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The topological properties of the Su-Schrieffer-Heeger (SSH) model in the presence of nearest-neighbor
interaction are investigated by means of a topological marker, generalized from a noninteracting one by utilizing
the single-particle Green’s function of the many-body ground state. We find that despite the marker not being
perfectly quantized in the presence of interactions, it always remains finite in the topologically nontrivial
phase while converging to zero in the trivial phase when approaching the thermodynamic limit, and hence
correctly judges the topological phases in the presence of interactions. The marker also correctly captures the
interaction-driven, second-order phase transitions between a topological phase and a Landau-ordered phase,
which is a charge-density wave order in our model with a local-order parameter, as confirmed by the calculation
of entanglement entropy and the many-body Zak phase. Our paper thus points to the possibility of generalizing
topological markers to interacting systems through Green’s function, which may be feasible for topological
insulators in any dimension and symmetry class.
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I. INTRODUCTION

In the research of topological insulators (TIs) and topolog-
ical superconductors (TSCs), a particularly important issue is
whether our understanding of the topological order in nonin-
teracting systems still remain true in the presence of various
correlations since they generally occur in real materials [1].
When interactions are absent, our current knowledge of the
topological order within the context of Dirac models is fairly
complete [2–5], in the sense that the definition of topological
invariants in terms of Bloch states and what measurable quan-
tities they correspond to have all been thoroughly investigated
[6,7].

In fact, it has been pointed out recently that all the Dirac
models in any dimension and symmetry class can be ubiqui-
tously described by a single topological invariant that counts
the number of times the Brillouin zone (BZ) torus wraps
around a target sphere as induced by the Dirac Hamiltonian
[8], yielding a simple way to calculate the topological invari-
ant in momentum space. Moreover, a universal topological
marker can be derived from this wrapping number, offering
a generic way to calculate the topological invariant directly
from lattice models using the lattice eigenstates [9]. The ad-
vantage of this type of topological marker formalism is that it
allows direct investigation into the effect of real-space inho-
mogeneity, as has been widely demonstrated in the literature
[10–27].

On the other hand, when many-body interactions are
present, one would expect that none of the aforementioned
methods of calculating the topological invariants would work
since the Bloch state, lattice eigenstate, and the Dirac Hamil-
tonian are no longer valid concepts, such that one would
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need to resort to other methods. Focusing on one-dimensional
(1D) systems, various definitions have been proposed instead.
For instance, the degeneracy of the entanglement spectrum is
found to be a robust topological invariant [28–30], and the
spectrum either splits or crosses each other at the topological
phase transitions [31], giving rise to the notion of symmetry
protected topological (SPT) phases [32,33]. In addition, it
is also possible to construct the invariant from the Green’s
function in momentum space provided the interaction can be
treated perturbatively [34,35], whose singular behavior near
topological phase transitions can be used to extract critical
exponents [36].

In this paper, we demonstrate that a method proposed for
noninteracting 1D systems can be directly adopted to de-
scribe the topological phases in the presence of interactions,
namely the topological marker. We demonstrate this fea-
ture, particularly for the spinless Su-Schrieffer-Heeger (SSH)
model that belongs to the symmetry class BDI [37], where the
many-body ground state in the presence of nearest-neighbor
(NN) interaction is solved utilizing exact diagonalization. For
instance, the bosonic version of this model has been stud-
ied [38,39]. We show that although the lattice eigenstates
are no longer well defined in the presence of interactions,
the projectors to the filled and empty states that are key to
the topological marker formalism [14,15] can still be imple-
mented from the real-space single-particle Green’s function of
the many-body ground state, allowing the topological marker
to be introduced. In addition, adopting twisted boundary con-
ditions to reduce finite-size effects in the ground state [40]
does not preclude using the marker.

The resulting marker in our formalism is a quantity that
remains quantized in the noninteracting limit and changes
continuously as the interaction is turned on. Although the non-
integer marker seems to imply that the aforementioned picture
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of topological order as the number of times the BZ wraps
around a target sphere is no longer valid in the presence of in-
teractions, our marker still serves as a faithful tool to describe
the topological phases in the sense that it remains finite in
the topologically nontrivial phase and approaches zero in the
thermodynamic limit within the trivial phase. In addition, our
marker also correctly captures the quantum phase transition
between the topologically nontrivial phase and a topologically
trivial charge-density wave phase, similar to what occurs in a
two-dimensional (2D) correlated Chern insulator [41–44], as
also confirmed by the calculation of the entanglement entropy
and structure factor. Finally, we elaborate that our real-space
Green’s function formalism can be generalized to lattice Dirac
models of TIs in any dimension and symmetry class in the
presence of any interactions and lay out the formalism for
future applications.

II. MODEL AND METHODS

We study the one-dimensional spinless Su-Schrieffer-
Heeger model [37,45] with NN interactions [46–50],

Ĥ =
∑

〈i, j〉
(−t + δt (−1)i )(ĉ†

j ĉi + H.c.) + V
∑

〈i, j〉
n̂in̂ j . (1)

Here, ĉ†
i (ĉi ) denotes the fermionic creation (annihilation) op-

erator, where i and j denote sites of the lattice with length
L, with 〈i, j〉 restricting the sums to NN sites. t represents
the hopping integral, which is modulated by the dimerization
δt , and V is the nearest-neighbor interaction. n̂i = ĉ†

i ĉi is
the number operator at the site i, with sites of a unitary cell
differentiated by subscripts A and B as indicated in Fig. 1(a).

We use the Lanczos method [53–55] to obtain the ground
state of the interacting SSH model [Eq. (1)] at half-filling. To
mitigate finite-size effects, we adopt twisted-averaged bound-
ary conditions (TABC) [40,56–58]. Thus, whenever a fermion
hops between the first and last sites of the system, the hopping
gains a phase φ: ti j → ti j exp iφ�, where φ� = [0, 2π ). Each
φ� allows a different set of k points, increasing the number
of available momenta in the first Brillouin zone with a given
lattice and reducing finite-size effects. In this framework, the
expected value of an operator Â is given by [59]

〈Â〉 = 1

Nφ

Nφ∑

�=1

〈Â〉φ�
, (2)

where we set Nφ = 20 as the number of values of φ�.
To probe if the system is in a metallic or insulating

state, we calculate the energy gap between the ground and
the first excited states, � ≡ E1 − E0. We further calculate
charge-charge correlation functions since repulsive interac-
tions enhance these and can display long-range orders for
sufficient V . Due to the dimerization δt , it is convenient to
divide the chain into two sublattices, A (odd sites) and B (even
sites), as indicated in Fig. 1(a). This separation is useful to
define NN intracell 〈n̂i∈An̂i∈B〉 and intercell 〈n̂i+1∈An̂i∈B〉 cor-
relation functions. The charge-density wave structure factor is
defined as

Scdw = 1

L

∑

i, j

〈n̂in̂ j〉(−1)|i− j|; (3)

FIG. 1. Schematic Hamiltonian cartoon (a) and phase diagram of
the one-dimensional SSH model with NN interactions (b). The local
topological marker C ≡ C(L/4) is presented as a color map in the
space of parameters (δt,V ), for an L = 20 chain where TABCs are
utilized. The phase diagram indicates the existence of four phases:
TI and BI, mainly governed by the dimerization δt , and CDW and
PS, driven by the repulsive and attractive interactions V , respectively.
A set of complementary quantities help in identifying the phase
boundaries. In particular, the CDW transition points are identified
by the linear extrapolation of the minima of dSvN

dV [black markers, see
Fig. 6(b)], or by the scaling of the CDW structure factor [cyan mark-
ers, see Fig. 4 for δt/t = −0.5, as an example]. The magenta stars
indicate the transition points obtained exactly for the correspondent
XXZ model (via Jordan-Wigner transform) [51,52], at δt = 0. For
sufficiently attractive interactions, the topological marker indicates a
transition for the PS regime, where the phase boundary is obtained
by steep drop location of SvN for V < 0 [see Fig. 6(a)]. The insets are
schematic representations of each interacting SSH model phase, with
A and B sites depicted in cyan and black, respectively, as shown in
(a). The gray regions indicate the unit cell. Hopping between neigh-
boring sites within the cell takes the value (t − δt ) while hopping
between neighboring cells is (t + δt ); the NN interaction V is site
independent.

long-range order entails that Scdw is extensive in the system
size. In turn, the von Neumann entropy SvN measures the
entanglement between two parts, A and B of a system and is
given by

SvN (δt,V ) = −TrρA ln ρA, (4)

here we have chosen A to be the set of sites in sublattice A and
B the set of sites in sublattice B. So ρA is the partial trace of
the density matrix ρ over the sublattice B.

The characterization of topological phases is not trivial for
the interacting SSH model, as a solution by Fourier trans-
form is unavailable due to the presence of correlations. We
investigate the model’s topology using the local topological
marker C(r) [9,60], which provides insight into the system’s
topology in real space. C(r) is defined within each unit cell of
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the lattice, and for noninteracting systems it is given by

C(r) =
∑

i={r,A},{r,B}
〈i|σ̂z(P̂X̂ Q̂ + Q̂X̂ P̂)|i〉, (5)

where ν is the sublattice index, σ̂z is the z Pauli matrix, P̂ ≡
|
0〉〈
0| is the ground-state projector, Q̂ = ∑

m>0 |
m〉〈
m|
is the projector on the excited states, and X̂ is the unit-cell
position operator. We can rewrite that equation by noticing
that the matrix elements of P̂ are equivalent to the single-
particle Green’s function Ĝ, with components Gi, j = 〈ĉi ĉ†

j 〉,
and Q̂ = (Î − Ĝ) by completeness. Therefore, we can rewrite
C(r) as

C(r) =
∑

i={r,A},{r,B}
〈i|σ̂z(ĜX̂ (Î − Ĝ) + (Î − Ĝ)X̂ Ĝ)|i〉. (6)

Finally, we also calculate the many-body Zak phase [61]
given by the expression

γ = −� log
Nφ∏

�=0

〈ψ (φ�)|ψ (φ�+1)〉, (7)

where |ψ (φ�)〉 is the ground state of the SSH model for
twisted boundary conditions with a phase φ�.

III. GENERAL FORMALISM FOR TOPOLOGICAL
INSULATORS IN ARBITRARY DIMENSION

We anticipate that our formalism of topological marker that
replaces the projectors by the real-space Green’s function is
valid to the SSH model and generally applicable to lattice
Dirac models of TIs in any dimension and symmetry class.
This conjecture is made because the universal topological
marker applicable to any dimension and symmetry class also
takes the form of alternating projectors and position operators
as in Eq. (5), and hence the Green’s function formalism should
be directly applicable [9]. Below we explicitly outline such a
formalism.

Consider a D-dimension TI described by the Dirac Hamil-
tonian in momentum space H0(k) = d(k) · �, where i =
(0, 1...2n) are the nth order Dirac matrices of dimension
2n × 2n that satisfy the Clifford algebra {i,  j} = 2δi j , and
d(k) = (d0, d1, ..., dD) describes the momentum dependence
of the Hamiltonian. The real-space lattice Hamiltonian Ĥ0

can be straightforwardly obtained from a Fourier transform
of Ĥ0(k), whose basis contains the electron operators ĉi with
i = {r, ν}, where r denotes the position of the unit cell, and
ν enumerates any internal degrees of freedom such as spin,
orbital, sublattice, etc. We denote the interacting Hamiltonian
by Ĥint such that the full Hamiltonian is Ĥ = Ĥ0 + Ĥint. After
the many-body ground state |ψ〉 is obtained numerically, we
aim to calculate the universal topological marker in terms
of |ψ〉. This is done by considering a universal topological
operator constructed out of Ĥ0 that takes the form of two
arrays of alternating projectors {P̂, Q̂} sandwiched by position
operators r̂1∼D = {x̂, ŷ, ẑ...},
Ĉ = NDŴ [Q̂ r̂1P̂ r̂2... r̂DÔ + (−1)D+1P̂ r̂1Q̂ r̂2...r̂DÔ], (8)

where Ŵ = ̂D+1̂D+2...̂2n is the product of all the un-
used Dirac matrices. In this expression, the last operators

{Ô, Ô} = {P̂, Q̂} if D = odd, and {Ô, Ô} = {Q̂, P̂} if D =
even owing to the alternating ordering of the projectors Q̂
and P̂. The normalization factor is ND = iD22D−nπD/c VD,
with VD = {V1,V2,V3...} = {2π, 4π, 2π2...} the volume of
a D sphere, and the prefactor c = Tr[̂0̂1...̂2n]/2n =
{1,−1, i,−i} depends on the representation of  matrices for
the system at hand.

In the noninteracting limit Ĥint = 0, the projectors P̂ and
Q̂ in Eq. (8) are evaluated by the summations of projec-
tors to the filled and empty lattice eigenstates, respectively
[9,14]. Encouraged by our results in the interacting SSH
model, we propose that for interacting systems Ĥint 	= 0, the
projectors P̂ → Ĝ and Q̂ → Î − Ĝ may be replaced by the
single-particle Green’s function Gi, j = 〈ĉiĉ

†
j 〉, where the ex-

pectation value 〈. . .〉 may contain average over twisting angles
if the twisted boundary condition is adopted. The topological
marker at unit cell r is then calculated by

C(r) =
∑

ν

〈r, ν|Ĉ|r, ν〉, (9)

similar to that in Eq. (5). This topological marker should read-
ily apply to any lattice Dirac models of TIs with many-body
interactions, which is left for future investigations. Finally, we
remark that another intriguing issue is whether this Green’s
function formalism is also applicable to interacting TSCs,
whose noninteracting limit can also be described by Eq. (8).
However, because the basis of the TSCs involves both electron
creation and annihilation operators, the Green’s function will
contain the anomalous components like 〈ĉiĉ j〉 and 〈ĉ†

i ĉ†
j 〉, and

it remains unclear to us at present how they enter Eq. (8)
appropriately. This issue awaits to be further explored.

IV. RESULTS

Having established the main quantities, we now system-
atically characterize the different phases of (1), as described
in Fig. 1(b). Other than a phase-separated regime occurring
at sufficiently negative interactions V on a broad range of
dimerization values δt , three extra insulating phases emerge,
topological (band) insulator at moderate interaction strengths
for δt < 0 (δt > 0), and a (topologically trivial) Mott insulator
featuring a charge-density wave when V is large. As will
become clear in what follows, such a transition is character-
ized by a Z2 symmetry breaking, thus being governed by the
2D-Ising universality class in the interacting SSH chain. The
different quantities introduced in Sec. II will be individually
used to establish the corresponding phases.

A. Energy gap

We start by classifying the energy gap, i.e., the dependence
of the excitation energy between the ground state and the
first excited one in the dimerization δt/t for different values
of V/t , as shown in Fig. 2(a). Comparing it with the phase
diagram in Fig. 1(b), one notices that both the topological
and band insulating regions display a robust gap. This extends
to the interacting realm of the known finite gaps obtained in
the V = 0 case (see Appendix A). Furthermore, the direct
TI ↔ BI transition is then characterized by the gap closure
for interactions 0 � V � 3t at δt = 0.
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FIG. 2. Energy gap in the (δt,V ) parameters space, as a color
map in (a) and corresponding line cuts at particular interaction
strengths in (b). Here, data is extracted at a fixed lattice size L = 20,
and averaged over twisted boundary conditions. Topological and
band-insulating regions exhibit a well-marked gap to excitations,
unlike the phase-separated and Mott regions (see text).

Conversely, the phase-separated and Mott insulator regions
are characterized by a vanishing of the energy gap only in
the thermodynamic limit. While in the former, an extensive
number of states exhibiting various configurations of phase
separation display similar energy in the low-lying spectrum
(thus making � → 0), in the latter, there is a doublet of
charge-density-wave states (even and odd under inversion
symmetry), which become degenerate in approaching the
atomic limit (t/V → 0).

These two considerations establish that while the direct
transition from the topological insulator to the trivial band
insulator is a first-order phase transition characterized by an
energy-level crossing and thus gap closure, the TI ↔ MI is
a typical second-order phase transition, whose universality
becomes clear when analyzing the emergent order parameter
in what follows. A precise characterization of the gaps when
approaching L → ∞ is given in Appendix B.

B. Charge correlations and charge-density wave

Given that the interactions V are the dominant energy scale,
one expects a CDW state in the bipartite SSH chain to occur.
The precise value of the interaction strength that triggers
this Mott insulating state with a finite local-order parameter

FIG. 3. CDW structure factor Scdw in the (δt,V ) parameters
space, shown as a color map in (a) and line cuts along representative
interaction values in (b). As in Fig. 2, data is extracted for an L = 20
lattice at half-filling and averaged over twisted-averaged boundary
conditions. The MI region is characterized by a robust Scdw value.

depends on the magnitude of the dimerization δt . Figure 3(a)
maps out the CDW structure factor Scdw on the (δt,V ) plane.
As predicted, once V � t, δt a large Scdw identifies a favored
CDW regime, whose critical value of the interactions Vc to
necessary to trigger it grows roughly linearly with |δt/t |.
Furthermore, such a transition occurs irrespective of whether
the parent regime is topologically trivial or not. In particular,
the onset of the CDW phase at vanishing dimerization occurs
at values of the interactions V/t � 3.

While suggestive, only a precise scaling of Scdw can con-
firm the manifestation of a phase transition to the ordered
regime. We start by noticing that a CDW state is tied to a
spontaneous symmetry breaking of the sublattice symmetry
in the thermodynamic limit, thus being classified as a contin-
uous phase transition identified by a Z2-symmetry breaking.
If defining the order parameter mcdw ≡ |〈n̂A − n̂B〉|, we notice
that the structure factor [Eq. (3)] is proportional to m2

cdwL.
Assuming thus that, given the symmetry-breaking form, such
phase transition pertains to the (1 + 1) − d Ising universality
class, Scdw/L should obey the scaling ansatz,

(Scdw/L) = L−2β/νg[((V − Vc)/t )L1/ν], (10)

where the exponents β = 1/8 and ν = 1 are the characteristic
ones for this universality class.
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FIG. 4. (a) The V dependence of the CDW structure factor with
δt = −0.5t for various system sizes, and (b) the scaled Scdw accord-
ing to the scaling ansatz [Eq. (10)]. Here, the critical interaction
V cdw

c = 5.81 ± 0.02 triggers the CDW phase for this value of δt , and
is the one that minimizes the χ 2 of the collapse (inset); see text.

Following this rationale, Fig. 4 shows both the extensive
behavior of Scdw within the CDW phase and the scaling
form satisfying the ansatz at δt/t = −0.5. The critical
interaction Vc is estimated by the minimum of a χ2

test, quantifying the scaling collapse. It is written as
χ2

Vc,β,ν = ∑
j (x j − mj )2/mj , where x j are the values of

(Scdw/L)/L2β/ν for each (V − Vc)L1/ν , and mj is the expected
power-law fit for the curve. A compilation of this analysis for
different values of δt gives the cyan empty markers in Fig. 1
showing the critical interactions Vc.

While this scaling analysis unequivocally establishes the
emergence of charge ordering at large interaction strengths, a
direct inspection of the nearest-neighbor (intra- and interunit
cell) correlations gives extra insight into the different phases,
whether charge ordered or not. Figures 5(a)–5(d) report the
dependence of both intra- 〈n̂i,A, n̂i,B〉 and intercell 〈n̂i,Bn̂i+1,A〉,
NN correlation functions on the space of parameters (δt,V ).

The noninteracting regime (V = 0) reproduces known be-
havior, namely, the existence of topological dimers (intercell)
for δt < 0 and trivial dimers (intracell) for δt > 0. Introducing
a finite repulsive interaction lowers the curves of both corre-
lation functions, indicating that the presence of the interaction
term V competes with the dimerization term δt , eventually
breaking the dimer regime. This result is consistent with the

FIG. 5. Color map of the intra- and intercell nearest-neighbor
correlation functions, (a) and (b), respectively, in the space of pa-
rameters (δt,V ). Panels (c) and (d) depict the same for selected
interaction strength values V . As in previous figures, data refers to
a L = 20 lattice averaged over twisted boundary conditions.

subsequent formation of a CDW phase once V is sufficiently
large. In turn, large attractive interactions result in intra-
and intercell NN correlations, which are both substantially
large [see blue regions in Figs. 5(a) and 5(b)], a signature
of the charge accumulation characteristic of phase-separated
regimes.

The findings suggest that the interplay between dimer-
ization δt and interactions V can lead to the emergence of
new phases, in addition to the well-known TI and BI phases.
Notably, a CDW phase in the repulsive regime, particularly
for strong interaction strengths, and a phase-separated one for
strong, attractive interactions. The competition between these
two “knobs” directly explains the roughly linear dependence
of Vc on |δt | [see Fig. 1(b)].

C. von Neumann entanglement entropy

We next examine the von Neumann entropy, recalling that
the partitions A and B used to calculate SvN coincide with the
sublattices of the SSH chain. A quantum phase transition can
either be identified by a singularity in SvN or a minimum of the
derivative of SvN with respect to a control parameter [47,62].
Figure 6(a) shows SvN/L for δt/t = −0.5 as a function of V/t
for different system sizes. In the repulsive regime, the curves
of the entanglement entropy cross at a single value of the
interaction strength [Fig. 6(a)], which can also be obtained
by the locus of the dSvN

dV singularity, when extrapolating it to
the thermodynamic limit [Fig. 6(b)]. The obtained value of
V vN

c /t = 5.97 ± 0.02 is sufficiently close to the one obtained
by scaling the CDW structure factor to rule out the possibility
of any intermediate phase. Larger lattice sizes can potentially
bring an even closer agreement.

Next, we present the results for SvN in Fig. 6(c) as a color
plot in the (δt,V ) parameter space. This analysis was per-
formed for an L = 20 chain considering TABCs. For V > 0,
the solid line that varies with δt indicates the extrapolated
transition points to the topologically trivial Mott insulator,
obtained as above. For V < 0, the solid lines indicate the
location of the systematic drop in SvN , which, according to
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FIG. 6. (a) SvN as a function of V/t for δt = −0.5 for chains with L = 6, 8, 10, 12, 14, 16, 18, 20, and (b) the corresponding extrapolation
of the minima position Vmin/t of dSvN

dV with 1/L2; the inset shows dSvN
dV vs V/t at the same parameters as in (a). Panel (c) displays a color map

of the von Neumann entropy in the (δt,V ) space of parameters at a fixed lattice size L = 20. The magenta stars in (c) indicate the transition
points obtained exactly for the correspondent XXZ model (via Jordan-Wigner transform) [51,52], at δt = 0.

the previous analysis of the correlations, denotes the onset
of the phase-separated regime. Since the ground state of the
region exhibiting PS is a highly nonentangled object, it makes
its identification increasingly sharp, with minimal finite-size
effects.

D. Zak’s phase and topological marker

Finally, the topological properties can be directly obtained
by the computation of the Zak phase [Eq. (7)], as previously
done in other studies of many-body systems [48]. Nonethe-
less, we argue that the topological marker [Eq. (5)] can extract
the same information about topology on a fraction of the com-
putational cost. Unlike Zak’s phase, where one must compute
the many-body ground state on a sufficiently discretized set
of twisted boundary conditions, it is sufficient to use a single
boundary condition for the topological marker. To exemplify
this, we compute both γ and C(r) for numerous (δt,V ) values
in Fig. 7. Here, we chose the value of C(L/4) because it ex-
hibits a quantized response in the noninteracting limit (V = 0)
[9]. Figure 7(a) indicates that already in the weakly interacting
regime (V = t) the C(L/4) steadily converges to the actual
Zak phase when approaching the thermodynamic limit, but
the crossing at δt = 0 is sufficient to pinpoint the TI ↔ BI
transition.

Now, fixing the dimerization at δt = −0.5, we notice the
same crossing for C(L/4) when considering different system
sizes in the repulsive regime coincides with the critical in-
teraction that triggers the CDW Mott insulating phase. As
a result, reasonably small system sizes with a single bound-
ary condition can accurately locate the topological transition
when using such a marker. It is important to emphasize that
if using the Zak phase in this case, we do not see a tran-
sition from γ /π = 1 to 0 as the local topological marker
seems to suggest. We recall that the spontaneous symmetry
breaking that gives rise to a CDW state (breaking inversion
symmetry) is only obtained in the thermodynamic limit. As a
result, the excitation gap in a finite-system size is always finite

(see Appendix B), converging to zero at V = Vc if L → ∞.
Such resilience to the change of the topological invariant
under spontaneous symmetry-breaking perturbations has been
previously reported [63], and similarly, the change of the
topological invariant takes place only when the corresponding
excitation gap closes. As a result, in our finite-sized calcu-
lations, the Zak phase remains unaltered when entering the
ordered regime.

Nonetheless, as established in Sec. IV A, the ground state
is twofold degenerate in the thermodynamic limit within the
ordered regime. In finite lattices, � > 0, but if instead com-
puting the combined Zak phase (γ + γ1)/π , i.e., the sum of
the topological invariant of both the ground and first excited

FIG. 7. (a) Zak’s phase γ and topological marker C as a function
of δt for V = t for several lattice sizes. (b) Using the same lattice
sizes, the topological marker as a function of V for δt/t = −0.5.
The crossing point is marked by the vertical dashed line, agreeing
with the location of the TI ↔ CDW transition as verified by the
scaling of Scdw and of the SvN for this dimerization value. Here the
topological invariant (Zak phase) does not change but the total value
when combining γ from both the ground and first excited states
vanishes—see discussion in the text.
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states, one thus sees that this total topological invariant is zero
[see Fig. 7(b)], a preliminary indication of what to expect in
the thermodynamic limit.

V. CONCLUSIONS

We characterize the phase diagram of the interacting SSH
chain model and further elaborate on the feasibility of a
topological marker in identifying its topological phases. The
topological marker is generalized from the noninteracting one
by reinterpreting the projectors P̂ and Q̂ in terms of the
real-space single-particle Green’s function of the many-body
ground state, and (if needed) it can be combined with the
twisted boundary condition to improve accuracy. Our results
show that such a marker is not quantized in the presence of the
nearest-neighbor interactions but nevertheless always remains
finite in the topologically nontrivial phase while systemati-
cally decreasing with system size in the topologically trivial
one. As a result, it can be used a useful proxy to describe the
topological properties of the model at a fraction of the effort
of Zak’s phase.

In addition, we characterized the emergence of the CDW
phase for sufficiently strong interactions identifying it as a
second-order phase transition within the 2D-Ising universality
class. The topological marker also captures such a transition,
departing from the TI, as confirmed by the singularity in
the derivative of the entanglement entropy, suggesting that
the marker is feasible even in fermionic systems that exhibit
topological and Landau orders. These encouraging results
lead us to conjecture that replacing the projectors with the
real-space Green’s function should be generically applicable
to the topological markers of TIs belonging to any dimension
and symmetry class. Moreover, our marker also allows the
interplay between strong correlations and other complications
in real space, such as disorder and grain boundaries, to be
investigated. In addition, it is intriguing to ask whether the
marker can capture multiple transitions between different inte-
ger values of topological invariants driven by interactions, not
just from 1 to 0 as demonstrated in the present paper. These
intriguing and realistic issues await to be further explored.

ACKNOWLEDGMENTS

The authors are grateful to the Brazilian Agencies Con-
selho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq), Coordenação de Aperfeiçoamento de Pessoal de En-
sino Superior (CAPES), Fundação Carlos Chagas de Apoio à
Pesquisa do Estado do Rio de Janeiro (FAPERJ), and Instituto
Nacional de Ciência e Tecnologia de Informação Quân-
tica (INCT-IQ) for funding this project. W.C. acknowledges
the financial support from CNPq Grant No. 301734/2022-4.
Financial support from Fundação Carlos Chagas Filho de
Amparo à Pesquisa do Estado do Rio de Janeiro Grants
No. E-26/200.959/2022 and No. E-26/210.100/2023 (T.P.);
and CNPq Grants No. 403130/2021-2 and No. 308335/2019-
8 (T.P.) are gratefully acknowledged. R.M. acknowledges
support from NSFC Grants No. NSAF-U2230402, No.
12050410263, No. 11974039, and No. 12222401.

FIG. 8. Energy gap � as a function of the dimerization δt for
the noninteracting SSH model for chains with L = 8 to L = 30 sites.
As expected, the gap approaches zero at δt = 0 as the system’s size
increases. For the TI phase, the winding number completes a loop
and is nonzero, as indicated in the left bottom inset. For the BI phase,
the winding does not complete a loop, as shown in the right bottom
inset, and therefore is zero.

APPENDIX A: THE NON INTERACTING CASE

In the absence of interactions (V = 0), it is widely recog-
nized that two distinct phases emerge in the SSH model: the
topological insulator (TI) and the band insulator (BI) [64]. The
transition between these phases is characterized by the energy
level crossing between the two lowest energy states, leading
to the closing of the energy gap. Additionally, the Zak phase
of the lower energy band is γ /π = 1 in the TI phase and
γ /π = 0 in the BI phase. Figure 8 displays the dependence
of the energy gap � on the dimerization parameter δt in
the SSH model for different system sizes L with periodic
boundary conditions. The gap goes to zero at δt = 0 in the
thermodynamic limit (the extrapolation is not shown).

In the noninteracting regime, the Hamiltonian can be writ-
ten in momentum space as

Ĥ = Qkĉ†
AkĉBk + Q∗

k ĉ†
BkĉAk, (A1)

where Qk = (t − δt ) + (t − δt )e−ik , and A and B are the dif-
ferent sublattices represented in Fig. 1(a).

FIG. 9. Energy as a function of δt/t for the noninteracting
case for OBC. The color maps the electronic distribution of each
correspondent eigenstate. It is red for states where the charge is
concentrated at the edges. As the system enters the topological phase,
edge states emerge in the Fermi level for δt < 0.
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FIG. 10. (a) The δt dependence of the energy gap � at fixed interaction strengths V/t = 1, indicating a typical first-order phase transition,
i.e., energy-level crossing even at finite-sizes L. (b) The V dependence of the gap at fixed dimerization δt/0.5; here, gaps are finite and only
turn zero at V = Vc (vertical dashed line) when approaching the thermodynamic limit, panel (c). Finally, the gap in the thermodynamic limit is
a power law near the critical point, panel (d); the continuous line fits this functional form, see text.

One can define ϕk [50] by

ϕk = − arg(Qk ), (A2)

for each k ∈ [−π, π ] on the first Brillouin zone. The sum∑π
k=−π ϕk gives the winding number ϕ. The inset of Fig. 8

indicates that in the TI phase, the set of ϕk completes a loop,
and the correspondent ϕ is nonzero for δt < 0. In contrast, in
the BI phase, the ϕk set does not complete any loop, and ϕ is
zero for δt > 0.

The topological insulating phase at δt < 0 displays a bulk-
boundary correspondence that is characterized by a nontrivial
topological number in the bulk and surface states at the Fermi
level on the edges, as seen in Fig. 9 for a L = 126 chain with
open boundary conditions. The eigenvalues of H are shown
as a function of δt/t . For δt/t < 0 two states are seen at
the Fermi level. The heat map illustrates the extent to which
the electronic distribution is concentrated at the edges of the
chain in the TI phase. The bulk-boundary correspondence is
an essential aspect of the topological properties of the SSH
model, and its observation is key to the description of the
noninteracting model.

APPENDIX B: EXTRAPOLATING THE ENERGY GAP

In the main text, we have argued that the TI ↔ BI is a
first-order phase transition even within the interacting regime,
whereas the TI ↔ MI-CDW one is of second-order type.
Figure 10 has the goal of establishing this quantitatively. To
start, by fixing V/t = 1, Fig. 10(a) displays that even within
finite-system sizes, the gap � → 0 when δt → 0, coinciding
with the location of the topological transition. As a result, an
unequivocal first-order phase transition emerges.

On the other hand, if fixing δt/t = −0.5, the scaling anal-
ysis of the order parameter in the main text (Fig. 4) argued
in favor of a 2D-Ising-like second-order phase transition.
Figure 10(b) shows the gap dependence on the interaction
strength V for that fixed dimerization. While there is a clear
indication of the gap reduction with increasing lattice size
L once it approaches the critical interaction Vc, these gaps
remain finite. Only thus reaching the thermodynamic limit
[see Fig. 10(c)] thus one sees �(L → ∞) → 0 at V = Vc. In
this limit, a typical power-law gap dependence on the distance
to the critical point, � ∼ |V − Vc|zν , ensues where z and ν

are the dynamic and correlation length critical exponents,
respectively [Fig. 10(d)].
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