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Tunable Bose-Einstein condensation and rotonlike excitation spectra with dipolar
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We develop the many-body theory of dipolar exciton-polaritons in an optical microcavity in crossed out-
of-plane electric and in-plane magnetic fields. Even for relatively weak fields, we reveal the existence of two
minima in the bare lower-polariton dispersion, which give rise to the tunable transition between the polariton
Bose-Einstein condensate and that of excitons, produced by the competition between these minima. We predict
that such dipolar condensate exhibits a roton-maxon character of the excitation spectrum, never before observed
for polaritons. We show that upon the transition between the two condensation regimes, the weak correlations
in the polariton gas give way to the intermediate interparticle correlations characteristic for excitons, and that
the transition is accompanied by a sharp quenching of photoluminescence as the lifetime is increased by several
orders of magnitude. While in the polariton regime, the luminescence peak corresponding to the condensate is
shifted to a nonzero angle. The angular dependence of the two-photon decay time in the Hanbury Brown and
Twiss experiment is calculated and used as a tool to evidence the formation of the macroscopically coherent state.
Our proposal opens opportunities towards manipulating the superfluid properties and extended-range dipole-
dipole correlations of exciton-polariton condensates.
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I. INTRODUCTION

Dipole-dipole interactions are key to a variety of many-
body phenomena and various phases, both in Fermi and
Bose gases, at temperatures low enough to achieve quan-
tum degeneracy. Dipolar ultracold-atomic systems have been
shown to exhibit superfluid p-wave Cooper pairing [1,2],
rotons [3,4], Mott-insulator and checkerboard phases [5,6],
and supersolid formation [7–9]. While such gases are weakly
interacting compared to liquid helium, their interactions are
controllable by means of Feshbach resonance [10] or external
off-resonance laser fields [3]. In either of the cases, the ori-
gin of formation of such exotic states lies in the momentum
dependence of the interparticle interaction, which results in
the roton-maxon spectrum of excitations [11–13]. To this end,
it is a general physical phenomenon that should be present
in any interacting gas with an extended-range momentum
dependence of the scattering amplitude.

In this context, another type of systems where interactions
can be manipulated using external fields has been considered:
that of excitons [14] and exciton-polaritons [15]. The exciton,
a neutral bound state of an electron and a hole in a semicon-
ductor, due to its fermionic components can be made dipolar
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by applying electric field, which makes exciton gases easily
tunable, both with respect to interactions and their lifetime
[16,17]. The appearance of the dipole moment brings to cold
exciton gases a plethora of many-body phenomena, including
roton instabilities [18,19], supersolidity [20], density waves
[21], and other phases [22]. Accounting for the particle spins
was at the same time shown to change the dynamics of
excitonic droplets in real space [23]. The exciton-polariton,
a hybrid quasiparticle resulting from quantum-well excitons
coupling to photons in an optical microcavity, possesses ad-
ditional degrees of freedom, such as the Rabi splitting, the
photon-exciton energy detuning, and pseudospin. Compared
to helium [24], atoms [25], and excitons [26–28], the polari-
ton Bose-Einstein condensation (BEC) occurs at much higher
temperatures [29] due to extremely light effective mass inher-
ited from cavity photons. The exciton component, on the other
hand, provides polaritons with interactions. Yet, bringing the
dipolar exciton physics to quantum-degenerate polariton sys-
tems has failed so far: due to the increased electron-hole
separation, indirect excitons suffer from the quench of the os-
cillator strength, hence their Rabi coupling to light is reduced.
As such, while dipolar polaritons (dipolaritons) have been
observed both in GaAs coupled quantum wells (QWs) [30]
and, more recently, in MoS2 homobilayers [31,32] by means
of hybridizing them with the direct exciton, the realization of
dipolar polariton BEC remains elusive. The rotonization of
polariton excitation spectrum has nevertheless been theoret-
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ically discussed, in the context of coupling the system to a
two-dimensional (2D) electron gas [33,34], coherent acoustic
wave [35], and accounting for their spin degree of freedom
[36].

Here, we consider a different setting to study dipolariton
Bose condensation and excitation spectrum. In particular, in-
stead of focusing on double-layer systems like coupled QWs
or transition-metal dichalcogenide bilayers, we demonstrate
that the strong-coupling regime can be preserved in a wide
single QW embedded in a microcavity, in the presence of
relatively weak out-of-plane electric fields (so as to create the
exciton dipole, at the same time not precluding the polariton
BEC formation). Notably, the BEC of dipolar excitons (with-
out coupling to light) in such wide QWs has previously been
realized [26]. Furthermore, we show that a fine control over
the single-particle dispersion, interparticle interactions, and
excitation spectrum can be acquired when one additionally
applies magnetic field directed in the QW plane [a schematic
illustration is provided in Fig. 1(a)]. The influence of mag-
netic field on electrically charged constituents of excitons
or exciton-polaritons and their polarization has been studied
both experimentally [37–44] and theoretically [45–48]. The
Lorentz force acting on the electron and hole breaks both
the time-reversal and space-inversion symmetries; as a re-
sult, the exciton momentum becomes an irrelevant quantity,
giving way to magnetic momentum as the new integral of
motion. In out-of-plane magnetic field, there is a possibility
of magnetoexciton formation due to the competition of the
exciton hydrogenlike energy states with the magnetic-field
Landau levels [45–47]. When the magnetic field has an in-
plane component, the paraboloid exciton dispersion p2/2mex,
whose intersection with the light cone is dictated solely by
the exciton effective mass mex, shifts to ∝(p − p0)2, where
the displacement momentum p0 lies in the plane of the QW
perpendicularly to the magnetic field and is defined via the
product of the field strength and the exciton dipole moment
[37,38,48].

The aim of this work is to study the quantum-coherent
properties of wide-QW dipolaritons in crossed (out-of-plane
electric and in-plane magnetic) fields, where the described
effect of the fields on the exciton dispersion is combined with
strong coupling to the electromagnetic mode inside the cavity.
Our theory predicts the existence of two minima on the lower
branch of the polariton dispersion, which can be tuned at
fixed field strengths by a purely polaritonic control parame-
ter, namely, the photon-exciton detuning. When macroscopic
occupation of the ground state (now differing from p = 0) is
considered, we show that the competition of these two minima
in energy brings about remarkable effects. In particular, the
transition between the polariton and exciton BEC regimes
(and vice versa) is achieved by tuning the system parameters
and is accompanied by suppression of losses by several orders
of magnitude. It is worth noting that birefringent media with
electric-field control may result in the appearance of two
tunable minima when the polariton spin degree of freedom
is considered [49]. In that case, the change of external bias
alters the dispersion of orthogonally polarized photon modes,
and the Rashba-Dresselhaus spin-orbit coupling gives rise to
the splitting of the dispersion minimum in two. In our case,
however, it is the exciton component of the polariton that

FIG. 1. (a) Schematic representation of a wide QW of the width
L in crossed electric and magnetic fields inside a microcavity (not
in scale). (b) Electron (blue) and hole (yellow) wave functions (the
left axis) in a 30-nm GaAs QW according to the solution of Eq. (7)
at E = 5 kV/cm, B = 0, L = 30 nm, and their product (the right
axis, dashed black line) dependent on the out-of-plane coordinate z.
(c) Left axis: the out-of-plane Iz(E ) overlap integral (dotted lines) and
the Rabi splitting h̄�0 (solid lines) dependent on the electric field E
at B = 0, normalized to their values at E = 0. The blue and red lines
correspond to the QW width L = 20 and 30 nm, respectively. Right
axis: the exciton dipole length d/e versus electric field E . The solid
line for L = 30 nm, the dashed line for L = 20 nm. The black arrows
denote the fields and the Rabi splitting values corresponding to the
dipole length of 9 nm.

is responsible for the dispersion modification in the external
magnetic field. We show that the reported transition between
the two BECs displays features of a first-order phase transi-
tion. For both regimes, the spectrum of elementary excitations
is asymmetric and features pronounced, controllable roton
minima. We address the exciton features, such as interparticle
correlations [50–52] and extended range of the dipole-dipole
pair potential [52,53], and, on the other hand, the polariton
specifics, in particular the absense of Galilean invariance [54],
nonparabolicity of the dispersion, and the presence of the
momentum-dependent Hopfield weights in the two-body and
many-body interactions. We discuss the implications of the
absence of central symmetry and parity with respect to mo-
mentum, and provide the conditions of the system stability.
Finally, we calculate the two-photon coherence in the Han-
bury Brown and Twiss (HBT) setting [55,56] and outline the
means to evidence the dipolariton BEC formation.

195304-2



TUNABLE BOSE-EINSTEIN CONDENSATION AND … PHYSICAL REVIEW B 108, 195304 (2023)

The paper is organized as follows. In Sec. II, we introduce
the system, solve the dipolar exciton eigenvalue problem in
crossed fields, and discuss the influence of the electric field on
the exciton dipole moment and the strength of their coupling
to light. We derive the effective Hamiltonian dressed with
extended-range exciton-exciton interactions, obtain the bare
polariton dispersion, and analyze its shape dependent on the
control parameters of the system. In Sec. III, we develop
the Bogoliubov apparatus accounting for the fact that the
ground state (and hence the macroscopically occupied state)
of the system corresponds to a nonzero in-plane momentum
and study the nature of the transition between the two BEC
regimes. Section IV is devoted to calculation of various cor-
relators, such as the polariton occupation number and their
one-body density matrix, the momentum-frequency distribu-
tion of excitations, and the condensate fraction in the system.
The anomalous Green’s function, luminescence intensity dis-
tributions, and two-photon HBT coincidence experiment are
discussed in Sec. V. Section VI summarizes our findings. The
details of some derivations are provided in Appendixes A, B,
and C. Appendix D is devoted to the description of the phase
transition upon changing the detuning instead of density.

II. WIDE-QUANTUM-WELL DIPOLARITONS

The starting point of our discussion is the Hamiltonian of
wide-QW excitons interacting with light in presence of static
in-plane magnetic field Bex and out-of-plane electric field
−E�ez [see the sketch in Fig. 1(a)]:

Ĥ =
∑

p

EpQ̂†
pQ̂p +

∑
p

h̄ωpĉ†
pĉp + 1

2

∑
p

[h̄�pQ̂†
pĉp+ H.c.]

+ 1

2

∑
p,q,q′

U0(p, q, q′)Q̂†
qQ̂†

q′Q̂q′+pQ̂q−p. (1)

Throughout the paper, we will use the arrowhead notation
for three-dimensional (3D) vectors having an out-of-plane
component, while boldface is chosen to denote 2D vectors
on the (x, y) plane. In Eq. (1), Q̂p is the annihilation op-
erator of an exciton with the in-plane momentum p, wave
function φp(�re, �rh), and dispersion Ep which we define below
[�re(h) ≡ {re(h), ze(h)} are the electron (hole) 3D position vectors
within the QW, see Fig. 1(a)]. The annihilation operator of a
cavity photon with the momentum p is denoted as ĉp, with the
single-particle dispersion h̄ωp = (E2

ph + p2c2/ε)1/2 ≈ Eph +
p2/2mph, where Eph is the cavity ground state and mph =
Ephε/c2 denotes the photon effective mass, c is the velocity
of light in vacuum, ε the dielectric constant of the medium.
Summation over the polarization (spin projection) index is
omitted, as we consider here only the mode in which the
resulting polaritons experience Bose condensation.

The third term in (1) describes the light-matter coupling
with the Rabi splitting

h̄�p =
∣∣∣∣∣Eg

√
8π

εh̄ωpS
(�ep�dvc)

∫
d�red�rheip·r/h̄ϕ(z)

×φ∗
p (�re, �rh)δ(�re − �rh)

∣∣∣∣∣, (2)

where Eg is the semiconductor gap energy, S is the area of
quantization, �ep is the polarization vector, �dvc is the interband
dipole moment, and ϕ(z) is the photon wave function quan-
tized in the z direction. The last term in (1) describes the bare
direct pair interaction of excitons, with the Fourier image

U0(p, q, q′) =
∫

d�red�rhd�sed�shU0(�re, �rh, �se, �sh)

× φ∗
q (�re, �rh)φ∗

q′ (�se, �sh)φq′+p(�re, �rh)φq−p(�se, �sh),
(3)

where U0(�re, �rh, �se, �sh) is the potential of direct Coulomb
interaction of an electron and a hole belonging to different
exciton species. The derivation of this Hamiltonian from the
electron-hole picture, accounting for interaction of the system
with electromagnetic field inside a microcavity, is provided in
Appendix A.

A. The exciton eigenvalue problem

The main interest of the Hamiltonian (1) prior to its di-
agonalization is represented by the exciton single-particle
dispersion Ep and wave function φp(�re, �rh) in crossed
fields. They are defined from the eigenvalue problem
Ĥ0(�re, �rh)φp(�re, �rh) = Epφp(�re, �rh), with

Ĥ0 = Eg + [−ih̄ �∇e − (eBze/c)ey]2

2me
+ We(ze) − eEze

+ [−ih̄ �∇h + (eBzh/c)ey]2

2mh

+ Wh(zh) + eEzh − e2

ε|�re − �rh| , (4)

describing the relative motion of the electron and hole inside
an exciton. In (4), me(h) is the electron (hole) effective mass,
e their charge modulus, We(h)(z) denotes the QW potential for
the electron (hole) (here assumed to have the shape of square
wells of the width L), and the vector potential describing
the magnetic field is chosen in the shape AB(z) = −Bzey. As
already noted, the Hamiltonians of the type (4) do not con-
serve the exciton center-of-mass (c.m.) momentum. Instead,
the operator of “magnetic momentum” now commutes with
the Hamiltonian [38,45,46]: in the chosen gauge for AB, it

is given by �̂P = −ih̄ �∇c.m. + (e/c)B(ze − zh)ey. We recognize,

however, that the extra term in �̂P is dependent only on the
z coordinates (while directed along the y axis), hence upon
separating the motion in the QW plane in (4), the in-plane
momentum of the exciton c.m. p becomes a good quantum
number.

To calculate φp and Ep we employ the variational method,
similar to the one used in Ref. [57] for bulk GaAs excitons. In
particular, we separate in φp the plane wave exp{ip · r/h̄} of
the c.m. motion, and for each p we minimize the functional

F [φp(�re, �rh)] ≡ Fp(kx, ky; λ) =
∫

d�red�rhφ
∗
pĤ0φp (5)

over the variational ansatz

φp = eip·r/h̄

√
S

eik·�/h̄ 2λ√
2π

e−λ
 fe(ze, py, ky) fh(zh, py, ky), (6)
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where r = (mere + mhrh)/mex is the exciton c.m. position and
� = re − rh is the relative in-plane coordinate of the electron
and hole, while k = {kx, ky} and λ are the variation param-
eters. The functions fe(h)(z, py, ky) correspond to the ground
state of the Schrödinger equation for a single electron (hole)

{
− h̄2∂2

zz

2me(h)
+ e2B2z2

2me(h)c2
+

[
∓e

(
E + Bpy

mexc

)
− eBky

me(h)c

]
z

+ We(h)(z) − Ee(h)(py, ky)

}
fe(h)(z, py, ky) = 0, (7)

with the upper (lower) sign corresponding to e (h), eigenen-
ergies denoted as Ee(h), and the normalization condition∫ ∞
−∞ | fe(h)|2dz = 1. We note that the specific choice of gauge

for AB resulted in the one-dimensional equation with respect
to z, whereas the motion in (x, y) plane according to (6) is
given by plane-wave factors.

Equation (7) solution details are provided in Appendix B.
The electron and hole wave functions fe,h(z) are plotted in
Fig. 1(b) for the QW width L = 30 nm at zero magnetic field,
for E = 5 kV/cm. The dipole length calculated as d/e =∫

(ze − zh)| fe(ze) fh(zh)|2dzedzh is plotted dependent on the
electric field in Fig. 1(c) for L = 20 and 30 nm. In the same
panel, we plot the electron-hole overlap integral (in the z
direction) Iz = ∫

fe(z) fh(z)dz, as well as the Rabi splitting
(2), normalized to their values at zero electric field. One sees
that for the 30-nm QW, the transverse dipole length of 9 nm
is achieved already at E = 5 kV/cm which corresponds to
the drop of the Rabi splitting to 56% of its zero-field value
(marked by the black arrow). For L = 20 nm, the 9-nm dipole
is only achieved at a much stronger field E ≈ 34.3 kV/cm
which results in the decrease of h̄�0 by three quarters. It is
due to this reason that we argue that the wide QW should
be considered in order to maintain the oscillator strength and
provide conditions for dipolariton formation and BEC.

For the wave function of the exciton in crossed electric and
magnetic fields, the minimization problem yields

φp(�re, �rh) = eip·r/h̄

√
S

eiq0
y/h̄ 2λ0√
2π

e−λ0
 fe(ze) fh(zh), (8)

with q0 = (eBμeh/c)(z̄e/me + z̄h/mh) [see Eq. (B4)], where
μeh is the electron-hole reduced mass, and the value of λ0

found from the condition maximizing the exciton binding
energy

Eb(λ)=− h̄2λ2

2μeh
+ e2

ε

2λ2

π

∫ ∞

−∞
dzedzhd�

e−2λ
| fe(ze) fh(zh)|2√

2 + (ze − zh)2

.

(9)

Here we took into account that for positive E and B, the exci-
ton dipole moment is positive (d > 0), and that the variational
parameters at the minimum do not depend on momentum
p, being equal kx = 0, ky = q0, λ = λ0. The corresponding
exciton dispersion has the form

Ep = Fp(0, q0, λ0) = EG + (p − p0)2

2mex
, (10)

where p0 = Bdey/c is the displacement momentum, and

EG = Eg + Ee + Eh − B2d2

2mexc2
− q2

0

2μeh
− Eb(λ0) (11)

is the renormalized (in crossed fields) exciton gap. We note
that even though we deal everywhere with the exciton in-plane
c.m. momentum p, the shift of the exciton dispersion (10) by

p0 ⊥ B happens because the magnetic momentum �̂P is the
actual integral of motion.

The minimization problem is solved self-consistently for
each field strengths combination (E , B) in consideration, pro-
viding the exciton spectrum (10) and the wave functions that
are needed to define the Rabi splitting (2) and the exciton
field operator (A4) that are to be used in the Hamiltonian
(1). An example of the shifted exciton dispersion versus py

(the direction of p0) is plotted in Fig. 2(a) by the dashed line
for E = 4.2 kV/cm and B = 3 T. For these field strengths,
the dipole length is d/e = 7 nm. We note that the pres-
ence of the in-plane magnetic field results in the shortening
of the exciton dipole due to the diamagnetic terms ∼B2

in Eq. (7).

B. Dipolariton dispersion in crossed fields

After obtaining the single-particle exciton dispersion (10)
and the wave function (8) in the presence of electric and mag-
netic fields, we can proceed with diagonalizing the quadratic
(kinetic) term in the exciton-photon Hamiltonian (1) and
dressing of the bare exciton interaction. As a result, the Hamil-
tonian of the system in the dressed shape takes the form

Ĥ =
∑

p

(
εLP

p â†
pâp + εUP

p b̂†
pb̂p

) + Ûex, (12)

where âp = XpQ̂p +
√

1 − X 2
p ĉp, b̂p = −

√
1 − X 2

p Q̂p + Xpĉp

are the annihilation operators of the lower (LP) and upper
(UP) polaritons, respectively,

εLP
p = Ep + 1

2 [h̄ωp − Ep −
√

(h̄ωp − Ep)2 + (h̄�p)2] (13)

and εUP
p = Ep + h̄ωp − εLP

p are their respective dispersions.
The exciton Hopfield coefficient is given by

X 2
p = 1

1 + [
�p/(h̄�p) −

√
�2

p/(h̄�p)2 + 1
]2

, (14)

where �p = h̄ωp − Ep is the detuning between the cavity
photon and the exciton dispersions at the in-plane momentum
p. The last term in (12) denotes the dressed exciton-exciton
interaction (see Appendix C) expressed via the LP particle
operators âp and â†

p.
We note that since the Rabi splitting h̄�p (2) depends on

the applied external fields via the exciton wave function, the
Hopfield coefficient (14) becomes also dependent on E and
B. Furthermore, due to the displacement of the exciton disper-
sion Ep at B �= 0 with respect to the minimum of the photon
dispersion h̄ωp, the LP dispersion given by Eq. (13) shows a
competition of the two minima appearing due to hybridiza-
tion. An example of such a dispersion is plotted versus py (at
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FIG. 2. (a) Single-particle dispersions of excitons [according
to Eq. (10), the dashed lines marked “X”] and lower polari-
tons [Eq. (13), the blue solid lines marked “LP”] versus py at
px = 0 in a wide QW (L = 30 nm) in the out-of-plane electric
field E = 4.2 kV/cm and in-plane magnetic field B = 3 T, with
the photon-exciton detuning � = 10 meV. The gray-shaded region
marks momenta lying outside the light cone of the material (for
GaAs, qrad ≈ 3.53EG/c). The inset shows the magnified view of
the near-zero region, revealing the polariton minimum shifted from
p = 0. (b) Full view of the two polariton branches, where “C” de-
notes the cavity photon dispersion h̄ωp and “UP” the upper-polariton
dispersion. (c) Diagram of existence of the two minima in the LP
dispersion dependent on B, E , and the detuning �. Dark blue: only
one (polariton) minimum; light blue: two minima with the polari-
ton minimum deeper than the exciton minimum; pink: two minima
with the exciton minimum deeper; red: only one (exciton) minimum
present. The yellow mark indicates the parameters of (a) and (b). The
green mark indicates the parameters of Fig. 4. For all panels, the Rabi
splitting in the absence of the fields h̄�0 = 6 meV.

px = 0) in Figs. 2(a) and 2(b) for E = 4.2 kV/cm, B = 3 T,
and �p=0 ≡ � = 10 meV. One sees two pronounced minima,
near p = 0 and near p = p0, both slightly shifted from these
respective values (see the inset of Fig. 2). Since p0 is directed
along ey, the obtained polariton dispersion is neither centrally
symmetric nor even (with respect to momentum), but there is
a symmetry with respect to px inversion. It is worth noting that
the scale of the vertical axis in Fig. 2(a) and the difference in
depth of the two minima is of the order of fractions of meV
since the exciton dispersion compared to the photon one is flat
[mex � mph, see Fig. 2(b)]. However, the temperatures that
we consider (∼1 K) and the positive detunings � > h̄�0 pro-

vide long particle lifetimes, good thermalization, and narrow
linewidth. Furthermore, in wide QWs in weak electric fields
effects of disorder are suppressed [17,58,59]. Therefore, given
the sample quality is high enough, the dipolariton dispersion
reported in Fig. 2(a) should be observable.

To investigate the existence and the competition of the two
minima in the LP dispersion, we plot a diagram in the param-
eter space (B, E ,�) in Fig. 2(c) which shows the field values
at which the second minimum appears in the lower-polariton
spectrum (light-blue region). One sees that there are minimal
values of the field strengths Emin, Bmin independent of � that
are required to reach the regime where the LP dispersion
starts to soften around p0. Still higher fields are required (here
dependent on �) to reach the regime when the “exciton” min-
imum starts to be deeper than the “polariton” one near p = 0
(pink region). Finally, at high enough detunings and electric
field values, there is a regime when the dispersion features
only one exciton minimum (red region), which corresponds to
the loss of the exciton oscillator strength and the quenching
of the Rabi coupling. Note that since p0 ∼ Bd , with the in-
crease of the field strengths the exciton minimum moves out
of the radiative zone of the material [the gray-shaded area in
Fig. 2(a)].

Since the characteristic energies of the system are of the
order of 0.1–1 meV, while the photon-to-exciton energy de-
tuning in our consideration has the order of 10 meV, such
a system thermalizes during its lifetime [60,61]. Therefore,
both thermal (Boltzmann) and zero-temperature (quantum)
occupations of the UP branch are negligibly small, and it is
justified to assume that the upper polaritons are absent, set
b̂p = 0 in (12), and express the exciton and photon operators
as

Q̂p = Xpâp, ĉp =
√

1 − X 2
p âp (15)

while keeping the bosonic commutation relations [âp, âp′ ] =
0 and [âp, â†

p′ ] = δpp′ valid.

III. BOGOLIUBOV THEORY AND PHASE TRANSITION

Focusing on the BEC regime, it is important to note that
due to the peculiarities of the Hamiltonian (12) and the com-
petition of the two minima in the single-particle dispersion
(13), the macroscopic uniform equilibrium system acquires a
new free parameter: the condensate momentum K. Settling in
either of the two minima at nonzero momenta, the condensate
will be at rest with zero group velocity.

In order to explicitly separate the condensate momentum
in the system Hamiltonian, we define the integral convolution

εLP(−ih̄∇) f (r) = 1

S

∑
k

εLP
K+k

∫
eik·(r−r′ )/h̄ f (r′)dr′ (16)

and the position-dependent function defined via the Hopfield
coefficient

X (r) = 1

S

∑
k

XK+keik·r/h̄ (17)
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which allows us to rewrite the exciton and polariton field
operators [see (15)], respectively, as

Q̂(r) =
∫

X (r − r′)
̂(r′)dr′, (18)


̂(r) = 1√
S

∑
k

âK+keik·r/h̄. (19)

Then after transformations the dressed Hamiltonian of the
system (12) takes its final shape with the explicit dependence
on K via Eqs. (16)–(19):

Ĥ =
∫


̂†(r)εLP(−ih̄∇)
̂(r)dr +
∫

ε0[Q̂†(r)Q̂(r)]dr

+ 1

2

∫
[U0(r − s) − g0δ(r − s)]

× Q̂†(r)Q̂†(s)Q̂(s)Q̂(r)dr ds, (20)

where ε0(nex) is the part of the free energy per unit area
responsible for exciton-exciton interaction (see Appendix C
and Ref. [62] for details), U0 is the pair interaction potential
(C1).

Assuming the presence of macroscopic BEC, we will build
the Bogoliubov theory [63] for lower polaritons in crossed
fields. Given the losses are small (for positive detunings), we
consider the system as macroscopic, spatially uniform, and
in thermal equilibrium (see, e.g., Ref. [64]). In the case of
macroscopic coherence, the operator of the total number of
particles N̂ ≡ ∫


̂†(r)
̂(r)dr ≈ N and the operator of the
condensate mode âK ≈ √

N0 are numbers, hence we express
the polariton field operator and the total polariton density
via the condensate density n0 ≡ N0/S (N0 ≡ 〈â†

KâK〉 is the
number of particles in the BEC):


̂(r) = √
n0 + 1√

S

∑
k �=0

âK+keik·r/h̄, (21)

n ≡ N

S
= n0 + 1

2S

∑
k �=0

(â†
K+kâK+k + â†

K−kâK−k). (22)

We assume that the condensate depletion is small and
expand the Hamiltonian (20) in the zero and first orders in
(n − n0)/n0 [i.e., in the zero and second orders with respect
to the noncondensate operators âK+k (k �= 0)]. Expressing the
condensate density n0 via the total density n using Eq. (22),
we neglect in Ĥ the cubic and quartic terms with respect to
noncondensate operators. In particular, we substitute the field
operator (21) into the kinetic term in (20) and into the exciton
field (18), which is then substituted into interaction part of the
Hamiltonian (20) [see (C4)]. Expanding the function ε0(nex)
in Taylor series around the point nex = nX 2

K, we obtain

Ĥ

S
= εLP

K n + 1

2S

∑
k �=0

[(
εLP

K+k − εLP
K

)
â†

K+kâK+k

+ (
εLP

K−k − εLP
K

)
â†

K−kâK−k
]

+ ε0
(
nX 2

K

) + ε′
0

(
nX 2

K

)
2S

∑
k �=0

[(
X 2

K+k − X 2
K

)
â†

K+kâK+k

+ (
X 2

K−k − X 2
K

)
â†

K−kâK−k
]

+ nX 2
K

2S

∑
k �=0

U (k)
[
X 2

K+kâ†
K+kâK+k + X 2

K−kâ†
K−kâK−k

+ XK+kXK−k(â†
K+kâ†

K−k + âK+kâK−k)
]

(23)

with U (k) = ε′′
0 (nX 2

K ) + U0(k) − g0 being the dressed
exciton-exciton interaction, and ε′

0, ε′′
0 denoting the first

and second derivatives of the function ε0 with respect to its
argument. In derivation of Eq. (23), we took into account that
the Hopfield coefficients Xp and interaction U (p) = U (−p)
are real valued.

Substituting the obtained expression into the free energy,
one finds to the leading (zero) order the momentum K0 of
the condensate at rest. Assuming for simplicity the peri-
odic boundary conditions K = (2π h̄/L)l (here L = √

S is the
system in-plane size) with l ∈ Z2, we define K0 from the
minimization of the free energy per unit area

F = min
K

〈Ĥ/S〉 (24)

over all values of K (i.e., over all values of the integer-valued
2D vector l). Equation (24) accounts for the noncondensate
terms appearing in (23) only up to the zero order, which is
justified in the Bogoliubov approximation. Namely, to find K0

we minimize the function

F (K) = εLP
K n + ε0

(
nX 2

K

)
(25)

over all values of K. The minima of F differ from the minima
of the bare particle dispersion due to the extended range of
interactions that are brought in the system by dipolar excitons.
Derivating Eq. (25) with respect to the full density n, we find
the chemical potential of the system of lower polaritons at a
given K:

μ ≡ ∂F

∂n
= εLP

K + ε′
0

(
nX 2

K

)
X 2

K. (26)

The minimization procedure allows us to find the con-
densate momentum K0 for each E and B depending on the
total density n and detuning �. In Fig. 3(a), we plot an ex-
ample of such a dependence for B = 3 T, E = 5.9 kV/cm,
� = 10 meV (at h̄�0 = 6 meV). Upon changing n at a fixed
detuning, we evidence that the resting (K = K0) superfluid
Bose-condensed system of excitons, due to the energy consid-
erations [according to Eq. (24)] undergoes a transition from its
exciton minimum of the free energy to the polariton one [for
an exemplary dependence of the free energy (25) on K and
details of the transition produced by changing the detuning at
a fixed density, see Appendix D]. The condensate magnetic
momentum K0 upon transiting to the regime of the lower
polaritons BEC changes abruptly by two orders of magnitude:
from 4.937 EG/c below n = 0.7862 × 1010 cm−2 to 0.0389
EG/c at n higher than 0.8027 × 1010 cm−2. The gray-shaded
area in Figs. 3(a) and 3(c) denotes the range of densities in-
between these values, corresponding to the region of transition
(for given values of E , B, and �) where both phases (i.e.
both the polariton and the exciton BECs) are present in the
system, as is characteristic for first-order phase transitions (see
below). We note that the value of the condensate momentum
K0 in the exciton–BEC regime at ε = 12.5 (for GaAs) ex-
ceeds the light-cone radius qrad = EG

√
ε/c = 3.53EG/c. This
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FIG. 3. First-order phase transition from the exciton to the
lower-polariton BEC. (a) Condensate momentum K = K0 (abso-
lute value) across the transition from the exciton–BEC regime
(the yellow line) to the polariton–BEC regime (the red line). At
n = 0.78 × 1010 cm−2 on the exciton side of the transition, K0 =
7595.38 meV/c, while at n = 0.81 × 1010 cm−2, i.e., in the polariton
regime, K0 = 59.85 meV/c. (b) Pressure against total density across
the transition, for different detunings (as given in the legend). The
dashed lines indicate the pressure when in the exciton–BEC and
polariton–BEC regimes, while the region between them corresponds
to coexistence of the two phases. The inset shows a magnified view
of the dependence p(n) in the vicinity of the transition for � =
10.0 meV. (c) Chemical potential μ (left axis) according to Eq. (26)
and condensate fraction n0/n (right axis) across the transition. μ0

indicates the chemical potential of the system at the transition.
(d) Pressure and its derivative with respect to chemical potential
versus μ − μ0. While the pressure is continuous at the transition, its
derivative exhibits a pronounced discontinuity, indicating the first-
order type of transition. For all panels, B = 3 T, E = 5.9 kV/cm,
d/e = 8.5 nm, detuning � = 10.0 meV [except (b)], h̄�0 = 6 meV
at E = B = 0 and 3.5 meV in the applied E and B. The renor-
malized exciton gap EG = 1538.46 meV. The gray-shaded areas in
(a) and (c) indicate the transition region n ∈ [0.7862, 0.8027] at
� = 10.0 meV.

means that the exciton condensate is optically dark [37,38],
so that it decays mostly nonradiatively, featuring very long
(on the μs scale [17]) lifetimes (see discussion in Sec. V).

In order to investigate the nature of this transition, we
calculate the two-dimensional pressure as p(μ) = −[Fmin −
μn(μ)] which is plotted against the total density in Fig. 3(b)
for different values of �. The chemical potential according to
(26) is plotted for the same values of n in Fig. 3(c). One sees

that for each detuning, there exists a narrow range of densi-
ties corresponding to the coexistense of the two BEC phases
where both the pressure and chemical potential stay constant.
The pressure dependence on μ stays continuous, as shown in
Fig. 3(d). At the same time, the derivative ∂ p/∂μ displays
a jump across the exciton–BEC to polariton–BEC transition,
thus indicating that this is a first-order phase transition, tun-
able by means of total population, detuning, or electric field
(see Appendix D).

Furthermore, we study the excitation spectrum of such a
system, its condensate population, and their change across the
considered transition. First, we bring the Hamiltonian (23) to
the traditional Bogoliubov shape convenient for diagonaliza-
tion. To shorten the derivations, we introduce the following
notation:

T (k) = εLP
K+k + ε′

0

(
nX 2

K

)
X 2

K+k

+ U (k)nX 2
KXK+k(XK+k − XK−k), (27)

which allows to define the K-dependent symmetric kinetic
function of momentum [65]

Tk = T (k) − 2T (0) + T (−k)

2
, Tk = T−k, (28)

where k = p − K. Similarly, we introduce the symmetric po-
tential function

Uk = U (k)X 2
KXK+kXK−kn, Uk = U−k, (29)

and the antisymmetric function

Ak = T (k) − T (−k)

2
, Ak = −A−k. (30)

As a result, after transformations the dressed Hamiltonian (20)
is finally rewritten as

Ĥ − μN̂ = 1

2

∑
k �=0

[(Tk + Uk)(â†
K+kâK+k + â†

K−kâK−k)

+ Uk(â†
K+kâ†

K−k + âK+kâK−k)

+ Ak(â†
K+kâK+k − â†

K−kâK−k)] + const. (31)

The noncondensate part can be diagonalized using the Bogoli-
ubov transformation

âK+k = ukα̂k − vkα̂
†
−k, (32)

where α̂k is the annihilation operator of the Bogoliubov exci-
tation with the momentum k �= 0 above the mode K, and the
Bogoliubov amplitudes are given by

u2
k, v

2
k = 1

2

⎛
⎝

√
1 + U2

k

E2
k

± 1

⎞
⎠, Ek ≡

√
Tk(Tk + 2Uk). (33)

After the diagonalization, the Hamiltonian (20) takes the
form

Ĥ − μN̂ = const +
∑
k �=0

εkα̂
†
k α̂k, εk ≡ Ek + Ak, (34)

where εk is the Bogoliubov spectrum of excitations, with the
stability conditions

εk > 0, Tk > 0, Tk + 2Uk > 0. (35)
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FIG. 4. The Bogoliubov spectrum of the system according to
Eq. (34) to the both sides of the transition, with the same parameters
as in Fig. 3. (a) The exciton–BEC excitation spectrum (n = 0.78 ×
1010 cm−2). The two black arrows indicate the symmetric minima
positions on the spectrum. Note that we build the Bogoliubov theory
on top of the condensate with the momentum K0. (b) The red solid
line corresponds to the excitation spectrum of the polariton BEC
(n = 0.81 × 1010 cm−2). The thin blue line shows the single-particle
LP dispersion εLP

p − EG. Inset: The symmetric (Ek, dotted lines) and
antisymmetric (Ak, solid lines) parts of the Bogoliubov spectrum
(34) in the polariton regime (green) and exciton regime (purple). In
(b), K0 lies very close to py = 0, and the horizontal axis represents
the absolute value of in-plane momentum. In the inset and in (a),
momentum is relative to K0.

We plot the excitation spectrum (34) at the detuning
� = 10 meV for the total densities of the polariton sys-
tem n corresponding to the two sides of the exciton–BEC
to polariton–BEC transition in Figs. 4(a) and 4(b). In both
regimes the Bogoliubov spectra of excitations εk are positive
at all momenta (i.e., the system is stable). Furthermore, the
Landau critical velocity for superfluidity vcr = mink(εk/k) >

0 does not turn to zero. We note that vcr is anisotropic and
not even with respect to ky, and stays much lower than the
polariton sound velocity cs = limk→0(εk/k) (which can be
attributed to the high-quality thermalization in the system).
In both BEC regimes, there is a pronounced roton-maxon
effect in the Bogoliubov spectrum of excitations εk. For clar-
ity, the LP single-particle dispersion εLP

p is displayed by the
blue line in Fig. 4(b), revealing the two pronounced min-
ima of approximately the same depth, in agreement with the
minimum-competition diagram in Fig. 2(c) (see the green
mark in the panel corresponding to � = 10 meV). The Bo-

goliubov spectrum in the polariton–BEC regime [Fig. 4(b)]
has a wide softened region along the direction ky, with the
roton minimum depth (at given E , B, and �) defined by the
total particle density. Note that since the condensate momen-
tum K0 in the polariton–BEC regime lies very close to p = 0
[see Fig. 3(a)], we plot the excitation spectrum in Fig. 4(b)
against the absolute momentum projection py. The spectrum
of excitations on top of the exciton BEC [Fig. 4(a)], on the
other hand, is plotted against ky = py − K0. It shows a narrow
dip on the opposite side of the condensate (at K0), which
occurs due to the presence of the polariton minimum in the
LP dispersion. One also notes a symmetrically placed, ex-
tremely shallow minimum on the opposite side of K0 [see the
black arrows in Fig. 4(a)]. The appearance of these features
is dictated by the asymmetry of the function Ak [see (30) and
the inset of Fig. 4(b)]: being substituted in Eq. (34), it results
in the summation of the two functions for ky > 0 and their
subtraction for ky < 0.

IV. CORRELATORS

Knowing the field operator 
̂(r) via Eqs. (21) and (32) and
the system Hamiltonian (34), we can study various polariton
and exciton correlations. In particular, we calculate the polari-
ton occupation number

Nk ≡ 〈â†
K+kâK+k〉 = u2

knk + v2
k (1 + n−k), (36)

where nk = 〈α̂†
k α̂k〉 = 1/(eεk/T − 1) is the Bose distribution

of the Bogoliubov excitations with the temperature T . In a
similar fashion, we calculate the one-body density matrix of
lower polaritons

g1(r) ≡ 〈
̂†(r)
̂(0)〉 = n − 1

S

∑
k �=0

(1 − e−ik·r/h̄)nk

− 1

S

∑
k �=0

(
1 − cos

k · r
h̄

)
v2

k (1 + 2nk) (37)

and their momentum-frequency distribution

N (K + k, ω) ≡
∫ ∞

−∞
eiωt 〈â†

K+k(0)âK+k(t )〉 dt

2π

= N0δk0δ(ω) +
[
u2

knkδ
(
ω − εk

h̄

)
+v2

k (1 + n−k)δ
(
ω + ε−k

h̄

)]
(1 − δk0). (38)

We note that, as one of the main features of the polariton
system in crossed fields, the Bose distribution of excitations
nk, the occupation number Nk given by Eq. (36) and the
momentum-frequency distribution N (K + k, ω) in (38) are
not even functions of momentum. Furthermore, the normal
one-body density matrix g1(r) is complex valued. This oc-
currence is not an artifact of the developed theory, as all
physical quantities calculated from Eq. (37) are real: e.g., the
optical interference signal in the Young experiment [26] for
the central bright fringe contains g1(r) + g1(−r).

To calculate the condensate density, we use the unification
of the Bogoliubov approach with quantum hydrodynamics
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[61,66–69], which yields the expression

n0 = nq exp

⎡
⎣− 1

Nq

∑
k �=0

v2
k (1 + 2nk)

⎤
⎦, (39)

where Nq = N − ∑
k �=0 nk and nq = Nq/S are the quasicon-

densate particle number and density, respectively [in the
theory of Berezinskii-Kosterlitz-Thouless (BKT) transition,
true Bose condensation in 2D is replaced by the quasicon-
densate formation and the appearance of local superfluidity
(see, e.g., [61])]. The result (39) coincides with the prediction
of the Bogoliubov theory n0 = nq − ∑

k �=0 v2
k (1 + 2nk)/S [see

(36)] up to the first order of the exponent expansion [61,68].
Fixing the detuning � = 10 meV, we investigate the behavior
of the condensate fraction n0/n at T = 0 according to (39)
across the transition (dependent on the density). The result
is shown in Fig. 3(c): when going from higher to smaller
densities, the condensate fraction in the system drops from
0.77 in the polariton–BEC regime to 0.49 in the exciton–BEC
regime, at fixed electric and magnetic fields E = 5.9 kV/cm,
B = 3 T and the Rabi splitting h̄�0 = 6 meV (at E = B = 0).
The drop of the condensate fraction while passing to the
exciton regime to less than 50% indicates that the transition
essentially changes the regime of correlations in the system,
from weakly correlated polariton BEC to the intermediately
correlated BEC of excitons.

Fixing the total density of polaritons to n = 1010 cm−2,
magnetic field B = 3 T, and the detuning � = 10 meV in
the polariton–BEC regime, and considering the Bogoliubov
excitations with the spectrum εk as noninteracting non-
quasicondensate particles, we calculate the quasicondensate
density nq = n − ∫

nkdk/(2π h̄)2 varying the electric field
strength E . The temperature at which nq vanishes defines
the critical temperature TBKT of the BKT transition [61].
Figure 5(a) shows both nq and TBKT against E . One notes
that as long as the electric fields are weak enough to ensure
that the polariton minimum of the dispersion is deeper than
the exciton one, the critical temperature stays as high as a
few K. However, as soon as the growth of E results in the
competition of the two minima of the dispersion, the roton gap
becomes small, leading to the quasicondensate density deple-
tion and the quench of the critical temperature. The electric
field E = 5.9 kV/cm that is just below the transition to the
exciton–BEC regime is marked in Fig. 5(a) by the vertical
dotted line. In this borderline case, TBKT = 1.4 K.

Finally, the zero-temperature anomalous Green’s function
of lower polaritons has the form

Fk(ω) ≡ −i
∫ ∞

−∞
eiωt 〈T̂[âK+k(t )âK−k(0)]〉dt

= − h̄Ukn0/n

(h̄ω − Ak)2 − (Ek − i�k/2)2
, (40)

with T̂[. . . ] denoting the chronological ordering operator and
α̂k(t ) = α̂ke−iεkt/h̄ the annihilation operator of an excitation
with the momentum k = p − K in Heisenberg picture. The
decay of excitations �k � 0 which appears from the imagi-
nary part of the anharmonic self-energy [70] is introduced in
the denominator of Eq. (40) by hand, whereas the condensate
fraction n0/n in the numerator appears from a more rigorous

FIG. 5. (a) Critical temperature TBKT (left axis, solid line) and
the quasicondensate density nq (right axis, dotted line) dependent
on the electric field E , at B = 3 T, h̄�0 = 6 meV, � = 10 meV,
n = 1010 cm−2. (b)–(c) The spectral-angular dependence of the PL
intensity according to Eq. (42) for E = 5.9 kV/cm [corresponds
to the vertical dotted line in (a)], T = 1 K, with the energy origin
taken at the level of μ ≈ EG. (b) PL from the Bogoliubov dispersion
(without the condensate contribution): both the normal (thermally oc-
cupied) and the ghost (quantum-occupied) branches of the spectrum
are visible; (c) with the condensate added, zoom-in on the region of
the condensate momentum K0. The shift with respect to normal is
θ0 = arcsin(0.04) ≈ 2.3◦ (marked by the vertical dashed line). The
intensity color scales in (b) and (c) are logarithmic, in arbitrary units,
and normalized to the same quantity for both panels.

derivation in the formalism of unified Bogoliubov theory with
quantum hydrodynamics. The anomalous zero-temperature
Green’s function Fk(ω) is not even with respect to both the
momentum and frequency.

V. PHOTOLUMINESCENCE

In this section, we calculate the photoluminescence (PL)
of Bose-condensed lower polaritons and the two-photon
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signal using the HBT scheme. According to the standard
quantum-field diagrammatic formalism [71], the intensity of
spontaneous emission is defined as

I = V

S

∑
q

∫ ∞

0
dqz ω�q

∣∣Lλ
�q
∣∣2

h̄2

(
1 − X 2

q

)
N

(
q, ω�q − μ

h̄

)
, (41)

where �q = {q, qz} is the 3D momentum of a photon leaving
the cavity, ω�q = c

√
(|q|2 + q2

z )/ε is its frequency, Lλ
�q is the

matrix element of dissipation:

|Lλ
�q |2 = Sh̄2c

V τλ
�q
√

ε
,

with τλ
�q being the decay time of a photon towards the mode

(�qλ), λ is the condensate polarization, S is the polariton system
area, and V → ∞ the volume of quantization. We use the
condition qz > 0 to impose the impenetrability of the bottom
mirror.

Since the renormalized exciton gap EG (≈1.5 eV for
GaAs) is large compared to the energies corresponding to
polariton interaction and their coupling to light (∼meV), one
can assume μ ± ε∓p ≈ μ ≈ EG. Furthermore, considering the
photon decay time independent of �q and λ, namely, τλ

�q ≈ τ0,
one gets after transformations for the intensity of the spec-
trally and angle-resolved luminescence per unit area [see (41)]

I (φ, θ ; ω)

S
= EG

τ0

1 − X 2
q

(2π h̄/qrad )2
N

(
q, ω − μ

h̄

)
. (42)

In (42), the angular dependence enters via the light-cone
boundary qx = qrad sin θ cos φ, qy = qrad sin θ sin φ. Knowl-
edge of the momentum-frequency particle distribution (38)
allows us to calculate the spectral-angular distribution of the
PL intensity (42). As only the polariton–BEC regime is ac-
cessible in luminescence, we address the situation at the verge
of the transition to the exciton–BEC regime (B = 3 T, E =
5.9 kV/cm, � = 10 meV and n = 1010 cm−2) corresponding
to the excitation spectrum in Fig. 4(b). The PL distribution
is plotted in Figs. 5(b) and 5(c) against sin θ (where θ is
the emission angle along the y axis, i.e., qx = 0 ⇔ φ = π/2,
−π/2) for T = 1 K which is just below TBKT for these param-
eters [see Fig. 5(a)]. The intensity distribution displays a clear
asymmetry with respect to normal direction of emission. As
the temperature is very low, one notes that the negative (ghost)
branch of the Bogoliubov dispersion is occupied stronger
compared to the normal (thermal) branch of excitations. Fig-
ure 5(c) shows the magnified view of the low-momenta region.
The shift of the condensate momentum K0 from zero is clearly
seen. We estimate the angle of condensate emission in this
case to be θ0 ≈ 2.3◦ in air.

Integrating (42) over the upper hemisphere and over fre-
quencies, we find the system lifetime τ :

1

τ
=

∫ 2π

0
dφ

∫ π/2

0
sin θ dθ

∫ ∞

0
dω

I (φ, θ ; ω)

nSEG
. (43)

In Fig. 6(a), we plot the lifetime (43) dependent on the total
density n across the transition, revealing the drastic drop of the
radiative recombination rate at the polariton–BEC to exciton–
BEC transition (at the continuous decrease of n, τ changes

FIG. 6. (a) The system lifetime τ across the exciton–BEC to
polariton–BEC transition. The transition region is marked by the
gray-shaded area. (b) Angular dependence of the two-photon decay
time τ2(φ, θ ) of polaritons in the HBT coincidence experiment, the
scheme of which is shown in the inset. Polar angles θ > 0 correspond
to the detector (D1) position at φ = π/2, while θ < 0 corresponds to
φ = −π/2 (see detector D2). The angle θ is counted along the direc-
tion of momentum q (here along y axis), and the angle θ0 corresponds
to the condensate momentum K0 (i.e., sin θ0 = K0/qrad). Parameters
are the same as for Fig. 5, τ0 = 10 ps. For (b), n = 1010 cm−2,
n0/n = 0.72, τ = 450 ps.

from 473 ps to 11 μs). Such a quench of the decay happens
due to the fact that in the exciton regime only the small part
of the momentum space radiates, that which is responsible
for the excitons coupling to light. It is striking that, in the
polariton regime, the system lifetime of a low-quality cavity
(τ0 = 10 ps) even at zero temperature is of the order of hun-
dreds of picoseconds, which justifies our assumption that the
system is in thermal equilibrium.

Next, we consider the signal magnitude for the two-photon
coincidences in the HBT experiment. The two-photon signal
magnitude is defined as the number of photons counted by
the first detector multiplied by the number of photons counted
by the second one (in unit time per one polariton). Assuming
that the two detectors are counting photons over the short-
time window t0 which is still much longer than the excitation
lifetime,

1

τ2
= N (t0) − N (0)

Nt0
, N (t ) ≡

∑
�q,�q′

tr ρHN̂�q(t )N̂�q′ (t ). (44)

Here ρ̂H is the Heisenberg density matrix accounting for
photon leak out of the cavity [71], N̂�q(t ) = ĉ†

�q(t )ĉ�q(t ) is the
Heisenberg operator of number of photons in the mode ( �qλ),
and the summation over �q, �q ′ is performed only over the
photon frequencies and solid angle elements that correspond
to the spatial orientation of the two detectors [see schematic
illustration in the inset of Fig. 6(b)].

Making transformations in Eq. (44) and applying the
Wick’s theorem for the Heisenberg averages 〈. . . 〉H over the
density matrix ρ̂H, we obtain

〈ĉ†
�q(t )ĉ�q(t )ĉ†

�q′ (t )ĉ�q′ (t )〉H = 〈ĉ†
�q(t )ĉ�q(t )〉H〈ĉ†

�q′ (t )ĉ�q′ (t )〉H
+ 〈ĉ†

�q′ (t )ĉ�q(t )〉H〈ĉ†
�q(t )ĉ�q′ (t )〉H
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+ 〈ĉ†
�q(t )ĉ�q(t )ĉ†

�q′ (t )ĉ�q′ (t )〉c
H

+ 〈ĉ†
�q′ (t )ĉ†

�q(t )〉H〈ĉ�q(t )ĉ�q′ (t )〉H.

(45)

Equation (45) contains four terms. The first term, which is
quadratic with respect to luminescence, does not have any
angular distribution and is proportional to t2. In the two-
photon coincidence scheme it can be omitted. The second
term is proportional to t and possesses an angular direction-
ality (∝ δqq′). However, in the case the spatial orientation of
the detector does not correspond to q = q′, this term will
be absent in the signal (44). The third term represents the
connected four-photon vertex which, even while being ∼t ,
does not have any angular directionality (i.e., it only adds
noise to the signal). Finally, the fourth term is also ∼t and
possesses the angular directionality of the form ∝ δq′,2K−q.
Therefore, if the orientation of the detectors is tuned to this
term, it will be the only one contributing to the two-photon
signal (44).

Accounting for the last term in Eq. (45), we obtain the HBT
signal magnitude in unit solid angle

1

τ2(φ, θ )
=

(
1 − X 2

q

)(
1 − X 2

2K−q

)
(2π h̄τ0/qrad )2n cos θ

I2, (46)

with

I2 =
∫ ∞

−∞

dω

2π
|Fq−K(ω)|2 = U2(q − K)n2

0τq−K

2E2
q−K + h̄2/2τ 2

q−K

(47)

and τk = h̄/�k denoting the excitation lifetime. In the
polariton–BEC regime, at small momenta (in the vicinity of
the condensate) it is defined predominantly by the system
lifetime [72]: τk ≈ τ . In the exciton regime, τ can be very
long [as shown in Fig. 6(a)], and for realistic parameters the
radiation channel is not dominant.

In Fig. 6(b), we show the inverse HBT signal magnitude,
plotting the angular dependence of the two-photon decay time
τ2(φ, θ ) [according to (46)] at small angles θ (in the vicinity
of the condensate) in the polariton–BEC regime, i.e., when the
dominant decay channel is luminescence. It is clearly seen that
the signal grows drastically at small θ , with τ2(φ, θ ) reaching
subnanosecond scales and less. When changing the angle, the
signal decreases as τ2(φ, θ ) grows, while still having the order
of nanoseconds. It is noteworthy that not only the angular
change of τ2 is an observable effect but also that the signal (46)
occurs only in the case when the anomalous Green’s function
Fk(ω) is nonzero. Since this happens only when the system
features a Bose condensate, the measurement of the signal
in the HBT scheme can be used as a direct evidence of the
existence of the dipolariton BEC.

VI. CONCLUSIONS

We propose a realization for (quasi)equilibrium long-living
BEC of dipolaritons in a wide single quantum well in an
optical microcavity. By combining the in-plane magnetic
and out-of-plane electric fields, we demonstrate the field-
controlled appearance of the two energy-competing minima
in the particle dispersion, in contrast to both the usual p2/2m
paraboloid and a more sophisticated nonparabolic spectrum of
lower polaritons in the absence of external fields. The energy

competition of these two minima, polaritonic and excitonic,
manifests in the appearance of an abrupt transition from the
polariton BEC to the exciton BEC (and vice versa) upon a
continuous change of one parameter: either the total density
or photon-exciton energy detuning or, alternatively, the elec-
tric field strength. We show that this transition displays the
signature of a first-order phase transition, with the pressure
being continuous while its derivative with respect to chemical
potential experiencing a jump. Under these conditions, the
optically dark exciton mode with microsecond decay times
becomes reachable experimentally.

Furthermore, we developed the many-body theory of
dipolaritons in crossed fields accounting for the combined
effect of the new peculiar dispersion and the extended-
range dipole-dipole interactions. After having obtained the
dressed effective Hamiltonian of the system, we performed the
Bogoliubov diagonalization that reveals two substantially dif-
ferent, anisotropic excitation spectra in the two condensation
regimes, both of them displaying nonsymmetric roton-maxon
softening in momentum regions away from the condensate.
We note that in both regimes, the Bose condensation occurs at
a nonzero in-plane momentum K0, and that the (anisotropic)
Landau critical velocity in all in-plane directions is much
smaller than the sound velocity defined at p → K0.

Our theory, which stitches the Bogoliubov approach with
that of quantum hydrodynamics, accounts for both the lack of
parity and of Galilean invariance in the system, and provides
estimates for all the relevant parameters, such as the con-
densate fraction, momentum-frequency distribution, radiative
lifetime, the BKT transition temperature, and the anomalous
Green’s function. The spectral-angular distribution of the PL
intensity indicates that in the regime of polariton (radiative)
BEC, the main luminescence peak is deviated from normal
direction by a detectable angle θ0, and both the normal and
ghost branches of the dispersion of elementary excitations
are anisotropic. The calculated dependence of the two-photon
decay time using the Hanbury Brown and Twiss coincidence
scheme, in the case when the two detectors are placed sym-
metrically with respect to θ0 along the direction perpendicular
to the applied magnetic field, shows a sharp angular depen-
dence of the HBT signal magnitude.

We hope that this work will stimulate experimental real-
izations of dipolariton BECs, including in crossed fields and
under the conditions of suppressed radiative decay even in
low-finesse microcavities. The controllable transition between
the bright and dark BECs can be used to control photolumi-
nescence and light-matter transport. The presence of a second
(rotonlike) minimum already in the single-particle polariton
dispersion paves the way to on-demand realization of such
long-sought roton-maxon phenomena in the excitation spectra
as the density waves, crystallization, and supersolids.
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APPENDIX A: THE BARE POLARITON HAMILTONIAN
IN THE STRONG-COUPLING REGIME

In this Appendix, we derive the Hamiltonian (1) start-
ing from the electron-hole Hamiltonian in presence of static

in-plane magnetic and out-of-plane electric fields. We as-
sume that the in-plane magnetic field Bex is described
by the vector potential AB(z) = −Bzey, while the out-of-
plane electric field is given by −E�ez. In the effective mass
approximation,

Ĥ =
∫

d�reψ̂
†
e (�re)

[
Eg + 1

2me

(
−ih̄ �∇e + e

c
AB(ze) + e

c
�̂A(�re)

)2
+ We(ze) − eEze

]
ψ̂e(�re)

+
∫

d�rhψ̂
†
h (�rh)

[
1

2mh

(
−ih̄ �∇h − e

c
AB(zh) − e

c
�̂A(�rh)

)2
+ Wh(zh) + eEzh

]
ψ̂e(�rh) + Ĥ ′

eh

+ e2

2ε

∑
i, j=e,h

∫
d�rid�r j

ψ̂
†
i (�ri )ψ̂

†
j (�r j )ψ̂ j (�r j )ψ̂i(�ri)

|�ri − �r j | + Ĥph +
∫

d�r
(

ψ̂e(�r)
iEg

h̄c
�dvc �̂A(�r)ψ̂h(�r) + H.c.

)
, (A1)

where ψ̂e(h)(�r) is the Fermi field operator of an electron
(hole) with the spin projection that participates in the polariton
BEC. The interband dipole moment �dvc = ∫

u∗
v(�r) e�r uc(�r)d�r

is defined by the Bloch functions of the valence uv(�r) and
conduction uc(�r) bands. The field operator of photons

�̂A(�r) =
∑

p

√
2π h̄2c2

εh̄ωpS

[
ĉpeip·r/h̄ϕ(z)�ep + H.c.

] + �̂A′(�r)

(A2)

is taken in the gauge div �̂A(�r) = 0 and is defined via the 2D
photon annihilation operator ĉp and the transverse-quantized
wave function ϕ(z) normalized according to

∫ ∞
−∞ |ϕ(z)|2dz =

1. �ep is the polarization vector corresponding to the mode
which features the polariton BEC.

The Hamiltonian of free electromagnetic field (in the cav-
ity) in the third line of Eq. (A1) is

Ĥph =
∑

p

h̄ωpĉ†
pĉp + Ĥ ′

ph. (A3)

Both (A2) and (A3) contain the summation over discrete 2D
momenta p = (2π h̄/L)j, where L = √

S and j ∈ Z2 is a 2D

integer-valued vector. The terms �̂A′(�r), Ĥ ′
ph, and Ĥ ′

eh contain
the photon modes and polarizations or, respectively, the elec-
tron (hole) fields and spin projections that are not participating
in the polariton BEC and present little interest.

The electron-hole Hamiltonian (A1), when transiting to
the exciton picture, can be simplified using the following
considerations. As Bose condensation occurs only on one
(spontaneously chosen) polarization branch, the occupation
of the photon mode with the opposite polarization is small,
as well as the occupation of noncondensate exciton spin
branches. The interaction of excitons with other, noncon-
densate, cavity modes is negligible [73]. At the same time,
interaction of the condensate particles with all the other inco-
herent excitons present in the system provides in the leading
order of perturbation theory only the blueshift of the exci-
ton chemical potential [61] (i.e., the renormalization of the
semiconductor gap Eg), and does not contribute to the par-
ticle pair interaction [74]. Due to these reasons, the terms
�̂A′(�r), Ĥ ′

ph, and Ĥ ′
eh in Eqs. (A1)–(A3) can be safely omitted.

Furthermore, the intraband interaction of charge carriers with
photons leads to negligible virtual jumps of an electron (hole)
up or down within the corresponding band, hence, in the
first two lines of (A1) containing the intraband single-particle

operators one can set �̂A(�r) = 0.
Since the characteristic energies of the exciton system,

such as the temperature and chemical potential, are small
compared to the energy needed to excite internal exciton
degrees of freedom, in the exciton particle operator we ac-
count only for the center-of-mass motion. Neglecting also the
composite-boson nature of excitons [75] due to the assumed
regime of strong coupling, we can follow the standard second
quantization procedure and truncate the full Hilbert space of
states of the electron-hole-photon system, so as to consider the
subspace corresponding only to the ground state of transverse
quantization and 1s state of the relative electron-hole motion,
as well as to only the condensate cavity photon mode, exciton
spin branch, and photon polarization.

As a result, the Hamiltonian (A1) after some algebra ac-
quires the form of Eq. (1), with the exciton annihilation
operator defined as

Q̂p =
∫

d�red�rhφp(�re, �rh)ψ̂e(�re)ψ̂h(�rh), (A4)

and the electron-hole Coulomb interaction U0(�re, �rh, �se, �sh) in
(3) given by

U0 = e2

ε

(
1

|�re − �se| + 1

|�rh − �sh| − 1

|�re − �sh| − 1

|�rh − �se|
)

.

(A5)

APPENDIX B: ELECTRON AND HOLE WAVE FUNCTIONS
IN CROSSED FIELDS

The Hamiltonian (4) of the exciton eigenvalue problem,
rewritten in terms of the in-plane and z coordinates, has the
form

Ĥ0 = Eg − h̄2

2mex
∇2

r − h̄2

2μeh
∇2

� − h̄2

2me

∂2

∂z2
e

− h̄2

2mh

∂2

∂z2
h

+ ih̄
eB

cM
(ze − zh)

∂

∂ry
+ ih̄

eB

cμeh

mhze + mezh

mex

∂

∂
y
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+ e2B2

2mec2
z2

e + e2B2

2mhc2
z2

h + We(ze) + Wh(zh)

− eE (ze − zh) − e2

ε
√


2 + (ze − zh)2
, (B1)

with μeh = memh/mex denoting the electron-hole reduced
mass. Substituting the ansatz (6) in Ĥ0φp = Epφp yields
Eq. (7) for the electron and hole wave functions in the wide
QW in presence of external fields.

Solution of this equation and the minimization problem (5)
and (6) can be simplified upon consideration of the physical
parameters. For GaAs-based microcavities, the typical parti-
cle (polariton) densities are of the order ∼1010 cm−2. Then,
for py ∼ 2π h̄

√
n and B ∼ 2 T, one estimates the addition

Bpy/mexc to the electric field E in (7) to be of the order
of 0.1 kV/cm. Even for the weakest electric field that we
consider here (E ∼ 5 kV/cm) it does not affect the z profile of
the functions fe,h(z, py, ky) [58]. Therefore, when calculating
the exciton dipole moment d or similar integrals, we may set
py ≈ 0 and fe,h(z, py, ky) ≈ fe,h(z, 0, ky). Then Eqs. (7) yield
immediately

Ee(py, ky) + Eh(py, ky)

= Ee(0, ky) + Eh(0, ky) − Bpy

mexc
d (0, ky), (B2)

where d (py, ky) ≡ e
∫ ∞
−∞(ze − zh)|φp(�re, �rh)|2d�red�rh.

The second consideration is that for wide GaAs QWs, the
realistic electron-hole separation and mass ratio can be esti-
mated as z̄e − z̄h ∼ 12 nm and me/mh ≈ 1/6, where z̄e(h) =∫

ze(h)|φp(�re, �rh)|2d�red�rh is the average electron (hole) co-
ordinate in the growth direction. At the same time, from
numerics one sees that for a single QW in electric field z̄e ∼√

me/mh(−z̄h) is a good estimate [we assume that the coordi-
nate z = 0 corresponds to the center of the QW, as illustrated
in Fig. 1(a)]. Hence, the addition (eB/c)(z̄e/me + z̄h/mh)ky to
the right-hand side of (B2) can be approximately estimated
as 0.03 meV, while the z profile of the functions fe,h(z, 0, ky )
is defined by a much larger value eE (z̄e − z̄h) ∼ 10 meV. It
is therefore justified to restrict our consideration only to the
leading order in the ratio of these two quantities, and take
fe,h(z, 0, ky ) ≈ fe,h(z, 0, 0) when calculating the mean values
z̄e and z̄h. Then

Ee(0, ky) + Eh(0, ky) − Bpy

mexc
d (0, ky)

= Ee + Eh − q0ky

μeh
− Bpyd

mexc
, (B3)

where

q0 = eB

c

∫ ∞

−∞

mhze + mezh

mex
| fe(ze) fh(zh)|2dzedzh (B4)

and Ee = Ee(0, 0), Eh = Eh(0, 0), fe(z) = fe(z, 0, 0), fh(z) =
fh(z, 0, 0).

APPENDIX C: DRESSING OF THE EXCITON-EXCITON
INTERACTION

Using the wave function (8), we can rewrite the last term
in Eq. (1) describing the bare exciton-exciton interaction via

the exciton Bose field operators

Q̂(r) = 1√
S

∑
p

eip·r/h̄Q̂p

and the pair interaction potential [see (A5)]

U0(r − r′) =
∫

d� d�′dzedzhdz′
edz′

hU0(�re, �rh, �r ′
e, �r ′

h)

× |φ(�, ze, zh)φ(�′, z′
e, z′

h)|2, (C1)

where

φ(�, ze, zh) = 2λ0√
2π

eiq0
y/h̄ exp(−λ0

√

2

x + 
2
y ) fe(ze) fh(zh)

(C2)

is the wave function of internal exciton degrees of free-
dom [i.e., φp(�re, �rh) = (1/

√
S) exp{ip · r}φ(�, ze, zh)], which

is normalized according to
∫ |φ(�, ze, zh)|2d� dzedzh = 1.

FIG. 7. Transition from the lower polariton to the exciton BEC
while changing the detuning. (a) The free-energy functional accord-
ing to Eq. (25) of the main text at � = 10.0 meV (the red line)
and � = 10.1 meV (the yellow line). The inset shows a magni-
fied view of the two minima, indicating the “polariton” minimum
becoming shallower than the “excitonic” one at p0 when chang-
ing the detuning. (b) Condensate momentum K = K0 (absolute
value) across the transition. At � = 10.0 meV, in the polariton–BEC
regime K0 = 59.21 meV/c, at � = 10.1 meV, in the exciton-BEC
regime K0 = 7595.1 meV/c, where c is the speed of light in vacuum.
(c) Condensate fraction across the transition. For all panels, B =
3 T, E = 5.9 kV/cm, d/e = 8.5 nm, total density n = 1010 cm−2,
h̄�0 = 6 meV at E = B = 0 and 3.5 meV in the applied E and B.
The renormalized exciton gap EG = 1538.46 meV. The dotted black
lines indicate the transition.

195304-13



MAXIMOV, KURBAKOV, VORONOVA, AND LOZOVIK PHYSICAL REVIEW B 108, 195304 (2023)

Namely, in the interaction term of the Hamiltonian (1),
1

2

∑
p,q,q′

U0(p, q, q′)Q̂†
qQ̂†

q′Q̂q′+pQ̂q−p

= 1

2

∫
U0(r − r′)Q̂†(r)Q̂†(r′)Q̂(r′)Q̂(r)dr dr′, (C3)

we separate the short-range part of the dipole-dipole interac-
tion (including the singularity) as

Ûex =
∫

ε0[Q̂†(r)Q̂(r)]dr

+ 1

2

∫
[U0(r − s) − g0δ(r − s)]

× Q̂†(r)Q̂†(s)Q̂(s)Q̂(r)dr ds. (C4)

In (C4), the first term (the short-range part) is taken in the local
density approximation and accounts for many-body effects
[50], with ε0(nex) being the part of the free energy per unit
area (in a uniform system) responsible for exciton-exciton in-
teraction nex = ∫ 〈Q̂†(r)Q̂(r)〉dr/S, and the averaging 〈. . . 〉 is
taken over the equilibrium density matrix of the polariton sys-
tem [62]. The second term, on the other hand, corresponds to
the first Born approximation for the quantity U0(r) − g0δ(r)
which is considered to be small enough [here g0 = ∫

U0(r)dr
is the bare interaction constant], and describes the long-range
and (or) extended-range effects of the bare pairwise potentials.
The subtraction of the δ-function contribution is performed in
order to achieve the integrability of the interexciton potential
at r = 0 in the strict dipolar limit [53].

For simplicity, we find the free energy per unit area ε0(nex)
from the ab initio simulations of the strict 2D dipoles at T = 0
without coupling to light [51]:

ε0(nex)

= d2

εr5
D

a1exp[(1 + a2) ln u+a3 ln2 u + a4 ln3 u + a5 ln4 u],

(C5)

where u = nexr2
D is the dimensionless density, rD =

mexd2/h̄2ε, and the coefficients a1 = 9.218, a2 = 1.359 99,
a3 = 0.011 225, a4 = −0.000 36, and a5 = −0.000 028 1
correspond to the fitting in the interval 1/256
� u � 8.

APPENDIX D: POLARITON–BEC TO EXCITON–BEC
TRANSITION UPON CHANGING THE

PHOTON-EXCITON DETUNING

Here, we provide the results of investigation of the tran-
sition between the two BEC regimes at a fixed total density
n = 1010 cm−2 while changing the photon-exciton detuning
�. In Fig. 7(a), we plot an exemplary dependence of the free
energy given by Eq. (25) in the main text, on the absolute
value of magnetic momentum K. The minimization procedure
allows to find the condensate momentum K0 for each E and B
depending on the total density n and detuning �. In Fig. 7(b),
we plot an example of such a dependence for B = 3 T, E =
5.9 kV/cm (at h̄�0 = 6 meV). In both Figs. 7(a) and 7(b), a
clear transition is seen at � ≈ 10.07 meV. With the growth of
�, the resting (K = K0) superfluid Bose-condensed system of
excitons with a given total density, due to the energy consid-
erations, according to Eq. (24) of the main text, undergoes the
transition from its polariton minimum of the free energy to the
exciton one [shown in the inset of Fig. 7(a)]. Figure 7(c) shows
the drop of the condensate fraction n0/n across the exciton–
BEC to polariton–BEC transition at a fixed total density n
(here n = 1010 cm−2).

We note that since changing the electric field strength E
would alter the Rabi splitting h̄� given by Eq. (2) in the main
text, it would result in effective change of the detuning with
respect to h̄� and hence of the exciton fraction in dipolaritons.
Thus, we conclude that one could observe a transition similar
to that described in Fig. 7 upon changing the electric field,
while keeping the detuning � fixed.
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