the central spin do not change.
We use the relation

qk = 2|e|Q
I (2I − 1)

a (27)

between the quadrupolar interaction strength qk and the pa-
rameter a.

For the SU(4) TWA, we first reexpress the Hamilto-
nian with the extended number of observables Xj with j ∈
{1, 2, . . . , 15}, see the Supplemental Material [52],

Hquad =
N∑

k=1

|e|Qa

6I (2I − 1)
[4X8,k + 8/

√
5X15,k + 51]. (28)

Using this Hamiltonian and Eq. (21), the equations of motion
given in the Supplemental Material [52] are obtained. The qk

are defined as before.

For the stochastic model (B) for V for the SU(2) TWA,
Eq. (13) again yields Eq. (25) with the vectors bQ,k given by

bQ,k = 2qk
[(

Ik · nz
k

)
nz

k + ηk

3

((
Ik · nx

k

)
nx

k − (
Ik · ny

k

)
ny

k

)]
.

(29)

Random numbers are drawn for the parameters qk , ηk , and
θk according to the distributions computed for Ga and As in
Ref. [27]. The vectors nk are obtained by

nz
k =

⎛
⎝sin(θk ) cos(ϕk )

sin(θk ) sin(ϕk )
cos(θk )

⎞
⎠ , nx

k =
⎛
⎝cos(θk ) cos(ϕk )

cos(θk ) sin(ϕk )
− sin(θk )

⎞
⎠ ,

ny
k =

⎛
⎝− sin(ϕk )

cos(ϕk )
0

⎞
⎠ (30)

for which the values ϕ are drawn from an equal distribution in
the interval [0, 2π ].

C. Application of the Pulses

The Larmor precession of the central spin, induced by the
external magnetic field, dephases due to the hyperfine inter-
action with the bath spins [31]. The envelope of the Larmor
precessions is given in the semiclassical description by

Senv(t ) :=
√

[ Sz(t )Sz(0)]2 + [Sy(t )Sz(0)]2, (31)

where the overbar indicates the average over the initial con-
ditions. To remedy the dephasing, laser pulses are applied in
periodic trains to realign the central spins. We call the way
in which these pulses are treated in the present semiclassical
TWA the pulse model. The features of various pulse mod-
els have been investigated before in great detail [19,20,46].
Hence, we adapt the best suited simple pulse model in this
paper. It is simple in the sense that the intermediate excitation
of a trion and its subsequent decay are neglected. We consider
all pulses to be instantaneous. In order to take the quantum
mechanical aspects into account, we interpret each pulse as
a quantum mechanical measurement [19] in which the uncer-
tainty needs to be accounted for. Thus, no perfect alignment
can be reached. The orientation the electron spin directly after
the pulse is given by

Sa = (X,Y, 1/2)T , (32)

where Sa stands for the alignment of the central spin after
application of the pulse. The values X and Y are random
numbers drawn from a normal distribution with μ = 0 and
σ 2 = 1/4 resulting from the quantum mechanical expectation
value 〈(Ŝα )2〉 = 1/4. Their inclusion ensures the quantum
mechanical uncertainty and the correct average length of the
central spin of S2 = 3/4.

D. Numerics

To solve the equations of motion the Dormand-Prince al-
gorithm [53] is used. This is a fifth-order adaptive Runge
Kutta algorithm, which adjusts the step size dynamically. The
required random numbers are generated with the Mersenne-
Twister pseudorandom number generator [54].
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A main difficulty in the numerical simulation of the TWA
equations is the runtime. The required runtime increases
approximately quadratically with increasing magnetic field
and linearly with the number of nuclear spins [19,46]. In order
to mitigate the quickly increasing runtime, we parallelize par-
tial computations by MPI (message passing interface) [55].
The used resources are 1600 cores on a locally available
computer cluster making it possible to run two simulations
at the same time, each using 800 cores. Depending on the
values selected for the parameters the runtime varies strongly.
For one set of data, the simulations take up to several
weeks.

IV. SPIN NOISE

Prior to treating the driven case with the periodic pulse
trains we investigate spin noise, i.e., the spin-spin autocor-
relation of the electron spin in time. No external magnetic
field and no pulses are considered. To gauge our approach
with respect to established properties we first briefly treat the
case without quadrupolar interactions. Then, the influence of
the quadrupolar interaction on the spin-spin autorcorrelation
is studied. Due to the constraints on runtime, it is not possible
to choose the parameters directly relevant for experimental
setups. Therefore, we vary the parameters and discuss what
behavior can be expected upon extrapolation to the experi-
mental regime.

A. Without Quadrupolar Interaction

We investigate the spin noise excluding the quadrupolar in-
teraction for varying values of N keeping either γ = 2/Neff or
rcut constant. In general, due to S = 1/2 all curves start at the
value of 0.25. At short times, the spin bath hardly displays any
dynamics since the individual couplings are small. Then, the
bath can be taken as static, which constitutes the frozen Over-
hauser approximation [31,32,40,41] and the autocorrelation
drops close to zero, but rises again to 〈Ŝz(0)Ŝz(0)〉/3. Then,
at significantly larger times a very slow decay caused by the
dynamics of the nuclear spins sets in [45]. The autocorrelation
may even persist unless there is an infinite number of very
weakly coupled spins in the bath [45,56,57].

The resulting impact for constant γ and varying rcut is
shown in Fig. 4. For a reduced cutoff radius, the long-time
dynamics is described less reliably whereas the minimum at
short times is still rendered faithfully. If γ is reduced and
rcut kept constant, the minimum at the beginning is less pro-
nounced, but the description of the long-time dynamics is
better preserved, see Fig. 5.

In both cases, it can be seen that for a too small num-
ber of nuclear spins of N = 10, there is a huge deviation
in comparison to other results. In particular the red curve
has been obtained by the very efficient and reliable spectral
density approach established in Ref. [45] using Eq. (4). With
a comparable choice of parameters, we reach a very good
agreement of our results with these reference results. Overall,
one has to keep the influence of the choice of parameters in
mind when analyzing the results of subsequent simulations.
Especially, the number N of nuclear spins needs to be chosen
sufficiently large.

FIG. 4. Long-time dynamics at constant γ of 0.01 if N and thus
rcut are varied. Here, I = 1/2 is used for the nuclear spins. We use
AQ = 1 and Bext = 0 T. The autocorrelations are averaged over 105

initial conditions. The red line represents results from Ref. [45]
(denoted “literature”), where the same values and N = 1000 are
used. The result of the frozen Overhauser field approximation [31]
(denoted “froz. Ov. appr.”) is shown in gray for orientation.

B. Simple Model (A) for the Potential V

For the spin noise, we investigate the long-time dynamics
without external magnetic field for the simple model (A) for
V . We start by considering the influence of Qr on the results
from SU(2) TWA as depicted in Fig. 6. The larger Qr is
chosen, the smaller the time TH is at which the autocorrelation
drops below 〈Ŝx(0)Ŝx(0)〉/6. This value is indicated by the
dashed black line in Fig. 6. The guiding consideration is that in
the frozen Overhauser approximation the autocorrelation ap-
proaches 〈Ŝx(0)Ŝx(0)〉/3 for t → ∞. For large isotropic baths
with many weakly coupled spins the autocorrelation vanishes,
but very slowly [45,56,57]. So for any finite quadrupolar
coupling Qr it is this coupling, which breaks the spin symme-
try and implies a noticeable decrease of the autocorrelation.
In quantum mechanical calculations for smaller systems of

FIG. 5. Long-time dynamics at constant cutoff radius rcut =√
10 l0 if N and thus γ are varied. The other parameters are the same

as in Fig. 4.
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FIG. 6. Long-term behavior of the autocorrelation without exter-
nal magnetic field for various values of Qr simulated with a SU(2)
TWA. Note the logarithmic time scale. The values I = 3/2, AQ = 1,
N = 100, and γ = 0.01 are used. Each curve is averaged over 106

initial conditions. In the inset the dependence of TH on Qr is shown
in a double logarithmic plot. The time TH is defined by the instant
when the black dashed line is crossed in the main panel. The inset
clearly indicates a power law with exponent 3/2.

N = 10 spins with I = 3/2 [28] the power law 1/TH ∝ Q3/2
r in

leading order in Qr was found. In the inset, this dependence is
displayed in a double-logarithmic plot. It can be seen that the
power law is fulfilled for small Qr also in our case. For larger
values of Qr, deviations from the leading power law occur.

Next, we compare the SU(2) data to the data computed
from the more accurate SU(4) TWA representation. Figure 7
shows that the behavior is very similar. Indeed, the curve fall
almost on top of each other if the value Qr is rescaled by a
factor of about 1.5. For instance, the curves from SU(2) TWA
at Qr = 0.1 and from SU(4) TWA at Qr = 0.15 agree nicely.

FIG. 7. Comparison of the SU(2) TWA and the SU(4) TWA data
focusing on the long-term behavior of the autocorrelation without
external magnetic field for various Qr . The choice of parameters in
the plot and in the inset is the same as in Fig. 6.

FIG. 8. Comparison of data from SU(2) TWA for various Qr and
Q without external magnetic field. The choice of the parameters in
the plot and in the inset is the same as in Fig. 6.

Furthermore, the results for the decay times TH from SU(4)
TWA display the same power law Q−3/2

r as before as is to
be expected if a constant factor in Qr maps their results onto
each other. There are, however, also differences. In the curve
from SU(4) TWA at Qr = 0.75, for instance, a weak shoulder
occurs at large times, which is not present in the SU(2) TWA
data. Slight differences in the slope of the curves can be seen
as well.

Finally, the influence of the two measures of the strength
of the quadrupolar interaction Qr and Q is assessed in Fig. 8.
For simplicity, this is done for the quicker approach based on
SU(2) TWA. Qualitatively, in a logarithmic plot similar curves
are obtained, but their long-time tail is shifted by a factor.
Such a shift was to be expected: in the definition of Q, we
use the minimum value of Ak as reference value and the root
mean square of qk . In the definition of Qr, the sum over all
Ak is used and the sum over all qk , i.e., we use an average as
reference value implying a larger value of Qr for the same set
of hyperfine couplings constants.

In the experimental studies of spin noise, mostly the z
component of the spin is investigated [29,58]. However, in the
simple model (A) for V , the quadrupolar interaction does not
influence the z component at all due to its rotational symmetry
about the z axis. This can be seen directly on inserting Eq. (26)
into Eq. (25). The z component of the cross product vanishes
for a = b.

C. Stochastic Model (B) for the Potential V

So far, we assumed the simple quadratic electric potential
(A) for the study of the quadrupolar interaction. Here, we in-
tend to study a more realistic choice for the electric potential,
namely the stochastic model based on previous results [26,27]
on the charge distribution in quantum dots. In the sequel, the
qk are defined differently by a factor of 2 from what we did in
the simple model (A). This allows us to stay consistent with
the definitions used in previous study [28,49].

Figure 9 displays the temporal behavior for four different
Q values. In addition, the previous SU(2) TWA results for
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FIG. 9. Comparison of autocorrelation without external mag-
netic field using the simple model (A) and the stochastic model (B)
V for four values of Q. The SU(2) TWA calculation is used for
efficiency. In the inset the expected power law for the decay time
TH is retrieved. The parameters used are the same as in Fig. 6.

the simple model (A) for V are plotted taking into account
the factor of two between the Q values. The Q value for the
stochastic model is denoted Qb to make a clear distinction
possible. It is related to the previous definition by Qb = Q/2
because of the different definitions of the qk . For all values,
a very similar behavior of the curves resulting from the two
approaches can be observed. The power law of the lifetime
TH ∝ Q−3/2

b is found again. Only a very small shift of the
respective curves and a slightly steeper curve at Qb = 0.25/2
can be discerned.

V. REVIVAL AMPLITUDE

Having established that our approach reproduces the
known effects of weak quadrupolar interactions on spin noise
we pass on and investigate the quadrupolar effects on the
revival amplitude after long trains of periodic pulses. Such
periodic pulsing creates a particular nonequilibrium stationary
state in the quantum dot with a distribution of Overhauser
fields, which takes values favoring a revival of the polarization
of the electron spin as shown in Fig. 10. The increase is often
called the revival amplitude; it is similar to a spin Hahn echo
in NMR. The revival amplitude is defined as value of the
envelope function just before the next pulse

Srev(npT −
rep) = lim

δ→0+
Senv(npTrep − δ). (33)

The occurrence of the revival amplitude can be explained
by NIFF (nuclei-induced frequency focusing) [16–19,47] via
the hyperfine interaction. The periodic realignment of the
central spin by the pulses affects the dynamics of the bath
spins. The distribution of their precession frequencies is es-
sentially given by the distribution of the Overhauser field.
It is being focused on modes of the spin dynamics, which
are commensurate with the pulse repetition rate. When this
condition is fulfilled, pulsing no longer leads to a change in the

FIG. 10. Time dependence of the autocorrelation (blue curve) of
the z component of the central spin and its envelope (orange curve)
according to Eq. (31) as a function of time in units of the repetition
time Trep, i.e., the time between two consecutive pulses. The signal
just before each strong uprise is the revival amplitude.

revival amplitude. A quasistationary nonequilibrium steady
state (NESS) is reached.

A. Without Quadrupolar Interaction

First, the behavior of the occurring revival amplitude is
investigated without the quadrupolar interaction in order to
retrieve known results and to verify the present approach. Be-
cause of the long simulation times, it is not possible to choose
the experimental parameter values. In all calculations without
quadrupolar interaction we use the SU(2) TWA because there
is no need for the extension in absence of local quadratic
terms.

To investigate the revival amplitude we define its relative
value

Srel(np) := Srev(npT −
rep)

Srev(npT +
rep)

, np ∈ N, (34)

where npT −
rep is given by Eq. (33) and npT +

rep analogously, but
with +δ in the argument. The value of Srel saturates after a
certain number of pulses np. However, this saturation value
of the revival amplitude cannot be read off directly from the
data for two reasons. First, the convergence is rather slow, in
particular for large magnetic fields because the simulation up
to a fixed time requires ∝ B steps and the saturation of the
revival amplitude requires ∝ B2 pulses so that in total a cubic
scaling results [46]. Second, there is substantial statistical
noise in the revival amplitude. Therefore, a fit function is used
to determine the respective values, which has proven to be
adequate [20,46],

Sfit (np) = ANIFF
2

π
arctan

(
np

ν

)
+ Boff . (35)

The value Boff describes a statistical offset and the finite value
ANIFF stems from the NIFF [46]. The inverse rate of NIFF is
characterized by the parameter ν [46]. Finally, the saturation
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FIG. 11. Relative revival amplitude (34) in the NESS as a func-
tion of the external magnetic field. Data from Ref. [18] is included
(denoted “literature”). The values I = 3/2, AQ = 1.19, and Trep =
13.2 ns are used because these values are the experimental ones
[17,18]. The data is averaged over 104 initial conditions. A value
of z = 200 is used for the two simulated curves while Ref. [18] used
z = 800. Hence, the magnetic field values of the literature data is
rescaled. The lines are guides to the eye.

value is given by [20]

Sfit,NESS = sign(ν)ANIFF + Boff . (36)

The error of this procedure is determined by the root-mean-
square deviation of the fit. Since we aim at the saturation value
we only consider the last 10 percent of the data points, i.e.,
the data points for the longest computed times to determine
the relative revival amplitude and to estimate the error. These
fluctuations include both the statistical fluctuations and how
well the fit captures the data.

The value of the revival amplitude depends on the mag-
netic field. The saturation values for varying magnetic fields
is shown in Fig. 11 together with results from Ref. [18].
Two sets are displayed, one for N = 100 and Neff = 200 and
one for N = 200 and Neff = 100. The former value for Neff

corresponds to the value used in Ref. [18]. In contrast to the
data in this reference, a value z = 200 is used here instead
of z = 800. This rescaling has the vital advantage to reduce
the runtime significantly since the simulation time required to
approach saturation increases cubically ∝ B3 [46]. The curve
with the same Neff as in Ref. [18] fits very well to the results
of our data if the magnetic external field is rescaled by a factor
of four as in the z factor.

The nonmonotonic dependence of the revival amplitude
as function of the magnetic field shows a broad minimum at
around 0.98 T and a sharp minimum at around 1.95 T. More-
over, there are three maxima at around 0.25 T, 1.75 T, and
2.15 T. The relation of the strength of the revival amplitude
to the distribution of Overhauser fields has been elucidated
in many previous studies [15–18,20]. The origin for the ap-
pearance of this kind of nonequilibrium stationary state is that
the driven dissipative quantum system displays a tendency
towards commensurability of its periodic dynamics. Here the
periodicity of the pumping with pulses, the Larmor precession

of the electron spin, and the Larmor precession of the nuclear
spins are the key players [21].

The distribution of the Overhauser field displays a comb-
like shape with peaks corresponding to integer numbers of
Larmor revolutions of the central spin between two consec-
utive pulses [15–18,20]. The sharper the peaks in the comb
and the better they induce integer numbers of spin revolutions
the stronger the revival amplitude. The occurrence of broad
and sharp minima stems from the commensurability with the
Larmor precession of the nuclear spins induced by their Zee-
man effect. The number n of half-rotations of the nuclear spins
between two consecutive pulses fulfills [18,24]

Bn
min = n

zπ h̄

geμBTR
, n ∈ Z. (37)

Whenever this condition is met the revival amplitude is weak.
It is observed that a half-integer number of nuclear spin rev-
olutions implies a broad minimum of the revival amplitude
while an integer number implies a sharp minimum [20,23].
Since we rescale the factor z for computational efficiency,
these minima occur at smaller magnetic fields than in experi-
ment.

When Neff is halved and N is doubled the revival signal
does not change qualitatively, but there is a change in the
magnitude of the maximum and minimum values of the curve,
see Fig. 11. From previous results, for instance Fig. 11 in Ref.
[18] or Fig. 5.18 in Ref. [46], we know that the quantitative
changes are due to the change of Neff . The larger Neff the
sharper the structures are, e.g., the higher and narrower the
dips are. The precise value of N does not have a particularly
high impact as long as it is not too small, i.e., the cutoff radius
rcut should not be chosen too small.

In conclusion, the model and the employed parameters
reproduce the known results from previous studies well and
thus provide a good starting point for the investigation of the
effects of quadrupolar interactions. In particular, our findings
so far justify to rescale z and thus the magnetic fields down so
that the simulations do not take too long.

B. Revival Amplitude in the Simple Model (A)

We start with a comparison between the results from SU(2)
TWA and from SU(4) TWA as displayed in Fig. 12. The upper
two curves are shifted vertically by 0.05 and 0.1, respectively,
to allow for better comparison. We include the factor of 1.5 in
the value of Q, which was found in the spin noise results in
Sec. IV B to lead to agreement between the results of SU(2)
and SU(4) calculations. It is considered here up to the second
digit. For three data points, the exact factor of 1.5 is used to
show that the small rounding errors do not have any significant
effect. We see that even for the revival amplitudes resulting
from long trains of periodic pulses the SU(2) and SU(4) data
for the rescaled Q values agree very well. Hence, we make
use of this fact and perform the following calculations by the
faster SU(2) TWA. This greatly speeds up the simulations
and thus makes it possible to investigate parameters that are
closer to the experimental ones. However, one should stay
aware of the factor of 1.5 between Q values for the two TWA
approaches.
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FIG. 12. Comparison of the SU(2) TWA and the SU(4) TWA
calculation of the magnetic field dependence of the saturated revival
amplitude for three different values for Q. The values I = 3/2, Trep =
13.2 ns, AQ = 1.19, N = 100, z = 80, and γ = 0.01 are used; each
curve is averaged over 104 initial conditions. The lines are guides to
the eye.

In Fig. 13, curves for more values of Q from SU(2) TWA
are depicted. In all curves the two characteristic minima
can be found at about 0.39 T (broad minimum) and 0.78 T
(sharp dip).

Having established the justifications for our approach, we
turn to the main point of the present study. What is the effect
of the quadrupolar interaction on the revival amplitude, i.e., on
the shape of the revival amplitude as function of the magnetic
field?

For increasing values of Q the dip at 0.78 T becomes
smaller, but simultaneously the curve Srel, NESS(B) becomes

FIG. 13. Magnetic field dependence of the revival amplitude in
the NESS regime for different values of Q computed by SU(2) TWA.
The parameters used are the same as in Fig. 12. The results from
Ref. [18] (“literature”) with z = 800 are included with magnetic
fields rescaled by the factor 0.1 because z = 80 is used in the present
simulations. The lines are guides to the eye.

FIG. 14. Gaussian fits for characterizing the dip at 0.78 T based
on the data from Fig. 13. In the left panel, the circles are fitted by
Gaussians indicated by the solid lines. The cross-shaped symbols are
subtracted from this fit and the resulting values are plotted as trian-
gles in the right panel. Then, these triangles are fitted by Gaussians
indicated by the dashed-dotted lines. The pink horizontal lines in the
right panel indicate the ensuing FWHM.

flatter in total. In order to investigate this behavior in greater
detail, we want to analyze the shape of the dip quantitatively.
A peak would be easier to describe, namely by its position,
its height and its width, e.g., its full width at half maximum
(FWHM). Thus, we interpret the dip as negative peak. For
its analysis, we proceed in two steps. First, we fit the large
uprise between 0.55 T to 0.7 T and between 0.85 T to 1 T by a
Gaussian function in order to determine its shape if there were
no dip. Such fits are shown in the left panel of Fig. 14. Second,
the data points between 0.7 T and 0.85 T are subtracted from
the obtained Gaussian fits. The resulting curves are peaks
by construction shown in the right panel of Fig. 14. So we
analyze them as peaks again by fitting Gaussian to them as
visualized in the right panel of Fig. 14.

The Gaussian fits resulting from the second step provide
height (more precisely depth) and width of the dips. The data
from Fig. 13 is used for the fits together with additional data at
Q = 0.2. This procedure is repeated for other sets of parame-
ters as well. In particular, other scalings of the the z factor and
the corresponding external magnetic field are studied in order
to approach the values relevant for experiment, see the data
listed in Table I.

TABLE I. Different scalings of the real parameters including the
magnetic field, at which the sharp dip occurs, leading to the data
shown in Figs. 15–17. For a smaller scaling factor

√
λ, the values of

the parameters are closer to the experimental values.

√
λ Labels in plot Neff z Bmin,scaled

10 f10 200 80 0.78 T
5 f5 800 160 1.56 T
3.5 f3 1600 226 2.21 T
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FIG. 15. Width of the sharp dip as a function of Q for various
scalings. The values of the parameters are listed in Table I. The other
parameters are those used for Fig. 12.

The results for the width of the dips, determined as FWHM
as in the right panel of Fig. 14, are displayed in Fig. 15
as function of Q for various scaling factors. For the small-
est scaling factor 3.5 the lower values of Q could not be
simulated within reasonable time. For all scaling factors we
observe an almost constant width of the dip, i.e., its width does
not depend significantly on the strength of the quadrupolar
interaction. If the dip were washed out by the quadrupolar
interaction one would have expected an increase of the width
upon increasing Q. Thus, the constancy of the width indicates
that the quadrupolar interaction does not smear out the dip.
In addition, we observe that the width increases if the scaling
factor is approaching unity, i.e., in the limit that the z factor
and thus the magnetic field is approaching the experimental
values.

Next, we study the depth of the dip as determined by
the procedure described above as the height of the peaks
shown in the right panel of Fig. 14. The results are shown
in Fig. 16. They show a clear trend of decreasing depth of the
dips as the quadrupolar interaction Q is increased. This trend
is particularly prominent for small scaling factors, i.e., it is
certainly relevant for experiment. Unfortunately, the runtime
is a major difficulty here, since it already took several weeks
to obtain data for all values of f3. The finding of decreasing
depth agrees with the observation in the curves in Fig. 13 that
the curves of the revival signal become flatter. In Fig. 13, we
observe that not only the depth of the dips decreases but also
the height of the total curve.

We point out that in experiment no absolute values of the
revival amplitudes is measured in experiment. The experi-
mental data is provided in arbitrary units. This implies that
all statements on shape can only be made based on relative
quantities. Therefore, we analyze the relative depth of the
dips, i.e., the depth relative to the height of the total curve.
The latter is determined from the Gaussian fits in the first step
as illustrated in the left panel of Fig. 14 and the smallest value
of the broad minimum of the respective curve. The resulting
data is depicted in Fig. 17 as function of Q. The error bars of

FIG. 16. Depth of the sharp dip as a function of Q. The values
of the parameters for the various scaling factors are listed in Table I.
The other parameters are those used for Fig. 13. The lines are guides
to the eye.

the values are determined using the Gaussian propagation of
uncertainty from the errors of the individual variables.

There are two striking features of the relative depths. First,
they agree fairly well for the shown scaling factors. This
corroborates our approach to scale down the factor z between
the electronic and the nuclear magnetic moment in order to
observe the relevant resonance phenomena at much lower
magnetic fields. Second, we observe that the relative depth
remains essentially constant as function of Q. Again, this
agrees with the above remark that the total curve becomes
flatter with increasing Q while keeping the relation between
minima and maxima constant.

What does this mean for experiment? Figure 15 shows that
the width of the dips does not change strongly upon increasing
Q. The total width does not diverge if we extrapolate to the
experimental numbers, i.e., by reducing the scaling factor to
1 because we know from previous simulations [20,23,25] that

FIG. 17. Relative depth of the sharp dip as function of Q for
various scaling factors; for the corresponding parameters, see Table I.
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FIG. 18. Comparison of the saturated revival amplitude in model
(A) and model (B) as function of the magnetic field for three values of
Q. The data is computed in SU(2) TWA. The curve for Q = 0 = Qb

is also plotted for comparison. The parameters used correspond to
those in Fig. 12. The lines are guides to the eye.

the dips exist for Q = 0 even for large numbers of bath spin
and for experimental values of z. Hence, the weak influence of
Q on the width indicates that the dips persist. This conclusion
is corroborated by the depth. While the total depth decreases
as seen in Fig. 16, the relative depth, i.e., relative to the total
height of the signal, remains essentially constant as seen in
Fig. 17. Hence, in arbitrary units, a relatively sharp feature
should occur in experiment. More precisely, we provide evi-
dence that the quadrupolar interaction is not the cause for a
smearing out of the dips.

C. Revival Amplitude in the Stochastic Model (B)

In a last step, we study the results for the stochastic model
(B) for the distribution of quadrupolar interactions. In this
case, the qk are defined differently than in the simple model
(A) to be consistent with previous definitions [28,49]. As
before in Sec. IV for the spin noise, a factor of two results
in comparison to the definition in the simple model (A).

The magnetic field dependence of the saturation value is
shown in Fig. 18 for two Q values along with the results from
the simple model using SU(2) TWA in both cases. The scaling
factor is 10. Very similar behavior is seen. For a magnetic field
from about 0.2 T to 0.55 T the data coincide very precisely.
For smaller magnetic fields, the revival signal is slightly lower
for model (B) while for larger magnetic fields, it is slightly
higher than for model (A). The relevant behavior around the
sharp dip is very similar. The slightly higher revival ampli-
tudes indicate a depth of the dip, which is a bit larger, but with
essentially the same value relative to the total height of the
figure at about 0.8 T. The two model for V differ greatly so
that the agreement of the data is remarkable.

We conclude that the precise model for the distribution
of the quadrupolar interactions does not matter. This was to
be expected in view of the analogous results for spin noise.
The two models yielded very much the same result if the Q
values were properly scaled. Thus, we are able to transfer the

conclusions obtained for model (A) to model (B), which is
much closer to the experimental situation.

VI. CONCLUSIONS

The goal of this work was to study the effect of quadrupolar
couplings on the revival amplitude observed experimentally
and theoretically in spin carrying quantum dots, which have
been subjected to long trains of periodic pulses. While theory
and experiment agree on the existence of relatively broad
minima arising from a destructive interplay of electron and
nuclear spin precession at half-integer nuclear spin revolutions
there is a discrepancy concerning sharp minima at integer nu-
clear spin revolutions. They occur in simulations, but have not
been observed in experiment. Thus, we have studied whether
the next important quadrupolar interaction, so far neglected in
the theoretical simulations of large spin baths beyond exact
diagonalization [28,29], can reconcile theory and experiment.

In order to be able to simulate sizable nuclear spin baths we
use a semiclassical truncated Wigner approximation (TWA) to
simulate spin baths up to 200 nuclear spins with I = 3/2. This
bath size is still fairly small compared to the experimentally
relevant bath sizes. Thus we rescaled the hyperfine couplings
to keep the experimentally relevant time scales. In addition,
we rescaled the nuclear magnetic moment in order to observe
the relevant dips by lower magnetic fields because the simula-
tion time increases cubically with the magnetic field.

First, we showed that the local quadrupolar dynamics can
be captured exactly by expressing the Hamiltonian as linear
superposition of an extended set of operators. For I = 3/2, an
SU(4) TWA is needed. But we could show that for the issues
of interest here we can stick to an SU(2) TWA if the size of
the quadrupolar interactions are rescaled by a factor 1.5. Also,
we studied two assumptions on the quadrupolar interaction.
Model (A) assumes a very simple quadratic potential while
model (B) draws random values for the quadrupolar inter-
actions from the distributions computed from first principles
[26,27]. Both models yield essentially the same results for
spin noise and revival amplitudes if the proper definitions
are taken into account. [The spin noise from model (A) in
z direction is not generic due to an exact symmetry, but the
transversal spin noise is].

Next, we studied the influence of quadrupolar interactions
on the sharp minima. The width of the sharp dips does not
depend on the value of Q in the range of physically plausible
values for the quadrupolar interaction. But the overall height
of the feature around the sharp dips decreases for increasing
Q. The relative depth, however, i.e., the depth relative to the
total height, does not alter upon changing Q. In this sense,
the dips are not washed out and should be discernible in
experiment.

The question arises why the experiment does not display
the sharp dips: (i) One reason can be that one has not searched
precisely for these dips. If the magnetic field is changed in
large steps it is possible that the dips are missed. (ii) Another
reason can be that the next-leading interaction is responsible.
There is a dipole-dipole interaction between the nuclear spins,
which has been neglected so far because it is weaker by one
to two orders of magnitude [31,32]. But for the saturation of
the revival signal it can still be relevant. It can be included
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by spin DMFT [51]. (iii) The laser pulse orients the electron
spin via the intermediate excitation of a trion. The laser pulse
is often taken to be infinitesimally short. But this is also an
approximation and it was shown [18] that pulses of finite
duration are less effective for large magnetic fields. So this can
also be a factor for the absence of sharp dips in experiment.
We stress, however, that the use of the intermediate trion as
such does not lead to the absence of sharp dips. This effect has
already been considered when simulating NMR spectroscopy
[25]. (iv) We cannot completely exclude that the downscaling
of the bath sizes for the simulations introduces some artefacts.
(v) Any background signal added to the revival amplitude can
make it hard to observe the actual revival amplitudes if these
are not very pronounced.

Summarizing, we showed that the quadrupolar interaction
has a flattening effect on the magnetic field dependence of
revival amplitude. But it does not influence the relative depth
and thus it does not provide a conclusive explanation for the
absence of the sharp dips of NMR spectroscopy in experiment,
at least not as sole effect. Further research in theory and in
experiment are certainly called for to resolve this issue.
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APPENDIX A: EQUATIONS OF MOTION FOR ĤQUAD

WITH SU(2) TWA AND SU(3) TWA

The equations of motion for the Hamiltonian

Ĥquad = q
[(

3Î2
z − I2) + η

(
Î2
x − Î2

y

)] + h · Î, (A1)

which is investigated in Fig. 2, are given by

d

dt
I =

⎡
⎣ pf

⎛
⎝ 2q(η − 1)Ix

2q(−η − 1)Iy

4qIz

⎞
⎠ + h√

3

⎛
⎝1

1
1

⎞
⎠

⎤
⎦ × I (A2)

using the SU(2) TWA, where pf = 1 for the version without
additional prefactor and pf = 1/2 when the prefactor derived
in Ref. [49] is included.

For the SU(3) TWA, the matrices and values for fαβγ from
Ref. [22] are used. This results in the Hamiltonian

HSU(3)
W = q

[
(η − 1)

(
1

3

(
21 +

√
3

2
X8

)
+ 1

2
X4

)

− (η + 1)

(
1

3

(
21 +

√
3

2
X8

)
− 1

2
X4

)

+ 2

(
1

3
(21 −

√
3X8)

)]

+ h√
3

(X1 + X2 + X3). (A3)

With Eq. (21) the equations of motion follow

∂

∂t
X1 = h√

3
(X3 − X2) + qX7(η + 3), (A4a)

∂

∂t
X2 = h√

3
(X1 − X3) + qX6(η − 3), (A4b)

∂

∂t
X3 = h√

3
(X2 − X1) + qX52η, (A4c)

∂

∂t
X4 = h√

3
(−2X5 − X6 − X7), (A4d)

∂

∂t
X5 = h√

3
(2X4 + X6 − X7) − qX32η, (A4e)

∂

∂t
X6 = h√

3
(X4 − X5 − X7 +

√
3X8) − qX2(−η + 3),

(A4f)

∂

∂t
X7 = h√

3
(X4 + X5 + X6 −

√
3X8) − qX1(−η − 3),

(A4g)

∂

∂t
X8 = hX7 − hX6. (A4h)

APPENDIX B: EQUATIONS OF MOTION FOR Ĥsimpl

WITH SU(2) TWA AND SU(4) TWA

The equations of motion for the Hamiltonian Ĥsimpl (24)
are given for SU(2) TWA by

dI

dt
=

⎛
⎝ 0

0
(pf Iz − 1)J

⎞
⎠ × I . (B1)

The SU(4) TWA is explained in the Supplemental Material
[52] where the corresponding matrices and values for fαβγ are
given as well. The Hamiltonian for SU(4) TWA reads

HSU(4)
W = (− 1

3 X8 −
√

4/45 X15 + 5
8 1 − X3

)
J . (B2)

Substituting this and

∂HSU(4)
W

∂X3
= −1J , (B3a)

∂HSU(4)
W

∂X8
= −1

3
J , (B3b)

∂HSU(4)
W

∂X15
= −

√
4/45J , (B3c)

into Eq. (21) yields the 15 equations of motion of the SU(4)
TWA

∂

∂t
X1 = [−1X2(−1) −

√
8/3 X7(−1/3)

−
√

5/3 X14(−1/3) +
√

10/3 X7(−
√

4/45)

−
√

4/3 X14(−
√

4/45)]J, (B4a)
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∂

∂t
X2 = [1X1(−1) +

√
8/3 X6(−1/3)

+
√

5/3 X13(−1/3) −
√

10/3 X6(−
√

4/45)

+
√

4/3 X13(−
√

4/45)]J, (B4b)

∂

∂t
X3 = 0J, (B4c)

∂

∂t
X4 = [−2X5(−1) + 1X5(−1/3) +

√
5X5(−

√
4/45)]J,

(B4d)

∂

∂t
X5 = [2X4(−1) − 1X4(−1/3) −

√
5X4(−

√
4/45)]J,

(B4e)

∂

∂t
X6 = [−1X7(−1) − 2/3 X7(−1/3)

+
√

10/3 X14(−1/3) −
√

8/3 X2(−1/3)

+
√

10/3 X2(−
√

4/45) +
√

5/3 X7

× (−
√

4/45) +
√

8/3 X14(−
√

4/45)]J, (B4f)

∂

∂t
X7 = [1X6(−1) +

√
8/3 X1(−1/3)

+ 2/3 X6(−1/3) −
√

10/3 X13(−1/3)

−
√

10/3 X1(−
√

4/45) −
√

5/3 X6

× (−
√

4/45) −
√

8/3 X13(−
√

4/45)]J, (B4g)

∂

∂t
X8 = 0J, (B4h)

∂

∂t
X9 = [−3X10(−1) + 2/3 X10(−1/3)

−
√

5/3 X10(−
√

4/45)]J, (B4i)

∂

∂t
X10 = [3X9(−1) − 2/3 X9(−1/3)

+
√

5/3 X9(−
√

4/45)]J, (B4j)

∂

∂t
X11 = [−2X12(−1) − 7/3 X12(−1/3)

−
√

5/3 X12(−
√

4/45)]J, (B4k)

∂

∂t
X12 = [2X11(−1) + 7/3 X11(−1/3)

+
√

5/3 X11(−
√

4/45)]J, (B4l)

∂

∂t
X13 = [−1X14(−1) +

√
10/3 X7(−1/3)

−
√

5/3 X2(−1/3) + 4/3 X14(−1/3)

−
√

4/3 X2(−
√

4/45) +
√

8/3 X7

× (−
√

4/45) −
√

20/3 X14(−
√

4/45)]J, (B4m)

∂

∂t
X14 = [1X13(−1) +

√
5/3 X1(−1/3)

−
√

10/3 X6(−1/3) − 4/3 X13(−1/3)

+
√

4/3 X1(−
√

4/45) −
√

8/3 X6

× (−
√

4/45) +
√

20/3 X13(−
√

4/45)]J, (B4n)

∂

∂t
X15 = 0J. (B4o)

For the initial conditions, random numbers are drawn from
Gaussian distributions. The mean and the variance of this
Gaussian distribution is given by μ = 0 and σ 2 = 5/4 for
the calculation of the correlation 〈Î x(t )Î x(0)〉. To calculate
the expectation value 〈Î x(t )〉, we draw random numbers from
a multivariate Gaussian distribution with mean values and
covariance matrix determined from the equations

μi = 〈s|X̂i|s〉 , (B5a)

�i j = 1
2 〈s|(X̂iX̂ j + X̂ j X̂i )|s〉 − μiμ j , (B5b)

where X̂i is one of the 15 matrices of SU(4) TWA.
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